Articles | Volume 16, issue 7
https://doi.org/10.5194/nhess-16-1639-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-16-1639-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Comparison and validation of global and regional ocean forecasting systems for the South China Sea
Xueming Zhu
Key Laboratory of Research on Marine Hazards Forecasting, National
Marine Environmental Forecasting Center, Beijing, 100081, China
Hui Wang
Key Laboratory of Research on Marine Hazards Forecasting, National
Marine Environmental Forecasting Center, Beijing, 100081, China
Guimei Liu
CORRESPONDING AUTHOR
Key Laboratory of Research on Marine Hazards Forecasting, National
Marine Environmental Forecasting Center, Beijing, 100081, China
Charly Régnier
Mercator Océan, Ramonville Saint Agne, France
Xiaodi Kuang
Key Laboratory of Research on Marine Hazards Forecasting, National
Marine Environmental Forecasting Center, Beijing, 100081, China
Dakui Wang
Key Laboratory of Research on Marine Hazards Forecasting, National
Marine Environmental Forecasting Center, Beijing, 100081, China
Shihe Ren
Key Laboratory of Research on Marine Hazards Forecasting, National
Marine Environmental Forecasting Center, Beijing, 100081, China
Zhiyou Jing
State Key Laboratory of Tropical Oceanography, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
Marie Drévillon
Mercator Océan, Ramonville Saint Agne, France
Related authors
Jingjing Zheng, Shan Gao, Guimei Liu, Hui Wang, and Xueming Zhu
Nat. Hazards Earth Syst. Sci., 16, 2559–2576, https://doi.org/10.5194/nhess-16-2559-2016, https://doi.org/10.5194/nhess-16-2559-2016, 2016
Short summary
Short summary
In this paper, a three-dimensional hydrodynamic model was coupled to a biological model to simulate the ecological system of the East China Sea. In addition, the sensitive experiments were also used to examine the role of physical forcing (river discharge, wind speed, wind direction) in controlling hypoxia in waters adjacent the Yangtze Estuary. The results showed that the wind field and river discharge have significant impact on the hypoxia off the Yangtze Estuary.
Jingui Liu, Shanglu Li, Xuanliang Ji, Guimei Liu, Qingqing Pan, and Yun Li
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-47, https://doi.org/10.5194/os-2020-47, 2020
Revised manuscript not accepted
Short summary
Short summary
The coastal East China Sea (ECS) is a highly productive system characterized of multiple spatial and temporal scale, in which physical, biogeochemical and ecological processes strongly interact. A coupled model system was implemented to a high resolution coastal ECS. The model was capable to reproduce main temporal and spatial features for phytoplankton and nutrients. This work could form a significant basis for future work, e.g. the response of biogeochemical flux to physical mechanism.
Zhaoyi Wang, Andrea Storto, Nadia Pinardi, Guimei Liu, and Hui Wang
Nat. Hazards Earth Syst. Sci., 17, 17–30, https://doi.org/10.5194/nhess-17-17-2017, https://doi.org/10.5194/nhess-17-17-2017, 2017
Jingjing Zheng, Shan Gao, Guimei Liu, Hui Wang, and Xueming Zhu
Nat. Hazards Earth Syst. Sci., 16, 2559–2576, https://doi.org/10.5194/nhess-16-2559-2016, https://doi.org/10.5194/nhess-16-2559-2016, 2016
Short summary
Short summary
In this paper, a three-dimensional hydrodynamic model was coupled to a biological model to simulate the ecological system of the East China Sea. In addition, the sensitive experiments were also used to examine the role of physical forcing (river discharge, wind speed, wind direction) in controlling hypoxia in waters adjacent the Yangtze Estuary. The results showed that the wind field and river discharge have significant impact on the hypoxia off the Yangtze Estuary.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
Shouwen Zhang, Hua Jiang, Hui Wang, Ling Du, and Dakui Wang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2016-83, https://doi.org/10.5194/nhess-2016-83, 2016
Preprint withdrawn
C. Maraldi, J. Chanut, B. Levier, N. Ayoub, P. De Mey, G. Reffray, F. Lyard, S. Cailleau, M. Drévillon, E. A. Fanjul, M. G. Sotillo, P. Marsaleix, and the Mercator Research and Development Team
Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, https://doi.org/10.5194/os-9-745-2013, 2013
Related subject area
Sea, Ocean and Coastal Hazards
An interdisciplinary agent-based evacuation model: integrating the natural environment, built environment, and social system for community preparedness and resilience
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006
Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Observations of extreme wave runup events on the US Pacific Northwest coast
Warning water level determination and its spatial distribution in coastal areas of China
A global open-source database of flood-protection levees on river deltas (openDELvE)
Hazard assessment and hydrodynamic, morphodynamic, and hydrological response to Hurricane Gamma and Hurricane Delta on the northern Yucatán Peninsula
Estimating dune erosion at the regional scale using a meta-model based on neural networks
Simulation of tsunami induced by a submarine landslide in a glaciomarine margin: the case of Storfjorden LS-1 (southwestern Svalbard Islands)
Multi-hazard analysis of flood and tsunamis on the western Mediterranean coast of Turkey
Importance of non-stationary analysis for assessing extreme sea levels under sea level rise
Enabling dynamic modelling of global coastal flooding by defining storm tide hydrographs
Wind-wave characteristics and extremes along the Emilia-Romagna coast
Partitioning the contributions of dependent offshore forcing conditions in the probabilistic assessment of future coastal flooding
Probabilistic projections and past trends of sea level rise in Finland
Identification and ranking of subaerial volcanic tsunami hazard sources in Southeast Asia
Freak wave events in 2005–2021: statistics and analysis of favourable wave and wind conditions
Improvements to the detection and analysis of external surges in the North Sea
Modelling geographical and built-environment attributes as predictors of human vulnerability during tsunami evacuations: a multi-case-study and paths to improvement
Modelling the sequential earthquake–tsunami response of coastal road embankment infrastructure
Historical tsunamis of Taiwan in the 18th century: the 1781 Jiateng Harbor flooding and 1782 tsunami event
Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding
Reconstruction of wind and surge of the 1906 storm tide at the German North Sea coast
Developing a framework for the assessment of current and future flood risk in Venice, Italy
Storm surge hazard over Bengal delta: a probabilistic–deterministic modelling approach
Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: the case of Shanghai
The OBS noise due to deep ocean currents
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
The role of preconditioning for extreme storm surges in the western Baltic Sea
The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust
Real-time coastal flood hazard assessment using DEM-based hydrogeomorphic classifiers
Rapid tsunami force prediction by mode-decomposition-based surrogate modeling
Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in the Kermadec Islands on 4 March 2021
Mesoscale simulation of typhoon-generated storm surge: methodology and Shanghai case study
Submarine landslide source modeling using the 3D slope stability analysis method for the 2018 Palu, Sulawesi, tsunami
Characteristics and beach safety knowledge of beachgoers on unpatrolled surf beaches in Australia
Robust uncertainty quantification of the volume of tsunami ionospheric holes for the 2011 Tohoku-Oki earthquake: towards low-cost satellite-based tsunami warning systems
A coupled modelling system to assess the effect of Mediterranean storms under climate change
Correlation of wind waves and sea level variations on the coast of the seasonally ice-covered Gulf of Finland
The role of morphodynamics in predicting coastal flooding from storms on a dissipative beach with sea level rise conditions
Contribution of solitons to enhanced rogue wave occurrence in shallow water: a case study in the southern North Sea
Multilayer modelling of waves generated by explosive subaqueous volcanism
Time-dependent Probabilistic Tsunami Hazard Analysis for Western Sumatra, Indonesia, Using Space-Time Earthquake Rupture Modelling and Stochastic Source Scenarios
Statistical estimation of spatial wave extremes for tropical cyclones from small data samples: validation of the STM-E approach using long-term synthetic cyclone data for the Caribbean Sea
Development of damage curves for buildings near La Rochelle during storm Xynthia based on insurance claims and hydrodynamic simulations
Investigating the interaction of waves and river discharge during compound flooding at Breede Estuary, South Africa
Still normal? Near-real-time evaluation of storm surge events in the context of climate change
Chen Chen, Charles Koll, Haizhong Wang, and Michael K. Lindell
Nat. Hazards Earth Syst. Sci., 23, 733–749, https://doi.org/10.5194/nhess-23-733-2023, https://doi.org/10.5194/nhess-23-733-2023, 2023
Short summary
Short summary
This paper uses empirical-data-based simulation to analyze how to evacuate efficiently from disasters. We find that departure delay time and evacuation decision have significant impacts on evacuation results. Evacuation results are more sensitive to walking speed, departure delay time, evacuation participation, and destinations than to other variables. This model can help authorities to prioritize resources for hazard education, community disaster preparedness, and resilience plans.
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023, https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) are among the potentially most hazardous phenomena affecting the coasts of the Caribbean Sea. This work simulates the coastal hazards in terms of sea surface elevation and waves that originate through the passage of these events. A set of 1000 TCs have been simulated, obtained from a set of synthetic cyclones that are consistent with present-day climate. Given the large number of hurricanes used, robust values of extreme sea levels and waves are computed along the coasts.
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023, https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Short summary
Consecutive earthquakes occurred offshore of southern Taiwan on 26 December 2006. This event revealed unusual tsunami generation and propagation, as well as unexpected consequences for the southern Taiwanese coast (i.e., amplified waves and prolonged durations). This study aims to elucidate the source characteristics of the 2006 tsunami and the important behaviors responsible for tsunami hazards in Taiwan such as wave trapping and shelf resonance.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023, https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes, such as storm surge and atmospheric forcing, alter the predicted tide. Whilst most of these processes are modeled in present-day ocean forecasting, there is still a need for a better understanding of situations where modeled and observed water levels deviate from each other. Here, we will use machine learning to detect such anomalies within a network of sea-level observations in the North Sea.
Chuan Li, H. Tuba Özkan-Haller, Gabriel García Medina, Robert A. Holman, Peter Ruggiero, Treena M. Jensen, David B. Elson, and William R. Schneider
Nat. Hazards Earth Syst. Sci., 23, 107–126, https://doi.org/10.5194/nhess-23-107-2023, https://doi.org/10.5194/nhess-23-107-2023, 2023
Short summary
Short summary
In this work, we examine a set of observed extreme, non-earthquake-related and non-landslide-related wave runup events. Runup events with similar characteristics have previously been attributed to trapped waves, atmospheric disturbances, and abrupt breaking of long waves. However, we find that none of these mechanisms were likely at work in the observations we examined. We show that instead, these runup events were more likely due to energetic growth of bound infragravity waves.
Shan Liu, Xianwu Shi, Qiang Liu, Jun Tan, Yuxi Sun, Qingrong Liu, and Haoshuang Guo
Nat. Hazards Earth Syst. Sci., 23, 127–138, https://doi.org/10.5194/nhess-23-127-2023, https://doi.org/10.5194/nhess-23-127-2023, 2023
Short summary
Short summary
This study proposes a quantitative method for the determination of warning water levels. The proposed method is a multidimensional scale, centered on the consideration of various factors that characterize various coastlines. The implications of our study are not only scientific, as we provide a method for water level determination that is rooted in the scientific method (and reproducible across various contexts beyond China), but they are also deeply practical.
Jaap H. Nienhuis, Jana R. Cox, Joey O'Dell, Douglas A. Edmonds, and Paolo Scussolini
Nat. Hazards Earth Syst. Sci., 22, 4087–4101, https://doi.org/10.5194/nhess-22-4087-2022, https://doi.org/10.5194/nhess-22-4087-2022, 2022
Short summary
Short summary
Humans build levees to protect themselves against floods. We need to know where they are to correctly predict flooding, for example from sea level rise. Here we have looked through documents to find levees, and checked that they exist using satellite imagery. We developed a global levee map, available at www.opendelve.eu, and we found that 24 % of people in deltas are protected by levees.
Alec Torres-Freyermuth, Gabriela Medellín, Jorge A. Kurczyn, Roger Pacheco-Castro, Jaime Arriaga, Christian M. Appendini, María Eugenia Allende-Arandía, Juan A. Gómez, Gemma L. Franklin, and Jorge Zavala-Hidalgo
Nat. Hazards Earth Syst. Sci., 22, 4063–4085, https://doi.org/10.5194/nhess-22-4063-2022, https://doi.org/10.5194/nhess-22-4063-2022, 2022
Short summary
Short summary
Barrier islands in tropical regions are prone to coastal flooding and erosion during hurricane events. The Yucatán coast was impacted by hurricanes Gamma and Delta. Inner shelf, coastal, and inland observations were acquired. Beach morphology changes show alongshore gradients. Flooding occurred on the back barrier due to heavy inland rain and the coastal aquifer's confinement. Modeling systems failed to reproduce the coastal hydrodynamic response due to uncertainties in the boundary conditions.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022, https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
María Teresa Pedrosa-González, José Manuel González-Vida, Jesús Galindo-Záldivar, Sergio Ortega, Manuel Jesús Castro, David Casas, and Gemma Ercilla
Nat. Hazards Earth Syst. Sci., 22, 3839–3858, https://doi.org/10.5194/nhess-22-3839-2022, https://doi.org/10.5194/nhess-22-3839-2022, 2022
Short summary
Short summary
The L-ML-HySEA (Landslide Multilayer Hyperbolic Systems and Efficient Algorithms) model of the tsunami triggered by the Storfjorden LS-1 landslide provides new insights into the sliding mechanism and bathymetry controlling the propagation, amplitude values and shoaling effects as well as coastal impact times. This case study provides new perspectives on tsunami hazard assessment in polar margins, where global climatic change and its related ocean warming may contribute to landslide trigger.
Cuneyt Yavuz, Kutay Yilmaz, and Gorkem Onder
Nat. Hazards Earth Syst. Sci., 22, 3725–3736, https://doi.org/10.5194/nhess-22-3725-2022, https://doi.org/10.5194/nhess-22-3725-2022, 2022
Short summary
Short summary
Even if the coincidence of flood and tsunami hazards may be experienced once in a blue moon, it should also be investigated due to the uncertainty of the time of occurrence of these natural hazards. The objective of this study is to reveal a statistical methodology to evaluate the aggregate potential hazard levels due to flood hazards with the presence of earthquake-triggered tsunamis. The proposed methodology is applied to Fethiye city, located on the Western Mediterranean coast of Turkey.
Damiano Baldan, Elisa Coraci, Franco Crosato, Maurizio Ferla, Andrea Bonometto, and Sara Morucci
Nat. Hazards Earth Syst. Sci., 22, 3663–3677, https://doi.org/10.5194/nhess-22-3663-2022, https://doi.org/10.5194/nhess-22-3663-2022, 2022
Short summary
Short summary
Extreme-event analysis is widely used to provide information for the design of coastal protection structures. Non-stationarity due to sea level rise can affect such estimates. Using different methods on a long time series of sea level data, we show that estimates of the magnitude of extreme events in the future can be inexact due to relative sea level rise. Thus, considering non-stationarity is important when analyzing extreme-sea-level events.
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2022-1048, https://doi.org/10.5194/egusphere-2022-1048, 2022
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain understanding into the threat imposed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
Umesh Pranavam Ayyappan Pillai, Nadia Pinardi, Ivan Federico, Salvatore Causio, Francesco Trotta, Silvia Unguendoli, and Andrea Valentini
Nat. Hazards Earth Syst. Sci., 22, 3413–3433, https://doi.org/10.5194/nhess-22-3413-2022, https://doi.org/10.5194/nhess-22-3413-2022, 2022
Short summary
Short summary
The study presents the application of high-resolution coastal modelling for wave hindcasting on the Emilia-Romagna coastal belt. The generated coastal databases which provide an understanding of the prevailing wind-wave characteristics can aid in predicting coastal impacts.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Havu Pellikka, Milla M. Johansson, Maaria Nordman, and Kimmo Ruosteenoja
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-230, https://doi.org/10.5194/nhess-2022-230, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
We explore the rate of past and future sea level rise on the Finnish coast, northeastern Baltic Sea, in 1901–2100. For this analysis, we use tide gauge observations, modelling results, and a probabilistic method to combine information from several sea level rise projections. We provide projections of local mean sea level in 2100 as probability distributions. The results can be used in adaptation planning in various sectors with different risk tolerance, e.g. land use planning or nuclear safety.
Edgar U. Zorn, Aiym Orynbaikyzy, Simon Plank, Andrey Babeyko, Herlan Darmawan, Ismail Fata Robbany, and Thomas R. Walter
Nat. Hazards Earth Syst. Sci., 22, 3083–3104, https://doi.org/10.5194/nhess-22-3083-2022, https://doi.org/10.5194/nhess-22-3083-2022, 2022
Short summary
Short summary
Tsunamis caused by volcanoes are a challenge for warning systems as they are difficult to predict and detect. In Southeast Asia there are many active volcanoes close to the coast, so it is important to identify the most likely volcanoes to cause tsunamis in the future. For this purpose, we developed a point-based score system, allowing us to rank volcanoes by the hazard they pose. The results may be used to improve local monitoring and preparedness in the affected areas.
Ekaterina Didenkulova, Ira Didenkulova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-215, https://doi.org/10.5194/nhess-2022-215, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
The paper is dedicated to freak wave accidents which happened in the World Ocean in 2005–2021 and were described in mass media sources. The database accounts for 429 events, all of which resulted in ship or coastal/offshore structure damage and/or human losses. In correspondence to each freak wave event we put background wave and wind parameters extracted from the climate reanalysis ERA5. We analyze their statistics and discuss the favorable conditions of freak wave occurrence.
Alexander Müller, Birgit Gerkensmeier, Benedikt Bratz, Clemens Krautwald, Olaf Müller, Nils Goseberg, and Gabriele Gönnert
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-223, https://doi.org/10.5194/nhess-2022-223, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
External surges in the North Sea are caused by low pressure cells travelling over the Northeast Atlantic. They influence extreme water levels on the German coast and have to be considered in the design process of coastal defence structures. This study collects data about external surges from 1995–2020 and analyses their causes, behaviour and potential trends. External surges often occur less than 72 h apart, enabling a single storm surge to be influenced by more than one external surge.
Jorge León, Alejandra Gubler, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 22, 2857–2878, https://doi.org/10.5194/nhess-22-2857-2022, https://doi.org/10.5194/nhess-22-2857-2022, 2022
Short summary
Short summary
Our research focuses on how the geophysical characteristics of coastal cities can determine evacuees' vulnerability during a tsunami evacuation. We identify, analyse, and rank some of those essential characteristics by examining seven case studies in Chile through computer-based inundation, evacuation, and statistical regressive modelling. These results could lead to urban planning guidelines to enhance future evacuations and increase resilience to global tsunamis.
Azucena Román-de la Sancha, Rodolfo Silva, Omar S. Areu-Rangel, Manuel Gerardo Verduzco-Zapata, Edgar Mendoza, Norma Patricia López-Acosta, Alexandra Ossa, and Silvia García
Nat. Hazards Earth Syst. Sci., 22, 2589–2609, https://doi.org/10.5194/nhess-22-2589-2022, https://doi.org/10.5194/nhess-22-2589-2022, 2022
Short summary
Short summary
Transport networks in coastal urban areas are vulnerable to seismic events, with damage likely due to both ground motions and tsunami loading. The paper presents an approach that captures the earthquake–tsunami effects on transport infrastructure in a coastal area, taking into consideration the combined strains of the two events. The model is applied to a case in Manzanillo, Mexico, using ground motion records of the 1995 earthquake–tsunami event.
Tien-Chi Liu, Tso-Ren Wu, and Shu-Kun Hsu
Nat. Hazards Earth Syst. Sci., 22, 2517–2530, https://doi.org/10.5194/nhess-22-2517-2022, https://doi.org/10.5194/nhess-22-2517-2022, 2022
Short summary
Short summary
The findings from historical reports and numerical studies suggest the 1781 Jiateng Harbor flooding and the 1782 tsunami should be two independent incidents. Local tsunamis generated in southwest Taiwan could be responsible for the 1781 flooding, while the existence of the 1782 tsunami remains doubtful. With the documents of a storm event on 22 May 1782, the possibility that the significant water level of the 1782 tsunami was caused by storm surges or multiple hazards could not be ignored.
Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 22, 2491–2515, https://doi.org/10.5194/nhess-22-2491-2022, https://doi.org/10.5194/nhess-22-2491-2022, 2022
Short summary
Short summary
Assessing uncertainty is computationally expensive because it requires multiple runs of expensive models. We take the novel approach of assessing uncertainty from coastal flooding using a multilevel multifidelity (MLMF) method which combines the efficiency of less accurate models with the accuracy of more expensive models at different resolutions. This significantly reduces the computational cost but maintains accuracy, making previously unfeasible real-world studies possible.
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022, https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci., 22, 2359–2379, https://doi.org/10.5194/nhess-22-2359-2022, https://doi.org/10.5194/nhess-22-2359-2022, 2022
Short summary
Short summary
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline of the Bengal delta. From a combination of cyclone and storm surge modelling, we present a robust probabilistic estimate of the storm surge flooding hazard under the current climate. The estimated extreme water levels vary regionally, and the inland flooding is strongly controlled by the embankments. More than 1/10 of the coastal population is currently exposed to 50-year return period flooding.
Hanqing Xu, Zhan Tian, Laixiang Sun, Qinghua Ye, Elisa Ragno, Jeremy Bricker, Ganquan Mao, Jinkai Tan, Jun Wang, Qian Ke, Shuai Wang, and Ralf Toumi
Nat. Hazards Earth Syst. Sci., 22, 2347–2358, https://doi.org/10.5194/nhess-22-2347-2022, https://doi.org/10.5194/nhess-22-2347-2022, 2022
Short summary
Short summary
A hydrodynamic model and copula methodology were used to set up a joint distribution of the peak water level and the inland rainfall during tropical cyclone periods, and to calculate the marginal contributions of the individual drivers. The results indicate that the relative sea level rise has significantly amplified the peak water level. The astronomical tide is the leading driver, followed by the contribution from the storm surge.
Carlos Corela, Afonso Loureiro, José Luis Duarte, Luis Matias, Tiago Rebelo, and Tiago Bartolomeu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-196, https://doi.org/10.5194/nhess-2022-196, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
We show that ocean bottom seismometers are controlled by bottom currents but these are not always a function of the tidal forcing. Instead we suggest that the ocean bottom has a flow regime resulting from two possible contributions, the permanent low frequency bottom current and the tidal current along the full tidal cycle, between neap and spring tides. In the short-period noise band the ocean current generates harmonic tremors that corrupt the dataset records.
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022, https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
Short summary
Deriving reliable estimates of design conditions resulting from tropical cyclones is a challenge of high relevance to coastal engineering. Here, having few historical observations is overcome by using the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) to create thousands of synthetic realizations, representative of 1000 years of tropical cyclone activity for the Bay of Bengal. The use of synthetic tracks is shown to provide more reliable wind speed, storm surge and wave estimates.
Elin Andrée, Jian Su, Morten Andreas Dahl Larsen, Martin Drews, Martin Stendel, and Kristine Skovgaard Madsen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-149, https://doi.org/10.5194/nhess-2022-149, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
When natural hazards interact in compound events, they may reinforce each other. The combined effect can amplify extreme sea levels when storms occur when the water level is already higher than usual. We used numerical modelling of a record-breaking storm surge and showed that other prior sea-level conditions could have further worsened the outcome. Our research highlights the need to consider the physical context of extreme sea levels in measures to reduce coastal flood risk.
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682, https://doi.org/10.5194/nhess-22-1665-2022, https://doi.org/10.5194/nhess-22-1665-2022, 2022
Short summary
Short summary
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on this fault could trigger a tsunami that would impact the regional capital cities of Mataram and Denpasar. We show that for 3–5 m of slip on the fault (a Mw 7.5–7.9+ earthquake), the cities would experience a wave ca. 1.6–2.7 and ca. 0.6–1.4 m high, arriving in < 9 and ca. 23–27 min, respectively. They would also experience subsidence of 20–40 cm, resulting in long-term exposure to coastal hazards.
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022, https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Short summary
The high population settled in coastal regions and the potential damage imposed by coastal floods highlight the need for improving coastal flood hazard assessment techniques. This study introduces a topography-based approach for rapid estimation of flood hazard areas in the Savannah River delta. Our validation results demonstrate that, besides the high efficiency of the proposed approach, the estimated areas accurately overlap with reference flood maps.
Kenta Tozato, Shinsuke Takase, Shuji Moriguchi, Kenjiro Terada, Yu Otake, Yo Fukutani, Kazuya Nojima, Masaaki Sakuraba, and Hiromu Yokosu
Nat. Hazards Earth Syst. Sci., 22, 1267–1285, https://doi.org/10.5194/nhess-22-1267-2022, https://doi.org/10.5194/nhess-22-1267-2022, 2022
Short summary
Short summary
This study presents a novel framework for rapid tsunami force predictions through the application of mode-decomposition-based surrogate modeling with 2D–3D coupled numerical simulations. A numerical example is presented to demonstrate the applicability of the proposed framework to one of the tsunami-affected areas during the Great East Japan Earthquake of 2011.
Yuchen Wang, Mohammad Heidarzadeh, Kenji Satake, and Gui Hu
Nat. Hazards Earth Syst. Sci., 22, 1073–1082, https://doi.org/10.5194/nhess-22-1073-2022, https://doi.org/10.5194/nhess-22-1073-2022, 2022
Short summary
Short summary
Tsunami waveforms contain the features of its source, propagation path, and local topography. On 4 March 2021, two tsunamis were generated by earthquakes in the Kermadec Islands, New Zealand, within 2 h. This rare case gives us a valuable opportunity to study the characteristics of two tsunamis. We analyzed the records of two tsunamis at tide gauges with spectral analysis tools. It is found that two tsunamis superpose during the few hours after the arrival of the second tsunami.
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022, https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Short summary
Mesoscale simulation provides a general approach that could be implemented to fulfill the purpose of planning and has relatively low requirements for computation time and data while still providing reasonable accuracy. The method is generally applicable to all coastal cities around the world for examining the effect of future climate change on typhoon-generated storm surge even where historical observed data are inadequate or not available.
Chatuphorn Somphong, Anawat Suppasri, Kwanchai Pakoksung, Tsuyoshi Nagasawa, Yuya Narita, Ryunosuke Tawatari, Shohei Iwai, Yukio Mabuchi, Saneiki Fujita, Shuji Moriguchi, Kenjiro Terada, Cipta Athanasius, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 22, 891–907, https://doi.org/10.5194/nhess-22-891-2022, https://doi.org/10.5194/nhess-22-891-2022, 2022
Short summary
Short summary
The majority of past research used hypothesized landslides to simulate tsunamis, but they were still unable to properly explain the observed data. In this study, submarine landslides were simulated by using a slope-failure-theory-based numerical model for the first time. The findings were verified with post-event field observational data. They indicated the potential presence of submarine landslide sources in the southern part of the bay and were consistent with the observational tsunamis.
Lea Uebelhoer, William Koon, Mitchell D. Harley, Jasmin C. Lawes, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 22, 909–926, https://doi.org/10.5194/nhess-22-909-2022, https://doi.org/10.5194/nhess-22-909-2022, 2022
Short summary
Short summary
Beachgoers at unpatrolled Australian beaches were surveyed to gain an understanding of their demographics, beach safety knowledge, and behaviour. Most visited unpatrolled beaches out of convenience and because they wanted to visit a quiet location. Despite being infrequent beachgoers, with poor swimming and hazard identification skills, most intended to enter the water. Authorities should go beyond the
swim between the flagssafety message, as people will always swim at unpatrolled beaches.
Ryuichi Kanai, Masashi Kamogawa, Toshiyasu Nagao, Alan Smith, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 22, 849–868, https://doi.org/10.5194/nhess-22-849-2022, https://doi.org/10.5194/nhess-22-849-2022, 2022
Short summary
Short summary
The air pressure created by a tsunami causes a depression in the electron density in the ionosphere. The depression is measured at sparsely distributed, moving GPS satellite locations. We provide an estimate of the volume of the depression. When applied to the 2011 Tohoku-Oki earthquake in Japan, our method can warn of a tsunami event within 15 min of the earthquake, even when using only 5 % of the data. Thus satellite-based warnings could be implemented across the world with our approach.
Riccardo Alvise Mel, Teresa Lo Feudo, Massimo Miceli, Salvatore Sinopoli, and Mario Maiolo
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-67, https://doi.org/10.5194/nhess-2022-67, 2022
Manuscript not accepted for further review
Short summary
Short summary
In this work we present a coupled modelling system to compute the wind climate and the hydrodynamic two-dimensional field in coastal areas, with particular reference to the Marine Experimental Station of Capo Tirone (Italy). We combined sea level rise and extreme storm projections with the most recent georeferenced territorial data.
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022, https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary
Short summary
We analysed the correlation of sea level and wind waves at a coastal location in the Gulf of Finland using tide gauge data, wave measurements, and wave simulations. The correlation was positive for southwesterly winds and negative for northeasterly winds. Probabilities of high total water levels (sea level + wave crest) are underestimated if sea level and waves are considered independent. Suitably chosen copula functions can account for the dependence.
Jairo E. Cueto, Luis J. Otero Díaz, Silvio R. Ospino-Ortiz, and Alec Torres-Freyermuth
Nat. Hazards Earth Syst. Sci., 22, 713–728, https://doi.org/10.5194/nhess-22-713-2022, https://doi.org/10.5194/nhess-22-713-2022, 2022
Short summary
Short summary
We investigate the importance of morphodynamics on flooding estimation during storms with sea level rise conditions on a microtidal beach. XBeach and SWAN were the numerical models used to test several case studies. The results indicate that numerical modeling of flooding should be approached by considering morphodynamics; ignoring them can underestimate flooding by ~ 15 %. Moreover, beach erosion and flooding are intensified by sea level rise and high tides in ~ 69 % and ~ 65 %, respectively.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-28, https://doi.org/10.5194/nhess-2022-28, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
In the shallow waters off the coast of Norderney in the southern North Sea, more rogue waves were measured than expected. We investigate whether solitons could play a role in this enhanced occurrence. We find that at least one soliton is associated with each measured rogue wave and that time series with and without rogue waves show different characteristic soliton spectra, implying that solitons play a role for the formation of at least some shallow water rogue waves.
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
Ario Muhammad, Katsuichiro Goda, and Maximilian J. Werner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-59, https://doi.org/10.5194/nhess-2022-59, 2022
Publication in NHESS not foreseen
Short summary
Short summary
This study develops a novel framework of time-dependent (TD) probabilistic tsunami hazard analysis (PTHA) combining a total of ≥ 100,000 spatiotemporal earthquakes (EQ) rupture models and 6,300 probabilistic tsunami simulations to evaluate the tsunami hazards and compare them with the time-independent (TI) PTHA results. The proposed model can capture the uncertainty of future TD tsunami hazards and produces slightly higher hazard estimates than the TI model for short-term periods (< 30 years).
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022, https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary
Short summary
Characterizing extreme wave environments caused by tropical cyclones in the Caribbean Sea near Guadeloupe is difficult because cyclones rarely pass near the location of interest. STM-E (space-time maxima and exposure) model utilizes wave data during cyclones on a spatial neighbourhood. Long-duration wave data generated from a database of synthetic tropical cyclones are used to evaluate the performance of STM-E. Results indicate STM-E provides estimates with small bias and realistic uncertainty.
Manuel Andres Diaz Loaiza, Jeremy D. Bricker, Remi Meynadier, Trang Minh Duong, Rosh Ranasinghe, and Sebastiaan N. Jonkman
Nat. Hazards Earth Syst. Sci., 22, 345–360, https://doi.org/10.5194/nhess-22-345-2022, https://doi.org/10.5194/nhess-22-345-2022, 2022
Short summary
Short summary
Extratropical cyclones are one of the major causes of coastal floods in Europe and the world. Understanding the development process and the flooding of storm Xynthia, together with the damages that occurred during the storm, can help to forecast future losses due to other similar storms. In the present paper, an analysis of shallow water variables (flood depth, velocity, etc.) or coastal variables (significant wave height, energy flux, etc.) is done in order to develop damage curves.
Sunna Kupfer, Sara Santamaria-Aguilar, Lara van Niekerk, Melanie Lück-Vogel, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 22, 187–205, https://doi.org/10.5194/nhess-22-187-2022, https://doi.org/10.5194/nhess-22-187-2022, 2022
Short summary
Short summary
In coastal regions, flooding can occur from combined tides, storms, river discharge, and waves. Effects of waves are commonly neglected when assessing flooding, although these may strongly contribute to extreme water levels. We find that waves combined with tides and river discharge at Breede Estuary, South Africa, increased flood extent and depth and caused earlier flooding than when waves were neglected. This highlights the need to consider all major flood drivers in future flood assessments.
Xin Liu, Insa Meinke, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 22, 97–116, https://doi.org/10.5194/nhess-22-97-2022, https://doi.org/10.5194/nhess-22-97-2022, 2022
Short summary
Short summary
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events, it is often discussed whether the events were unusual. Such information is not readily available from observations but needs contextualization with long-term statistics. An approach that provides such information in near real time was developed and implemented for the German coast. It is shown that information useful for public and scientific debates can be provided in near real time.
Cited articles
Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC–24, National Geophysical Data Center, NOAA, Technical Memorandum NESDIS NGDC-24, https://doi.org/10.7289/V5C8276M, 2009.
Antonov, J. I., Locarnini, R. A., Boyer, T. P., Mishonov, A. V., and Garcia, H. E.. World Ocean Atlas 2005, Volume 2: Salinity, edited by: Levitus, S., NOAA Atlas NESDIS 62, U.S. Government Printing Office, Washington, D.C., 182 pp., 2006.
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods of Computational Physics, 17, New York, Academic Press, 173–265, 1977.
Barnier, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M., Le Sommer, J., Beckmann, A., Biastoch, A., Boning, C., Deng, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global circulation model at eddy permitting resolution, Ocean Dynam., 56, 543–567, 2006.
Belkin, I. and Cornillon, P.: SST fronts of the pacific coastal and marginal seas, Pacific Oceanogr., 1, 90–113, 2003.
Blanke, B. and Delecluse, P.: Variability of the tropical Atlantic-Ocean simulated by a general-circulation model with 2 different mixed-layer physics, J. Phys. Oceanogr., 23, 1363–1388, 1993.
Cai, S. and Wang, W.: A numerical study on the circulation mechanism in the northeastern South China Sea and Taiwan Strait, Tropic Oceanol., 16, 7–15, 1997.
Carton, J. and Giese, B.: A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev., 136, 2999–3017, https://doi.org/10.1175/2007MWR1978.1, 2008.
Caruso, M., Gawarkiewicz, G., and Beardsley, R.: Interannual variability of the Kuroshio intrusion in the South China Sea, J. Oceanogr., 62, 559–575, 2006.
Chaigneau, A., Gizolme, A. and Grados, C.: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatiotemporal patterns, Prog. Oceanogr., 79, 106–119, 2008.
Chao, S., Shaw, P., and Wang, J.: Wind relaxation as a possible cause of the South China Sea Warm Current, J. Oceanogr., 51, 111–132, 1995.
Chao, S., Shaw, P., and Wu, S.: Deep water ventilation in the South China Sea, Deep Sea Res. I, 43, 445–466, 1996.
Chern, C. and Wang, J.: A numerical study of the summertime flow around the Luzon Strait, J. Oceanogr., 54, 53–64, 1998.
Chern, C. and Wang, J.: Numerical study of the upper-layer circulation in the South China Sea, J. Oceanogr., 59, 11–24, 2003.
Chern, C., Jan, S., and Wang, J.: Numerical study of mean flow patterns in the South China Sea and the Luzon Strait, Ocean Dynam., 60, 1047–1059, https://doi.org/10.1007/s10236-010-0305-3, 2010.
Chu, P. and Li, R.: South China Sea Isopycnal-Surface Circulation, J. Phys. Oceanogr., 30, 2420–2438, 2000.
Chu, P., Lu, S., and Chen, Y.: A Coastal Air-Ocean Coupled System (CAOCS) evaluated using an Airborne Expendable Bathythermograph (AXBT) data set, J. Oceanogr., 55, 543–558, https://doi.org/10.1023/A:1007847609139, 1999.
Cione, J. and Uhlhorn, E.: Sea surface temperature variability in hurricanes: Implications with respect to intensity change, Mon. Weather Rev., 131, 1783–1796, 2003.
CLS, SSALTO/DUACS User handbook: (M)SLA and (M)ADT Near-Real Time and Delayed Time Products. CLS-DOS-NT-06-034, Issue 4.4, Nomenclature: SALP-MU-P-EA-21065-CLS, 2015.
Dare, R. and McBride, J.: Sea surface temperature response to tropical cyclones, Mon. Weather Rev., 139, 3798–3808, 2011.
D'Asaro, E., Sanford, T., Niiler, P., and Terrill, E.: Cold wake of hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160, 2007.
Du, Y., Yi, J., Wu, D., He, Z., Wang, D., and Liang, F.: Mesoscale oceanic eddies in the South China Sea from 1992 to 2012: evolution processes and statistical analysis, Acta Oceanol. Sin., 33, 36–47, https://doi.org/10.1007/s13131-014-0530-6, 2014.
Fang, G. and Zhao, B.: A note on the main forcing of the northeastward flowing current off the Southeast China Coast, Prog. Oceanog., 21, 363–372, 1988.
Fang, Y., Fang, G., and Yu, K.: ADI barotropic ocean model for simulation of Kuroshio intrusion into China southeastern waters, Chin. J. Oceanol. Limnol., 14, 357–366, 1996.
Farris, A. and Wimbush, M.: Wind-induced intrusion into the South China Sea, J. Oceanogr., 52, 771–784, 1996.
Fichefet, T. and Maqueda, M. A.: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102, 12609–12646, 1997.
Goosse, H., Campin, J. M., Deleersnijder, E., Fichefet, T., Mathieu, P. P., Maqueda, M. A. M., and Tartinville, B.: Description of the CLIO model version 3.0, Institut d'Astronomie et de Geophysique Georges Lemaitre, Catholic University of Louvain, Belgium, 2001.
Guan, B.: The warm current in the South China Sea – a current flowing against the wind in winter in the open sea off Guangdong province, Oceanol. Limnol. Sin., 9, 117–127, 1978.
Guan, B.: Winter counter – wind current off the south eastern China coast and a preliminary investigation of its source. Proceedings of the Symposium on the Physical and Chemical Oceanography of the China Seas, Beijing, China Ocean Press, 1–9, 1993.
Hellerman, S. and Rosenstein, M.: Normal monthly wind stress over the world ocean with error estimates, J. Phys. Oceanogr., 13, 1093–1104, 1983.
Hu, J., Liang, H., and Zhang, X.: Sectional distribution of salinity and its indication of Kuroshio's intrusion in southern Taiwan Strait and northern South China Sea late summer, 1994, Acta Oceanologica Sinica, 18, 225–236, 1999.
Hu, J., Kawamura, H., Hong, H., and Qi, Y.: A review on the currents in the South China Sea: seasonal circulation, South China Sea Current and Kuroshio intrusion, J. Oceanogr., 56, 607–624, 2000.
Hu, J., Gan, J., Sun, Z., Zhu, J., and Dai, M.: Observed three dimensional structure of a cold eddy in the southwestern South China Sea, J. Geophys. Res., 116, C05016, https://doi.org/10.1029/2010JC006810, 2011.
Huang, Q., Wang, W., Li, Y., Li, C., and Mao, M.: General situations of the current and eddy in the South China Sea, Adv. Earth Sci., 7, 1–9, 1992.
Hunke, E. C. and Dukowicz J. K.: An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, 1997.
Ji, Q., Zhu, X., Wang, H., Liu, G., Gao, S., Ji, X., and Xu, Q.: Assimilating operational SST and sea ice analysis data into an operational circulation model for the coastal seas of China. Acta Oceanol. Sin., 34, 54–64, https://doi.org/10.1007/s13131-015-0691-y, 2015.
Jiang, X., Zhong, Z., and Jiang, J.: Upper ocean response of the South China Sea to Typhoon Krovanh (2003), Dynam. Atmos. Oceans, 47, 165–175, 2009.
Jing, Z. Y., Qi, Y. Q., Du, Y., Zhang, S. W., and Xie, L. L.: Summer upwelling and thermal fronts in the northwestern South China Sea: Observational analysis of two mesoscale mapping surveys, J. Geophys. Res. Oceans, 120, 1993–2006, https://doi.org/10.1002/2014JC010601, 2015.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S., Hnilo, J., Fiorino, M., and Potter, G.: NCEP-DOE AMIP-II Reanalysis (R-2), B. Am. Meteor. Soc., 83, 1631–1643, https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Lellouche, J. M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E., Garric, G., Ferry, N., Desportes, C., Testut, C. E., Bricaud, C., Bourdalle-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Li, R., Zeng, Q., Gan, Z., and Wang, W.: Numerical simulation of South China Sea Warm Current and currents in Taiwan Strait in winter, Prog. Nat. Sci., 3, 21–25, 1993.
Li, L., Nowlin Jr., W. D., and Su, J.: Anticyclonic rings from the Kuroshio in the South China Sea, Deep-Sea Res. I, 45, 1469–1482, 1998a.
Li, W., Liu, Q. and Yang, H.: Principal features of ocean circulation in the Luzon Strait, Journal of Ocean University of Qingdao, 28, 345–352, 1998b.
Liang, W., Yang, Y., Tang, T., and Chuang, W.: Kuroshio in the Luzon Strait. J. Geophys. Res., 113, C08048, https://doi.org/10.1029/2007JC004609, 2008.
Liu, Q., Liu, C., Zheng, S., Xu, Q., and Li, W.: The deformation of Kuroshio in the Luzon Strait and its dynamics, Journal of Ocean University of Qingdao, 26, 413–420, 1996.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., and Garcia, H. E. World Ocean Atlas 2005, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 61, US Government Printing Office, Washington, D.C., 182 pp., 2006.
Madec, G. and Imbard, M.: A global ocean mesh to overcome the North Pole singularity, Clim. Dynam., 12, 381–388, 1996.
Mao, Q., Shi, P., and Qi, Y.: Sea surface dynamic topography and geostrophic current over the South China Sea from Geosat altimeter observation, Acta Oceanol. Sin., 21, 11–16, 1999.
Nan, F., Xue, H., Chai, F., Shi, L., Shi, M. and Guo, P.: Identification of different types of Kuroshio intrusion into the South China Sea, Ocean Dynam., 61, 1291–1304, https://doi.org/10.1007/s10236-011-0426-3, 2011a.
Nan, F., He, Z., Zhou, H., and Wang, D.: Three long-lived anticyclonic eddies in the northern South China Sea, J. Geophys. Res., 116, C05002, https://doi.org/10.1029/2010JC006790, 2011b.
Nan, F., Xue, H., Chai, F., Wang, D., Yu, F., Shi, M., Guo, P., and Xiu, P.: Weakening of the Kuroshio intrusion into the South China Sea over the past two decades, J. Climate, 26, 8097–8110, https://doi.org/10.1175/JCLI-D-12-00315.1, 2013.
Nan, F., Xue, H., and Yu, F.: Kuroshio intrusion into the South China Sea: A review, Prog. Oceanogr., 137, 314–333, https://doi.org/10.1016/j.pocean.2014.05.012, 2015.
Okubo, A.: Horizontal dispersion of floatable particles in the vicinity of velocity singularity such as convergences, Deep Sea Res., 17, 445–454, 1970.
Pham, D. T., Verron, J., and Roubaud, M. C.: A singular evolutive extended Kalman filter for data assimilation in oceanography, J. Mar. Syst., 16, 323–340, 1998.
Price, J., Sanford, T., and Forristall, G.: Forced stage response to a moving hurricane, J. Phys. Oceanogr., 24, 233–260, 1994.
Qu, T.: Upper-layer circulation in the South China Sea, J. Phys. Oceanogr., 90, 1450–1460, 2000.
Qu, T., Mitsudera, H., and Yamagata, T.: Intrusion of the North Pacific waters into the South China Sea, J. Geophys. Res., 105, 6415–6424, 2000.
Rio, M. H. and Hernandez F.: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model, J. Geophys. Res., 109, C12032, https://doi.org/10.1029/2003JC002226, 2004.
Roullet, G. and Madec, G.: Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models, J. Geophys. Res., 105, 23927–23942, 2000.
Shapiro, R.: Linear Filtering, Math. Comput., 29, 1094–1097, 1975. Shchepetkin, A. and McWilliams, J.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modell., 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Su, J.: Overview of the South China Sea circulation and its dynamics, Acta Oceanol. Sin., 27, 1–8, 2005.
Takano, K., Harashima, A. and Namba, T.: A numerical simulation of the circulation in the South China Sea—preliminary results, Acta Oceanogr. Taiwanica, 37, 165–186, 1998.
Wang, D., Liu, Y., Qi, Y., and Shi, P.: Seasonal variability of thermal fronts in the northern South China Sea from satellite data, Geophys. Res. Lett., 28, 3963–3966, 2001.
Wang, D., Xu, H., Lin, J., and Hu, J.: Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004, J. Oceanogr., 64, 925–935, 2008.
Wang, G., Su, J., and Chu P.: Mesoscale eddies in the South China Sea observed with altimeter data, Geophys. Res. Lett., 30, 2121, https://doi.org/10.1029/2003GL018532, 2003.
Wang, G., Chen, D., and Su, J.: Winter eddy genesis in the Eastern South China Sea due to orographic wind jets, J. Phys. Oceanogr., 38, 726–732, 2008.
Wang, H., Wang, Z., Zhu, X., Wang, D., and Liu, G.: Numerical study and prediction of nuclear contaminant transport from Fukushima Daiichi nuclear power plant in the North Pacific Ocean, Chin. Sci. Bull. 57, 3518–3524. https://doi.org/10.1007/s11434-012-5171-6, 2012.
Wang, J.: Global linear stability of the 2-D shallow-water equations: An application of the distributive theorem of roots for polynomials in the unit circle, Mon. Weather Rev., 124, 1301–1310, 1996.
Wang, J. and Chern, C.: The warm-core eddy in the northern South China Sea, I. Preliminary observations on the warm-core eddy, Acta Oceanogr. Taiwan, 18, 92–103, 1987.
Weiss, J.: The dynamics of enstrophy transfer in two dimensional hydrodynamics, Phys. D, 48, 273–294, 1991.
Williamson, G.: Hydrography and weather of the Hong Kong fishing ground, Hong Kong Fisheries Bulletin, 1, 43–49, 1970.
Wu, C. and Chiang, T.: Mesoscale eddies in the northern South China Sea, Deep Sea Res. II, 54, 1575–1588, 2007.
Wu, C., Shaw, P., and Chao, S.: Assimilating altimetric data into a South China Sea model, J. Geophys. Res., 104, 29987–30005, 1999.
Wu, C., Chang, Y., Oey, L., Chang, C., and Hsin, Y.: Air-sea interaction between tropical cyclone Nari and Kuroshio. Geophys. Res. Lett., 35, L12605, https://doi.org/10.1029/2008GL033942, 2008.
Wyrtki, K.: Scientific results of marine investigation of the South China Sea and Gulf of Thailand. Naga Rep. 2, 37–38, 1961.
Xiu, P., Chai, F., Shi, L., Xue, H., and Chao, Y.: A census of eddy activities in the South China Sea during 1993–2007, J. Geophys. Res., 115, C03012, https://doi.org/10.1029/2009JC005657, 2010.
Zhang, F., Wang, W., Huang, Q., Li, Y., and Chau, K.: Summary current structure in Bashi Channel. In Proceedings of Symposium of Marine Sciences in Taiwan Strait and Its Adjacent Waters, 65–72, China Ocean Press, Beijing, 1995.
Zhang, Z., Zhao, W., Tian, J., and Liang, X.: A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation, J. Geophys. Res.-Ocean., 118, 6479–6494, https://doi.org/10.1002/2013JC008994, 2013.
Zhuang, W., Xie, S., Wang, D., Taguchi, B., Aiki, H., and Sasaki H.: Intraseasonal variability in sea surface height over the South China Sea, J. Geophys. Res., 115, C04010, https://doi.org/10.1029/2009JC005647, 2010.
Short summary
This paper examined the performances of two operational ocean forecasting systems, Mercator Océan in France and SCSOFS in China, based on observed satellite and in situ data obtained in 2012. The comparison and validation are focused on the ocean circulations, the structures of temperature and salinity, and some mesoscale activities in the South China Sea. Finally, some recommendations have been proposed for both systems to improve their performances in the near future.
This paper examined the performances of two operational ocean forecasting systems, Mercator...
Altmetrics
Final-revised paper
Preprint