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Abstract Predicting landslide displacement is challenging, but accurate predictions can prevent casualties and economic losses. 9 

Many factors can affect the deformation of a landslide, including the geological conditions, rainfall, and reservoir water level. 10 

Time series analysis was used to decompose the cumulative displacement of landslide into a trend component and a periodic 11 

component. Then the least squares support vector machine (LSSVM) model and genetic algorithm (GA) were used to predict 12 

landslide displacement, and we selected a representative landslide with episodic movement deformation as a case study. The trend 13 

component displacement, which is associated with the geological conditions, was predicted using a polynomial function, and the 14 

periodic component displacement which is associated with external environmental factors, was predicted using the GA-LSSVM 15 

model. Furthermore, based on a comparison of the results of the GA-LSSVM model and those of other models, the GA-LSSVM 16 

model was superior to other models in predicting landslide displacement, with the smallest root mean square error (RMSE) of 17 

62.4146 mm, mean absolute error (MAE) of 53.0048 mm, and mean absolute percentage error (MAPE) of 1.492% at monitoring 18 

station ZG85, while these three values are 87.7215 mm, 74.0601 mm and 21 1.703% at ZG86 and 49.0485 mm, 48.5392 mm and 19 

3.131% at ZG87. The results of the case study suggest that the model can provide good consistency between measured 20 

displacement and predicted displacement, and periodic displacement exhibited good agreement with trends in the major 21 

influencing factors. 22 

Keywords landslide; displacement prediction; least squares support vector machine; genetic algorithm; reservoir water level; 23 

rainfall 24 

 25 

1 Introduction 26 

In the Three Gorges Reservoir region, landslides are the main type of geo-hazard, and they cause critical harm to individuals 27 

and property each year (Du et al. 2013; Yao et al. 2013; Lian et al. 2014; Cao et al. 2016). The displacement prediction of 28 

landslides is a major focus in the field of landslide research (Sassa et al. 2009; Du et al. 2013). Comprehensive analyses of 29 

landslide response and displacement predictions of landslide based on external factors are effective methods that rely on landslide 30 

deformation data. The evolution process of landslide is a complex non-linear process caused by the complex interaction of 31 

different factors. The accurate prediction of reservoir landslide processes is an important basis for early prevention, and it can 32 

reduce the loss of property and lives (Corominas et al. 2005). Therefore, geological surveying, monitoring, landslide prevention 33 

and landslide prediction must be improved to minimise the losses caused by landslides (Kirschbaum et al. 2010; Miyagi et al. 34 

2011; Ahmed 2013). A landslide can be regarded as a nonlinear and dynamic system that is affected by external factors, such as 35 

rainfall, reservoir water levels, groundwater, etc. (Guzzetti et al. 2005; Kawabata and Bandibas 2009). Due to the influences of 36 

external factors, deformation displacement of landslide generally exhibits the same tendencies as the variations in external factors, 37 

which can result in misleading landslide prediction. Displacement time series is usually considered as a direct representation of 38 

complex nonlinear dynamical behavior of landslide. 39 

In recent years, grey system models, time series models, neural network models, extreme learning machines, support vector 40 

machines (SVM), etc. have been widely used for landslide displacement prediction (Wang 2003; Pradhan et al. 2014; Gelisli et al. 41 

2015; Goetz et al. 2015; Kavzoglu et al. 2015). Previously, landslide susceptibility maps were assessed using a back propagation 42 

artificial neural network and logistic regression analysis (Nefeslioglu et al. 2008). Additionally, dynamic time series predictors 43 

were proposed based on echo state networks (Yao et al. 2013). Lian et al. (2013) used an extreme learning machine and ensemble 44 

empirical mode decomposition to predict landslide displacement. Although these models were constructed based on different 45 
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algorithms, each has strengths and weaknesses. Grey system models are widely used in analyses of exponential time series. 1 

However, for complex nonlinear slope displacement series, prediction results can yield considerable error (Yin and Yu 2007; Sun 2 

et al. 2008). Additionally, autocorrelation coefficients, partial correlation coefficients and pattern recognition features are difficult 3 

to determine via time series analysis (Brockwell and Davis 2013; Turner et al. 2015). The neural network method is a powerful 4 

tool in landslide prediction (Liu et al. 2014; Lian et al. 2015). However, the conventional neural network has many limitations, 5 

including overfitting and a shortage of theoretical guidance in the selection of the number of network nodes in the hidden layer, 6 

which diminishes its prediction ability (Hwang et al. 2014). In addition, the neural network neglects practical issues by using a 7 

pre-defined activation function. Compared with traditional learning algorithms, although extreme learning machines are 8 

characterized by high generalization, good performance and fast computing speed, their output is different at different times due to 9 

the use of randomly selected input (Lian et al. 2014). Thus, it is difficult to reflect large quantities of information completely and 10 

predict landslide displacement accurately using these models because landslide displacement is actually a finite time series. 11 

The SVM model can effectively overcome the limitations of other methods, including small sample sizes, high 12 

dimensionality and nonlinearity. Many studies have illustrated the ability of SVM models to recognize learning patterns, such as 13 

nonlinear regression, and obtain the global optimum solutions to these problems (Feng et al. 2004; Marjanović et al. 2011; 14 

Micheletti et al. 2011; Hong et al. 2016). Although these problems can be transformed into quadratic convex programming 15 

problems, the computation speed of the SVM model is slow when the training data set is large or the dimensionality is high 16 

(Zhang et al. 2009). To overcome these inadequacies, we use the least squares support vector machine (LSSVM) proposed by 17 

Suykens and Vandewalle (1999), which is a supervised learning model that has been widely applied in other machine learning 18 

problems, such as function fitting. The LSSVM model uses the square sum of the least square linear system error as the loss 19 

function and solves the problem by transforming it into a set of equations, which increases the solution speed and reduces the 20 

required calculation resources (Suykens et al. 2002; Lv et al. 2013; Xu and Chen 2013; Zhang et al. 2013). Additionally, this 21 

method yields good performance in pattern recognition and nonlinear function fitting. However, the selection of parameters is 22 

crucial to developing an efficient LSSVM model due to its sensitivity to small variations in the parameters.  23 

Currently, several intelligent algorithms are used to solve optimization problem, such as the GA (Li et al. 2010; Ali et al. 24 

2013), grid algorithm (Lin 2001), particle swarm optimization (Vandenbergh and Engelbercht 2006) and genetic programming 25 

(Garg and Tai 2011; Shen et al. 2012). However, compared with the GA, the grid algorithm is tedious and cannot yield 26 

satisfactory results (Gu et al. 2011). For discrete optimization problems, particle swarm optimization performs poorly and often 27 

yields local optima (Fei et al. 2009). In addition, genetic programming, which was developed by Koza (1992), provides solutions 28 

to complex problems using evolutionary algorithms, and the method is typically expressed as a tree structure that consists of 29 

terminals and functions; however, it is difficult to generate new individuals, which seriously affects the convergence rate (Garg et 30 

al. 2014). The genetic algorithm (GA) is a global optimization algorithm that uses highly parallel, random and adaptive searching 31 

based on biological natural selection and optimization. Thus, the method is particularly suitable for solving complex and nonlinear 32 

problems (Li et al. 2010; Ali et al. 2013; Cai et al. 2016). In this paper, the GA is selected as the method of parameter optimization 33 

in the LSSVM due to its advantages in determining the unknown parameters that are consistent between the predicted data and the 34 

measured data. By introducing the GA, some key parameters of the LSSVM model can be derived automatically. Therefore, we 35 

select the combination of the LSSVM model and the GA to predict landslide displacement. 36 

Due to the influences of rainfall, reservoir water level and human activities on the monitoring data of landslide displacement, 37 

most monitoring data series are incomplete or highly variable. These issues introduce uncertainty into the mathematical model and 38 

increase the difficulty of prediction. To overcome this and obtain the main error sources, a time series analysis of displacement is 39 

conducted by decomposing the monitoring data series into several components (Du et al. 2013). Then, the monitoring data series 40 

are simulated using the moving average method. Shuping landslide, a typical landslide with episodic movement deformation, was 41 

taken as an example to validate and the GA-LSSVM model with time series analysis. 42 

2 Methodology  43 

2.1 Time series analysis of displacement 44 

Cumulative displacement of landslides is caused by the combined effects of internal geological conditions (lithology, 45 

geological structure, topography, etc.) and external environmental factors (rainfall, reservoir water level, groundwater, etc.). The 46 
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displacement of landslide sequence is an instability time series. The landslide displacement caused by the former increases 1 

generally with time, which reflects the trend in cumulative displacement. Landslide deformation exhibit long-lasting and 2 

continuous movements under gravity loads that is affected by the creep characteristic (Desai et al. 1995). One of the important 3 

reasons that influence the creep behavior is the expression of the response of geological materials and interfaces. Landslide 4 

deformation is often characterized by creep, which generally need to undergo three stages, initial deformation, stable deformation 5 

and accelerated deformation stage. However, the landslide displacement induced by the latter is approximately periodic. Therefore, 6 

a landslide displacement sequence is an instability time series with a periodic episodic movement characteristic. According to time 7 

series analysis, cumulative displacement can be decomposed into three portions as follows: 8 

t t t ty p q          (1) 9 

where ty  is the cumulative displacement, tp  is the trend component displacement, tq is the periodic component displacement, 10 

and t  is the random component displacement. 11 

However, it is difficult to obtain relevant data regarding the random component (wind loads, car loads, etc.) due to the lack 12 

of advanced monitoring methods. In this paper, the random component displacement is not considered. Therefore, we can simplify 13 

the time series model as follows. 14 

t t ty p q        (2) 15 

The trend component can be extracted using the moving average method as follows: 16 

 1 2, , , , ,i j nA a a a a       (3) 17 

1 1 ( , 1, , )t t t k
t

a a a
p t k k n

k

    
         (4) 18 

where iA  is the time series of cumulative displacement of the ith monitoring system (i=1, 2,…, m), 
ja  is the cumulative 19 

displacement of the ith monitoring system at time j (j=1, 2,…, n), tp  is the extracted value of the trend component, and k is the 20 

moving average period. 21 

The periodic component displacement can be acquired by subtracting the trend component displacement from the 22 

cumulative displacement. Therefore, the time series model not only reflects the relationship between each component of 23 

cumulative displacement but also provides mathematical and physical meaning for landslide displacement prediction. 24 

2.2 LSSVM 25 

The LSSVM model is a regression prediction method with nonlinear characteristics based on a statistical learning theory, 26 

and it is regarded as an improved form of the SVM (Vapnik 1995; Abdi and Giveki 2013). First, after dividing the sample data 27 

into training samples and testing samples, the training samples are plotted in a high-dimension feature space via nonlinear 28 

mapping. Then, the optimal decision function model is obtained for the best-fitted results by training the sample data {xj, yj}, 29 

where j=1, 2, 3,…, n. The regression function of the LSSVM can be expressed as follows: 30 

( ) ( )Tf x W x b        (5) 31 

where 
TW  is the weight vector, ( )x is a nonlinear mapping function that maps the sample data into the feature space, x is the 32 

input, y is the output, and b is the offset. 33 

By searching a function f(x) that adjusts the dispersion degree of the training samples, we can obtain a risk-minimized 34 

solution. This solution can be written using the structural risk minimization principle: 35 
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Minimize: 
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where C is a penalty factor representing the penalty degree of the training samples, b is the offset, and 
j  is the relaxation 3 

factor.  4 

Based on the Lagrange equation and duality theory, the optimization problem can be converted into a dual problem: 5 

2
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where 
j  is the Lagrange multiplier. 7 

The solution of the optimization equation is obtained by solving the partial differential form of the Lagrange equation with 8 

respect to ,  ,  ,  j jW b   . The optimization equations are expressed as follows. 9 
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The linear equations can be obtained by solving Eq. (9) with the elimination of W  and  : 11 
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          (10) 12 

where 
1 2[ , , , ]T

ly y y y , [1, 1]TI  , 
1 2[ , , , ]T

l    , 
1 2[ ( ), ( ), , ( )]T

lZ x x x    and E is the unit 13 

matrix with l dimensions. 14 

Then, the regression prediction model of the LSSVM can be rewritten based on the above optimization problem: 15 

1

( ) ( , )
n

j j

j

f x K x x b


        (11) 16 

where ( , )jK x x  is a kernel function. 17 

In the paper, we select the radial basis kernel function as the kernel function in the LSSVM model to obtain the optimal 18 

solutions due to its strong nonlinear mapping ability and wide convergence domain (Min and Lee 2005; Altınel et al. 2015; Elbisy 19 

2015; Farzan et al. 2015): 20 

2 2( , ) exp( ( ) ) / 2j jK x x x x    （ ）  (12) 21 

where   is a parameter of the kernel function. 22 
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The equation between C and σ expressed jointly the Eq. (5)~(10) is extremely complicated, which is inconvenient to be 1 

expressed by a certain formula. However, the parameter of the model C and the parameter of the kernel function   significantly 2 

influence the prediction performance. The parameter C represents the error tolerance. The more accurate the parameter is, the 3 

higher the prediction performance is, but this can lead to overtraining. The parameter   implicitly determines the spatial 4 

distribution of data mapping in the new feature space. Therefore, some measures should be taken to optimize the LSSVM 5 

parameters. 6 

2.3 GA 7 

The GA is a computational model commonly used to simulate natural selection and the biological evolution processes of 8 

genetic mechanisms. The GA provides solutions for complicated problems using evolutionary algorithms (Levasseur et al. 2008; 9 

Hejazi et al. 2013). The typical genetic operations include selection, crossover and mutation.  10 

Based on certain methods and theories, selection operations, such as the fitness-ratio selection algorithm, ranking algorithm, 11 

Monte Carlo selection and tournament selection, are commonly used to choose a parental generation from a population based on 12 

an individual’s fitness value. Crossover operation can generate two new offspring by selecting random codes from two parents 13 

and then exchanging their respective branches. Point mutation is commonly used as the mutation operator. By selecting a random 14 

node from a parent, a new individual is generated by substituting the selected random node into another parent branch. A typical 15 

genetic algorithm is shown in Fig. 1. Selection operations, crossover operations and mutation operations are probabilistic, and 16 

with a probability of over 90%, crossover operations are the most widely used.  17 

 18 

Fig. 1 Diagram of genetic operations 19 

2.4 GA-LSSVM model 20 

To obtain the best model, the parameters of the model must be carefully selected in advance (Duan et al. 2003). According 21 

to some research results (Lessmann et al. 2005; Pourbasheer et al. 2009), the GA has the advantages of reducing the blindness of 22 

artificial selection and enhancing the discrimination ability of the LSSVM model. Modeling with this method can achieve high 23 

precision if the training samples are reliable. The sampling data used for landslide displacement prediction are continuous and 24 

mutually dependent landslide data which are applicable or feasible to the specific method. In this paper, the periodic 25 

component displacement is predicted by the GA-LSSVM model, which has higher accuracy than other models due to the 26 

consideration of the external environmental factors and its advantage in determining the unknown parameters that have great 27 

consistent between the predicted data and the measured data. MATLAB software is used to execute the model. The flowchart of 28 

the GA-LSSVM model is presented in Fig. 2.  29 
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 1 

Fig. 2 The basic flowchart of the GA-LSSVM model, including the validation of the model and the establishment of the 2 

GA-LSSVM model 3 

3 Case study: Shuping landslide 4 

3.1 Geological conditions 5 

The Shuping landslide is located in the town of Shazhenxi, Zigui Country, Hubei Province, China, near the Yangtze River 6 

and approximately 47 km into the upper reach of Three Gorges Dam (Fig. 3). The sliding direction of Shuping landslide is N11°E, 7 

and the landslide is displayed as a sector on a topographic map (Fig. 3). The reservoir water level in Fig. 3 is 166 m. The 8 

topography is relatively flat, with a mean slope angle of 22°. The highest elevation of the landslide is 400 m above sea level. The 9 

head scarp of the landslide reaches to the riverbed of the Yangtze River at 60 m in elevation. The landslide covers an area of 10 

approximately 54×104 m2, with an average length of 800 m in the longitudinal direction and an average length of 670 m in the 11 

transverse direction. The landslide volume is 2070×104 m3, with an average sliding surface depth of 40 m (Fig. 4). Fig. 4 shows 12 

the eight GPS monitoring stations installed on the ground surface of the landslide, as well as four inclinometer monitoring holes. 13 

The bedrock is mainly sandy mudstone. The strata comprise the Triassic Badong formation. The dip direction of the bedrock is 14 

between 120° and 165°, and the dip angle is between 10° and 35°. The landslide is divided into an eastern portion and a western 15 

portion, and the materials of the landslide mainly include Quaternary deposits, soils containing silty clay and rock fragments with 16 

a loose and disorderly structure (Fig. 5). Fig. 5 shows a longitudinal section of the eastern portion of the landslide. We can see 17 

from Fig. 5 that the sliding surface located between the deposits and the bedrock is steep in the upper area. 18 

Underground moisture beneath the landslide is primarily groundwater flowing through loose media that include colluviums, 19 

deposits, etc. Landslide deformation became more active after water storage began in Three Gorges Reservoir in June 2003. 20 

Various external factors affect the landslide displacement, including rainfall, the reservoir water level, surface water infiltration, 21 

groundwater, etc. 22 

3.2 Monitoring data and deformation characteristics of the landslide 23 

Field investigations revealed that there was no obvious deformation of the landslide before the first impoundment of the 24 

reservoir on June 15, 2003. However, cracking occurred in roads and houses after the first impoundment. Monitoring stations 25 

were installed to measure the deformation characteristics and the stability of the landslide and to observe the interactions between 26 

different portions of the landslide. The monitoring methods include geodetic surveys, drilling, meteorological observations and 27 

geological investigations. Thus, the development processes and evolution of the landslide can be analyzed quantitatively using 28 

monitoring data from eight monitoring stations and four inclinometer monitoring holes located along the longitudinal direction of 29 

the landslide (ZG85 to ZG90, SP-2 and SP-6, and QZK1 to QZK4 in Fig. 4).  30 
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 1 

Fig. 3 Location of the study area and panorama of the Shuping landslide and landslide subzones 2 

 3 
Fig. 4 Geology and deformation monitoring map of Shuping landslide. 1 Middle Triassic Badong Formation Section 1, 2 Middle 4 

Triassic Badong Formation Section 2, 3 Middle Triassic Badong Formation Section 3, 4 Quaternary colluviums, 5 GPS 5 

monitoring stations and number, 6 inclinometer monitoring hole and its depth (the unit of depth is the meter), 7 roads, 8 houses, 9 6 

lithology orientation, 10 landslide boundary, 11 main sliding boundary, 12 western portion zone, 13 eastern portion zone, 14 7 

cracks, 15 longitudinal section, 16 counter line, 17 reservoir water level (145 m), and 18 reservoir water level (175 m) 8 
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 1 
Fig. 5 Geological longitudinal section (line A-B in Fig. 4) of Shuping landslide. 1 Middle Triassic Badong Formation Section 1, 2 2 

Middle Triassic Badong Formation Section 2, 3 Middle Triassic Badong Formation Section 3, 4 Quaternary colluviums, 5 GPS 3 

monitoring stations and number, 6 inclinometer monitoring hole and its depth (the unit of depth is the meter), 7 roads, 8 sliding 4 

zone, 9 colluvial gravel soil, 10 silty mudstone, 11 argillaceous limestone, and 12 lithology orientation 5 

 6 

Fig. 6 shows the monitoring results between July 2003 and October 2013, including rainfall and reservoir water level, which 7 

exhibit near episodic movement characteristics after the first impoundment. The displacements in the middle (ZG86) and head 8 

scarp (ZG85) areas were greater than that in the back scarp (ZG87) area of longitudinal section A-B, and the displacements in the 9 

head scarp (ZG88) and middle (ZG89) areas were greater than that in the back scarp (ZG90) area in the western zone. These 10 

observations suggest that landslide displacements increased steadily, and Shuping landslide displayed retrograde style deformation 11 

from the lower part to the upper part. The cumulative displacements at the monitoring stations located in the rear areas were 12 

relatively low, with an average value of 880 mm, and the cumulative displacements at the monitoring stations located in the 13 

middle-frontal areas were very high, with an average value of 3890 mm. Overall, landslide deformation in the eastern zone was 14 

greater than that in the western zone. Based on the reservoir water level data and the displacements measured at eight monitoring 15 

stations, the cumulative displacement rate increased after the initial impoundment. Due to the increased rainfall and decreased 16 

reservoir water level between April and August each year, the cumulative displacement rises rapidly. Notable landslide 17 

accelerations can be observed in 2007, 2009, 2011 and 2012. The variations in reservoir water level and heavy rainfall increase 18 

pore water pressure and reduce the effective stress in the slope. In addition, the uplift pressure, hydrostatic pressure and 19 

hydrodynamic pressure acting on the landslide changed periodically. As a result, the landslide stability decreased and the 20 

deformation increased. 21 
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 1 
Fig. 6 The relationships between rainfall, reservoir water level and displacement 2 

Many deformation or failure phenomena were observed in the Shuping landslide. In June 2003, a crack was generated in the 3 

middle part of the landslide on the outside of a local road, as shown in Fig. 7(a). In 2006, the reservoir water level increased to 4 

156 m for the first time. Fig. 7(b) illustrates that the crack gradually extended to a width of 10 cm within 3 months of completing 5 

the road in April 2007. In August 2008, after a heavy storm occurred, deformation and tension cracks developed in the eastern 6 

portion of the landslide and impacted houses, as shown in Fig. 7(c). Since 2008, the reservoir water level has increased gradually 7 

to 172 m in October. In June 2009, the western portion of the landslide started cracking, with a maximum crack width of 20 cm 8 

and depth of 20-50 cm. In addition, several tension cracks formed at the eastern landslide boundary. The tension cracks in the 9 

eastern portion are shown in Fig. 7(d). In recent years, the cumulative deformation rate has remained low due to the relatively 10 

stable reservoir water level, which has fluctuated between 145 m and 175 m. 11 

Therefore, the landslide deformation characteristics suggest that deformation in the western portion of the landslide is 12 

smaller than that in the eastern portion, and the Shuping landslide is affected by reservoir water level fluctuations and rainfall. 13 

When rainfall increases abruptly and the reservoir water level drops between April and August annually, the landslide becomes 14 

active, which increases landslide deformation. In other conditions, the landslide undergoes slow deformation at a constant speed. 15 

In addition, groundwater, which is regarded as an active geologic agent, is one of the main factors that induces landslide 16 

instability. The relationships between the periodic displacement and the groundwater and the reservoir water level are illustrated in 17 

Fig. 6. In the rising phase of reservoir water level, the groundwater level gradually increases, with a slight lag behind the increase 18 

in the reservoir water level. The groundwater remains high enough for ongoing movement to continue. Conversely, the 19 

groundwater level decreases in the declining phase of the reservoir water level. Moreover, the uplift pressure and seepage force of 20 

groundwater are dynamic processes that affect landslide stability. Therefore, groundwater influences displacement. 21 

Overall, the reservoir water level, rainfall and groundwater are the major factors that influence the displacement of the 22 

Shuping landslide. The landslide displacement obviously increases when the reservoir water level decreases or when rainfall is 23 

heavy and continuous because the excess pore water pressure reduces the mean effective stress at the landslide shear surface 24 

making it more susceptible to movement.  25 
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 1 

Fig. 7 Photographs of the ground cracks in the landslide (Ren et al., 2015): (a) crack in the middle of the landslide on the outside 2 

of the local road, (b) failure state of the local road, (c) wall cracking and subsidence in the eastern portion, and (d) the tension 3 

cracks in the eastern portion 4 

 5 

During the period between June 2003 to June 2009, monitoring data show that the landslide deformation differences are 6 

manifested in the ground surface, and they display vertically distributed characteristics with elevation. In conclusion, the surface 7 

displacements below 200 m in elevation are larger than those above 200 m, and deformation is largest close to 175 m, which is the 8 

upper limit of the reservoir water level. This observation is due to the considerable influence of fluctuations in the reservoir water 9 

level on the landslide area below 200 m. The deep deformation of the landslide exhibited distinct differences at different depths, 10 

as shown in Fig. 8. Inclinometer monitoring holes QZK3 and QZK4, QZK1 and QZK2, which are located in the western portion 11 

of the landslide, exhibited small deformation and similar deformation trends. Thus, their lateral displacement curves are not 12 

presented, and only the curves of QZK3 and QZK4 are illustrated in this paper. The figures show that the sliding zones of QZK3 13 

and QZK4 are located at elevations of 70 m and 30 m, respectively. Furthermore, the displacement change in the shallow sliding 14 

zones of both QZK3 and QZK4 is larger than that in the deep sliding zone.  15 

 16 

Fig. 8 Lateral displacements of Shuping landslide: (a) inclinometer monitoring hole QZK3 and (b) inclinometer monitoring hole 17 
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QZK4 1 

4 Landslide displacement prediction 2 

Based on the analysis of the deformation characteristics of Shuping landslide and the GA-LSSVM model above and due to 3 

the obvious nonlinear and episodic movement deformation characteristics of monitoring stations ZG85, ZG86 and ZG87, we 4 

select only these stations along longitudinal section A-B to verify and establish the prediction model. The model information 5 

includes rainfall, the reservoir water level, human activities and the long-term behavior of Shuping landslide. Because the integrity 6 

of the data collected at monitoring points has an effect on the displacement prediction, the monitoring data from July 2003 to 7 

October 2013 are selected to explore landslide deformation. The data before October 2012 are used to train the GA-LSSVM 8 

model, and the data after October 2012 are used to test the model. 9 

4.1 Prediction of the trend component displacement 10 

Due to the scheduling period of the reservoir and the rainfall cycle, we choose 12 months as the moving average period. 11 

Because the curves of the trend component displacement versus time have quasi-linear and incremental characteristics, we use 12 

polynomial functions to fit these curves and provide the best-fitted results. The predicted and measured results of the trend 13 

component displacement at monitoring stations ZG85, ZG86 and ZG87 are shown in Figs. 9(a), 9(b) and 9(c), respectively. They 14 

indicate that the polynomial function provides good prediction performance for the trend component displacement and the fitted 15 

functions are expressed in Eqs. (13), (14) and (15). It is noted that correlation coefficient (R2) is a statistical index used to reflect 16 

the degree of correlation between variables and it is calculated according to the predictive part of the data. 17 

3 2

t 0.0015 0.4744 8.4975 128.83p t t t      R2=0.9980      (13) 18 

3 2

t 0.002 0.604 10.468 143.35p t t t      R2=0.9978         (14) 19 

3 2

t 0.0015 0.3088 2.7227 29.832p t t t      R2=0.9976      (15) 20 

21 

 22 

Fig. 9 Measured and predicted trend component displacement of Shuping landslide 23 

4.2 The predicted periodic component displacement 24 

The periodic component displacement is determined by subtracting the extracted trend component displacement from the 25 
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cumulative displacement. The periodic displacement and the major influencing factors are illustrated in Figs. 10 and 11. The 1 

variations in the periodic displacement are consistent with those in the influencing factors. The reservoir water level, rainfall and 2 

groundwater significantly influence the periodic displacement. For example, large periodic displacement can be observed in July 3 

2009 and September 2012 when the landslide was affected by heavy rainfall and large variations in reservoir water level. 4 

Although the variation in reservoir water level was small before April 2007, the periodic displacement still exhibited small 5 

fluctuations due to the effects of rainfall and groundwater. This behavior could be explained in terms of stress changes within the 6 

landslide in that the rainfall events cause increased pore water pressures in the landslide shear zone which reduced the effective 7 

stress and increased instability. After April 2007, several distinct peaks can be observed in the periodic displacement-time curves 8 

during periods of decreasing reservoir water level. For example, the periodic displacement increased from May to July 2009 and 9 

from May to September 2012. However, when the reservoir water level increased from 145 m to 175 m, the periodic displacement 10 

gradually decreased. The main reason for the above conditions was that the rise of the reservoir water level increased the 11 

confining stress on the surface of the landslide and the hydrodynamic pressure, the direction of which was toward the interior of 12 

sliding body. Similarly, the lowering of the reservoir water level reduced the confining stress whilst pore water pressures were still 13 

high which would promote accelerated movement. The periodicity of the rainfall also affected the displacement rate. The periodic 14 

displacement increased with increasing rainfall and reached a peak value in summer, which reflects a certain lag. For example, 15 

during February and June 2007, the reservoir water level decreased 10 m, while the rainfall was 297.7 mm during the subsequent 16 

2 months, which should have been enough to trigger landslide deformation. Therefore, the decrease of the reservoir water level 17 

continued to have an effect on displacement and there was also a lag effect, which means the displacement did not occur as soon 18 

as the reservoir water level decreased, but was delayed. 19 

At the head scarp of the landslide at an elevation of 181m, groundwater depth was measured by water level sensor within 20 

inclinometer monitoring hole QZK3. The change in groundwater depth exhibited considerable agreement with rainfall and 21 

reservoir water level fluctuations, with a slight lag observed for the latter. When the reservoir water level and the groundwater 22 

depth were decreasing at different speeds, the groundwater will respond with a lag in relation to the variations of the reservoir 23 

water level. Due to the slight lag with the reservoir water level, groundwater increased the hydrodynamic pressure during periods 24 

when the reservoir water level decreased or remained stable, which resulted in continuous deformation of the landslide. Therefore, 25 

in the shallow groundwater zone, the periodic displacements measured at the three monitoring stations exhibited considerable 26 

fluctuations. In conclusion, the results in Figs. 10 and 11 indicate that the reservoir water level exerts the most influences on the 27 

displacement rate. 28 

 29 
Fig. 10 The relationship between reservoir water level and the periodic displacement at GPS monitoring stations 30 
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 1 
Fig. 11 The relationships between rainfall, groundwater depth and periodic displacement at GPS monitoring stations 2 

The grey relational grade can represent the proximity degree between two series. If the trends in the two series are 3 

consistent or the degree of synchronous change is high, then the relational grade associated with system development is large. 4 

Otherwise, the relational grade is small. To remove the influence of dimensional data, data series must be normalized before 5 

calculating the relational grades, including the series of periodic displacement, rainfall and reservoir water level changes. The 6 

normalized formula can be expressed by Eq. (16): 7 

min

max min

y y
y

y y





      (16) 8 

where y  is the normalized value, y  is the original value, maxy  is the maximum value of the data series, and miny  is the 9 

minimum value of the data series. 10 

The grey relational coefficient of each data series and reference data series at each moment can be calculated as the 11 

following: 12 

0

min max
( ( ), ( ))

( ) max
i

oj

y k y k
k






  

  

      (17) 13 

where j=1,2…n; k=1,2…m, n is the number of data series items and m is the number of parameters, y0(k) is the reference data 14 

series, yj(k) is the series after data preprocessing, 0( ) ( ) ( )oj jk y k y k    is the absolute value of the difference between y0(k) 15 

and yj(k), 
0min min min ( ) ( )j

j i k
y k y k

  
    is the smallest value of yj(k), 

0max max max ( ) ( )j
j i k

y k y k
  

    is the 16 

largest value of yj(k),   is the distinguishing coefficient, [0,1] . The smaller a value of   is, the larger the distinguished 17 

ability is. 0.5   is generally used in the paper. 18 

Then the average value of the grey relational coefficients is regarded as the grey relational grade (Tosun 2006). Thus, the 19 

grey relational grade is generated as follows: 20 

1

1 m

j ij

ik
 



       (18) 21 
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where 
j  is the grey relational grade for the jth data series. 1 

Based on the grey relational analysis method, the relational grades between the influencing factors and the periodic 2 

displacements are shown in Table 1. We can use the large grey relational grades as the input variables in the GA-LSSVM model. 3 

When the relational grade is larger than 0.6, the influencing factor is closely correlated with the periodic displacement, which 4 

suggests that the selection of the influencing factor for predicting periodic displacement is reasonable (Wang 2003; Wang et al. 5 

2004). In addition, based on research on the relationship between reservoir water level and landslide or the relationship between 6 

rainfall and landslide, the variation of the reservoir water level or the cumulative rainfall in the current month and the past two 7 

months before landslide failure all have strong influences on landslide deformation rates. Therefore, comprehensively considering 8 

the characteristics of the periodic displacement and the relational grades between variables, the cumulative rainfall in the current 9 

month, the cumulative rainfall in the past two months, the reservoir water level, the variation in the reservoir water level in the 10 

current month, the variation in the reservoir water level in the past two months are selected as input variables. In addition, the 11 

infiltration of rainfall and reservoir water level changes the dynamic characteristics of groundwater in landslide, which reflects the 12 

change of groundwater level. On the one hand, the change of groundwater level makes sliding mass or sliding zone in a dry and 13 

wet circulation state, which leads to changes in the physical and mechanical properties of the sliding mass or sliding zone. On the 14 

other hand, due to the change of groundwater level, the seepage force and the uplift pressure of groundwater acting on the 15 

landslide change dynamically. Hence, considering the influences of rainfall and reservoir water level on landslide displacement, 16 

and in order to make prediction performance more accurate, it is also necessary to select groundwater depth as input variable for 17 

landslide prediction. Moreover, the periodic component displacement is established as the output variable for use in the 18 

GA-LSSVM model. 19 

Table 1 Relational grades between input variables and the periodic displacements 20 

Monitoring 

station 

Relational grade 

The cumulative 

rainfall in the 

current month 

The cumulative 

rainfall in the 

past two months 

The 

reservoir 

water level 

The variation of 

The reservoir 

water level in the 

current month 

The variation of The 

reservoir water level 

in the past two 

months 

Groundwater 

depth 

ZG85 0.700 0.705 0.763 0.797 0.768 0.718 

ZG86 0.682 0.691 0.756 0.794 0.770 0.714 

ZG87 0.692 0.705 0.724 0.794 0.780 0.720 

The parameters of the LSSVM are optimized by the GA, including the best values of C and  . Table 2 shows the optimal 21 

parameters of the LSSVM. The maximum generation threshold of the GA is 200, and the population number is 20. To validate the 22 

prediction ability of the GA-LSSVM model, we compare the results of generalized regression neural network (GRNN) and back 23 

propagation (BP) with two hidden layers with the result of the GA-LSSVM model. In this paper, the smoothing factor of the 24 

GRNN is 0.48, and there are 10 nodes in one of the hidden layers and 11 nodes in the other hidden layer of the BP.  25 

Table 2 Optimal parameters of the LSSVM model 26 

Number Monitoring station C   

1 ZG85 11.8234 6.4122 

2 ZG86 4.7346 8.0545 

3 ZG87 39.7819 5.7981 

The prediction results of the periodic component displacement are shown in Fig. 12. The predicted values of the three 27 

prediction models and the measured values are consistent and illustrate similar trends. However, the predicted values obtained 28 

using the GA-LSSVM exhibit better agreement with observations than the other methods. Notably, the advantages of the model 29 

are clear from April 2013 to October 2013 in Fig. 12(a) and 12(b), as the periodic component displacement exhibited good 30 

agreement with the major influencing factors during a period of heavy rainfall and large fluctuations in the reservoir water level. 31 

Though Fig.12(b) do not match well, on the whole, its difference is less than the other two methods. Especially, in August and 32 

September 2013, the differences between predicted values and measured values are all 10 mm. However, in terms of BP model, 33 

the differences between predicted values and measured values are107 mm and 109 mm, respectively, and their differences for 34 

GRNN model are 137 mm and 142 mm, respectively.  35 
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 1 

 2 

Fig. 12 Measured displacement and predicted periodic displacement of Shuping landslide 3 

4.3 Predicted cumulative displacement 4 

The predicted cumulative displacement is determined from the sum of the predicted trend displacement and the predicted 5 

periodic displacement. The predicted cumulative displacements and the measured values are presented in Table 3, Table 4 and 6 

Table 5 for monitoring station ZG85, ZG86 and ZG87, respectively. The results given in Table 3, Table 4 and Table 5 suggest that 7 

the GA-LSSVM model has better prediction performance than the GRNN model and the BP model, with a smaller relative error. 8 

Comparisons between the predicted values of cumulative displacement and measured values are shown in Fig. 13. The diagonal 9 

line shows the best prediction result in Fig. 13. The results are underestimated if the predicted values are located below the 10 

diagonal line, whereas the predicted values located above the line are overestimated. The predicted values from all the monitoring 11 

stations show good consistency with the measured values, as shown in Fig. 13.  12 

Table 3 Comparison between the predicted values of cumulative displacement and measured values at monitoring station ZG85 13 

Time Measured 

value (mm) 

GA-LSSVM GRNN BP 

Predicted  

value (mm) 

Relative error 

(%) 

Predicted  

value (mm) 

Relative error 

(%) 

Predicted  

value (mm) 

Relative error 

(%) 

2012/10/1 3460.208 3399.937 1.74 3324.829 3.91 3315.157 4.38 

2012/11/1 3442.907 3389.608 1.55 3337.861 3.05 3349.827 2.78 

2012/12/1 3460.208 3379.418 2.33 3336.503 3.58 3393.732 1.96 

2013/1/1 3460.208 3406.014 1.57 3371.989 2.55 3427.727 0.95 

2013/2/1 3477.509 3446.374 0.90 3410.133 1.94 3452.011 0.74 

2013/3/1 3460.208 3462.169 0.06 3449.721 0.30 3482.668 0.64 

2013/4/1 3494.81 3485.798 0.26 3502.356 0.22 3543.963 1.39 

2013/5/1 3512.111 3524.423 0.35 3555.754 1.24 3625.738 3.13 

2013/6/1 3512.111 3591.262 2.25 3684.274 4.90 3699.022 5.05 

2013/7/1 3615.917 3695.444 2.20 3802.473 5.16 3738.225 3.27 

2013/8/1 3719.723 3747.513 0.75 3830.496 2.98 3779.618 1.58 

2013/9/1 3650.519 3740.002 2.45 3832.151 4.98 3825.664 4.58 

2013/10/1 3685.121 3795.259 2.99 3877.587 5.22 3848.299 4.24 

Table 4 Comparison between the predicted values of cumulative displacement and measured values at monitoring station ZG86 14 

Time Measured 

value (mm) 

GA-LSSVM GRNN BP 

Predicted  

value (mm) 

Relative error 

(%) 

Predicted  

value (mm) 

Relative error 

(%) 

Predicted  

value (mm) 

Relative error 

(%) 
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2012/10/1 4273.356 4183.984 2.09 4094.396 4.19 4096.849 4.13 

2012/11/1 4290.657 4201.857 2.07 4104.93 4.33 4124.839 3.86 

2012/12/1 4307.958 4149.796 3.67 4094.607 4.95 4091.602 5.02 

2013/1/1 4307.958 4164.444 3.33 4130.77 4.11 4133.425 4.05 

2013/2/1 4325.26 4192.775 3.06 4172.182 3.54 4186.816 3.20 

2013/3/1 4342.561 4256.46 1.98 4212.082 3.00 4246.771 2.21 

2013/4/1 4377.163 4317.892 1.35 4247.617 2.96 4312.109 1.49 

2013/5/1 4394.464 4326.232 1.55 4297.626 2.20 4386.529 0.18 

2013/6/1 4446.367 4388.693 1.30 4403.464 0.96 4523.094 1.73 

2013/7/1 4532.872 4495.404 0.83 4535.948 0.07 4607.573 1.65 

2013/8/1 4619.377 4609.902 0.21 4626.647 0.16 4656.543 0.80 

2013/9/1 4602.076 4579.721 0.49 4628.676 0.58 4661.733 1.30 

2013/10/1 4602.076 4592.204 0.21 4754.15 3.30 4713.128 2.41 

Table 5 Comparison between the predicted values of cumulative displacement and measured values at monitoring station ZG87 1 

Time Measured 

value (mm) 

GA-LSSVM GRNN BP 

Predicted  

value (mm) 

Relative error 

(%) 

Predicted  

value (mm) 

Relative error 

(%) 

Predicted  

value (mm) 

Relative error 

(%) 

2012/10/1 1505.19 1561.869 3.77 1578.221 4.85 1583.026 5.17 

2012/11/1 1522.491 1580.602 3.82 1590.364 4.46 1597.352 4.92 

2012/12/1 1522.491 1580.359 3.80 1586.605 4.21 1591.506 4.53 

2013/1/1 1522.491 1581.923 3.90 1593.249 4.65 1600.855 5.15 

2013/2/1 1539.792 1585.652 2.98 1599.822 3.90 1606.609 4.34 

2013/3/1 1557.093 1600.959 2.82 1605.274 3.09 1617.769 3.90 

2013/4/1 1557.093 1601.648 2.86 1606.713 3.19 1606.812 3.19 

2013/5/1 1557.093 1608.744 3.32 1612.571 3.56 1615.702 3.76 

2013/6/1 1574.394 1620.881 2.95 1622.897 3.08 1618.934 2.83 

2013/7/1 1574.394 1620.703 2.94 1632.984 3.72 1623.904 3.14 

2013/8/1 1591.696 1631.651 2.51 1643.08 3.23 1637.051 2.85 

2013/9/1 1591.696 1630.511 2.44 1652.604 3.83 1647.566 3.51 

2013/10/1 1591.696 1633.119 2.60 1653.808 3.90 1653.139 3.86 

2 
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 1 

Fig. 13 Measured values versus predicted values of the cumulative displacement: (a) monitoring station ZG85, (b) monitoring 2 

station ZG86, and (c) monitoring station ZG87 3 

5 Verification and error analyses 4 

Three loss functions are used to assess the prediction performance and accuracy of the proposed model: the root mean 5 

square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). Then, the optimal parameters with 6 

minimum error are used to train the LSSVM model. The RMSE, MAE and MAPE formulas are as follows: 7 

2

1

1
( )

n

i i

i

RMSE s s
n





        (19) 8 

1
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MAE s s
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



           (20) 9 
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n s






         (21) 10 

where is  is the measured value, 
is  is the predicted value, and n is the number of predicted values. 11 

The performances of different models for landslide displacement prediction are assessed based on the RMSE, MAE and 12 

MAPE, as presented in Table 6. The prediction precision of the GA-LSSVM model based on time series analysis is better than that 13 

of the GRNN and the BP. Notably, the RMSE, MAE and MAPE values of the GA-LSSVM model were 63.4076, 56.6098 and 14 

1.587% lower than those of the GRNN model, respectively, and 49.3696, 43.5537 and 1.225% lower than those of the BP model 15 

for monitoring station ZG85. The predicted results for monitoring stations ZG86 and ZG87 exhibited similar trends. According to 16 

the prediction results, the GA-LSSVM model has good deduction ability for landslide displacement prediction and can provide 17 

assistance in early risk assessment and landslide forecasting. 18 

Table 6 Comparison of the performance of cumulative displacement prediction for the three models 19 

Model RMSE (mm) MAE (mm) MAPE (%) 

ZG85 ZG86 ZG87 ZG85 ZG86 ZG87 ZG85 ZG86 ZG87 

GA-LSSVM 62.4146 87.7215 49.0485 53.0048 74.0601 48.5392 1.492 1.703 3.131 

GRNN 125.8222 134.6764 59.8173 109.6146 115.1067 59.2756 3.079 2.643 3.821 

BP 111.7842 123.1948 62.0223 96.5585 107.6724 60.9701 2.717 2.464 3.935 

6 Conclusion 20 

Landslide displacement prediction is a major focus of contemporary landslide research. We use the deformation of a 21 

episodic movement landslide (Shuping landslide) as an example. According to time series analysis, the cumulative displacement is 22 

decomposed into a trend component displacement representing the trend of landslide deformation in the long term and a periodic 23 



 

18 

component displacement that represents short-term deformation fluctuations. The trend displacement and periodic displacement 1 

are predicted using a polynomial function and the GA-LSSVM model, respectively. The LSSVM yields good fitting results in 2 

predicting the periodic displacement with the GA, which is utilized to determine the optimal parameters of the LSSVM. Based on 3 

our analysis of the deformation of Shuping landslide, the reservoir water level, rainfall and groundwater have major influences on 4 

the cumulative displacement. Therefore, based on the relational grades, we select six influential factors as the input variables. The 5 

predicted cumulative displacement is obtained from the sum of the predicted trend displacement and the predicted periodic 6 

displacement. 7 

The GA-LSSVM model displays the highest accuracy, the smallest RMSE of 62.4146 mm, the smallest MAE of 53.0048 8 

mm, and the smallest MAPE of 1.492% at monitoring station ZG85, while these three values are 87.7215 mm, 74.0601 mm and 9 

1.703% at monitoring station ZG86 and 49.0485 mm, 48.5392 mm and 3.131% at monitoring station ZG87. The study results 10 

show that GA-LSSVM provides good performance for landslide displacement prediction, and the GA is appropriate for 11 

determining the optimal parameters used in the LSSVM model. Thus, the GA-LSSVM model can be effectively used to predict 12 

landslide displacement and reflect the corresponding relationships between the major influencing factors and the periodic 13 

component displacement. 14 
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