Articles | Volume 17, issue 10
https://doi.org/10.5194/nhess-17-1823-2017
https://doi.org/10.5194/nhess-17-1823-2017
Research article
 | 
23 Oct 2017
Research article |  | 23 Oct 2017

Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

Karolina Korzeniowska, Yves Bühler, Mauro Marty, and Oliver Korup

Related authors

Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Size scaling of large landslides from incomplete inventories
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024,https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
Inferring sediment-discharge event types in an Alpine catchment from sub-daily time series
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 4771–4796, https://doi.org/10.5194/hess-28-4771-2024,https://doi.org/10.5194/hess-28-4771-2024, 2024
Short summary
Autonomous and efficient large-scale snow avalanche monitoring with an Unmanned Aerial System (UAS)
Jaeyoung Lim, Elisabeth Hafner, Florian Achermann, Rik Girod, David Rohr, Nicholas R. J. Lawrance, Yves Bühler, and Roland Siegwart
EGUsphere, https://doi.org/10.5194/egusphere-2024-2728,https://doi.org/10.5194/egusphere-2024-2728, 2024
Short summary
Larger lake outbursts despite glacier thinning at ice-dammed Desolation Lake, Alaska
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2812,https://doi.org/10.5194/egusphere-2024-2812, 2024
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Glide-snow avalanches: a mechanical, threshold-based release area model
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024,https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024,https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Review article: A scoping review of human factors in avalanche decision-making
Audun Hetland, Rebecca Anne Hetland, Tarjei Tveito Skille, and Andrea Mannberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-1628,https://doi.org/10.5194/egusphere-2024-1628, 2024
Short summary
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary

Cited articles

Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, 2016.
Bagli, S. and Schweizer, J.: Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland), Nat. Hazards, 50, 97–108, https://doi.org/10.1007/s11069-008-9322-7, 2009.
Bründl, M., Etter, H.-J., Steiniger, M., Klingler, Ch., Rhyner, J., and Ammann, W. J.: IFKIS – a basis for managing avalanche risk in settlements and on roads in Switzerland, Nat. Hazards Earth Syst. Sci., 4, 257–262, https://doi.org/10.5194/nhess-4-257-2004, 2004.
Bühler, Y., Hüni, A., Christen, M., Meister, R., and Kellerberger, T.: Automated detection and mapping of avalanche deposits using airborne optical remote sensing data, Cold Reg. Sci. Technol., 57, 99–106, https://doi.org/10.1016/j.coldregions.2009.02.007, 2009.
Bühler, Y., Meier, L., and Ginzler, C.: Potential of operational high spatial resolution near-infrared remote sensing instruments for snow surface type mapping, IEEE Geosci. Remote Sens. Lett., 12, 821–825, https://doi.org/10.1109/LGRS.2014.2363237, 2015.
Download
Short summary
In this study, we have focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on aerial imagery using an object-based image analysis (OBIA) approach. We compared the results with manually mapped avalanche polygons, and obtained a user’s accuracy of > 0.9 and a Cohen’s kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km2, we estimated producer’s and user’s accuracies of 0.61 and 0.78, respectively.
Altmetrics
Final-revised paper
Preprint