Articles | Volume 15, issue 5
https://doi.org/10.5194/nhess-15-1011-2015
https://doi.org/10.5194/nhess-15-1011-2015
Research article
 | 
21 May 2015
Research article |  | 21 May 2015

Representing hydrodynamically important blocking features in coastal or riverine lidar topography

B. R. Hodges

Related authors

A new form of the Saint-Venant equations for variable topography
Cheng-Wei Yu, Ben R. Hodges, and Frank Liu
Hydrol. Earth Syst. Sci., 24, 4001–4024, https://doi.org/10.5194/hess-24-4001-2020,https://doi.org/10.5194/hess-24-4001-2020, 2020
Short summary
Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage
Ben R. Hodges
Hydrol. Earth Syst. Sci., 23, 1281–1304, https://doi.org/10.5194/hess-23-1281-2019,https://doi.org/10.5194/hess-23-1281-2019, 2019
Short summary
Comparing thixotropic and Herschel–Bulkley parameterizations for continuum models of avalanches and subaqueous debris flows
Chan-Hoo Jeon and Ben R. Hodges
Nat. Hazards Earth Syst. Sci., 18, 303–319, https://doi.org/10.5194/nhess-18-303-2018,https://doi.org/10.5194/nhess-18-303-2018, 2018
Short summary
Consistent initial conditions for the Saint-Venant equations in river network modeling
Cheng-Wei Yu, Frank Liu, and Ben R. Hodges
Hydrol. Earth Syst. Sci., 21, 4959–4972, https://doi.org/10.5194/hess-21-4959-2017,https://doi.org/10.5194/hess-21-4959-2017, 2017
Short summary
Predicting outflow induced by moraine failure in glacial lakes: the Lake Palcacocha case from an uncertainty perspective
D. S. Rivas, M. A. Somos-Valenzuela, B. R. Hodges, and D. C. McKinney
Nat. Hazards Earth Syst. Sci., 15, 1163–1179, https://doi.org/10.5194/nhess-15-1163-2015,https://doi.org/10.5194/nhess-15-1163-2015, 2015

Related subject area

Sea, Ocean and Coastal Hazards
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event
Sergio Padilla, Íñigo Aniel-Quiroga, Rachid Omira, Mauricio González, Jihwan Kim, and Maria A. Baptista
Nat. Hazards Earth Syst. Sci., 24, 3095–3113, https://doi.org/10.5194/nhess-24-3095-2024,https://doi.org/10.5194/nhess-24-3095-2024, 2024
Short summary
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024,https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024,https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Revisiting regression methods for estimating long-term trends in sea surface temperature
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024,https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Global application of a regional frequency analysis to extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024,https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary

Cited articles

Abu-Aly, T. R., Pasternack, G. B., Wyrick, J. R., Barker, R., Massa, D., and Johnson, T.: Effects of LiDAR-derived, spatially distributed vegetation roughness on two-dimensional hydraulics in a gravel-cobble river at flows of 0.2 to 20 times bankfull, Geomorphology, 206, 468–482, https://doi.org/10.1016/j.geomorph.2013.10.017, 2014.
Bates, P.: Remote sensing and flood inundation modelling, Hydrol. Process., 18, 2593–2597, https://doi.org/10.1002/hyp.5649, 2004.
Bates, P., Marks, K., and Horritt, M.: Optimal use of high-resolution topographic data in flood inundation models, Hydrol. Process., 17, 537–557, https://doi.org/10.1002/hyp.1113, 2003.
Bhuiyan, M. J. A. N. and Dutta, D.: Assessing impacts of sea level rise on river salinity in the Gorai river network, Bangladesh, Estuar. Coast. Shelf Sci., 96, 219–227, https://doi.org/10.1016/j.ecss.2011.11.005, 2012.
Casas, A., Lane, S. N., Yu, D., and Benito, G.: A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data, Hydrol. Earth Syst. Sci., 14, 1567–1579, https://doi.org/10.5194/hess-14-1567-2010, 2010.
Download
Short summary
Many of the features that either block or channelize flooding are too narrow to represent in conventional hydrodynamic (water flow) models, which must work at wider grid scales. New methods have been developed for identifying important features and representing their effects on blocking or controlling flooding. These methods are automated so that a fine-resolution lidar digital terrain model can be easily processed to a coarser resolution while retaining narrow blocking features.
Altmetrics
Final-revised paper
Preprint