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Abstract. New automated methods are developed for iden-

tifying narrow landscape features that cause hydrodynamic

blocking and might have critical impacts for management

models of river flooding, coastal inundation, climate change,

or extreme event analysis. Lidar data processed into a fine-

resolution raster (1 m× 1 m) can resolve narrow blocking

features in topography but typically cannot be directly used

for hydrodynamic modeling. For practical applications such

data are abstracted to larger scales, which can result in a loss

of hydrodynamic blocking effects. The traditional approach

to resolving hydrodynamic blocking features is to represent

them as cell boundaries within a customized unstructured

grid that is tuned to the spatial features. A new automated

edge-blocking approach is developed, which allows applica-

tion of an arbitrarily structured (Cartesian) mesh at coarser

scales and provides contiguous representation of blocking

features along Cartesian cell boundaries. This approach dis-

torts the shape of a blocking feature (i.e., making it rectilin-

ear along grid cell faces) but retains its critical hydrodynamic

blocking height characteristics and spatial continuity within

the topographic model.

1 Introduction

Hydrodynamic models are useful tools for exploring how cli-

mate change, rising sea levels, and hydrological regime al-

terations might affect the interaction between tides, rivers,

and coastlines (Purvis et al., 2008; Bhuiyan and Dutta, 2012;

Nardin and Edmonds, 2014), as well as urban coastal flood-

ing (Gallien et al., 2013; Webster et al., 2014). Similarly,

such models are vital in analysis of river hydrodynamics and

floodplain inundation that might be affected by changing cli-

mate patterns (Wen et al., 2013; Vastila et al., 2010). Unfor-

tunately, modeling annual to decadal timescales for manage-

ment and climate change analyses typically requires hydro-

dynamic model grid scales that might not adequately repre-

sent narrow blocking features. Herein we develop new meth-

ods for upscaling a digital elevation model of topography to

ensure hydrodynamic blocking features are retained.

The working hypothesis of this paper is that at any suf-

ficiently coarse-grid scale (1C) there might be topographic

features of width scale `W<1C and length scale `L≥1C

that can be represented as “edge” or “face” features of the

grid cell. These features, if given the correct continuity across

multiple grid cells, can represent hydrodynamic blocking that

is lost when subgrid features are represented as topographic

roughness. We will call this an edge-blocking technique.

By way of background, the present state of the art for

processed lidar data can readily provide a ∼ 1 m× 1 m dig-

ital terrain model (DTM) for use in high-resolution hydro-

dynamic modeling (Schubert et al., 2008; Sampson et al.,

2012). Unfortunately, modeling at such fine spatial resolution

invariably drives the model time step down to 1 s or lower,

depending on the numerical model scheme1. At such scales,

even a small river delta of 104 ha will require 108 grid cells

and approximately 107 time steps per year of simulation –

pushing even a small system into supercomputer territory for

multi-decadal and/or Monte Carlo simulations for sensitiv-

ity analyses, which are both desirable for adaptive coastal

management. However, by coarsening to a 20 m× 20 m grid

resolution, 104 ha requires only 2.5× 105 grid cells and can

typically be run at time steps of 10 to 30 s in a semi-implicit

1The BreZo code of Sanders et al. (2010) required time steps of

0.05 s for 0.8 m triangular mesh in Schubert et al. (2008)
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model2, i.e., ∼ 106 time steps per year of simulation. The re-

duced memory requirement allows multiple model instances

to be simultaneously run on a standard multi-core desktop

workstation. The larger allowable time step allows faster sim-

ulations over longer timescales without requiring extensive

high-end computational resources. Indeed, it is likely that,

as computers get more powerful, our desire to decrease grid

resolution will be countered by our desire to run larger ar-

eas and longer timescale simulations. Thus, the need for grid

coarsening of lidar data for hydrodynamics is unlikely to dis-

appear, and the challenge we face is in upscaling the topogra-

phy while capturing the hydrodynamic effects of unresolved

features.

As an alternative to grid coarsening, grid nesting (from

fine to coarse grids) can be applied to somewhat reduce com-

putational costs (e.g., Webster et al., 2014), but such methods

inherently require an expert modeler to make a judgement

as to where model resolution might be coarsened. Artificial

porosity approaches seem appropriate for urban areas with

multiple pathways around unresolved objects (Sanders et al.,

2008), but it is not clear that they are necessarily useful in

broader natural settings or where narrow objects are block-

ing over multiple cells. Quadtree subgrid nesting for hydro-

dynamic models appears to be one approach for upscaling ef-

fects of fine-resolution topography without resorting to edge

features (Stelling, 2012; Volp et al., 2013), but such methods

are still in the early stages of development and cannot be con-

sidered a definitive solution. Indeed, it is not clear that simple

application of quadtree methods would necessarily preserve

contiguous blocking edges, so combining quadtree with the

present edge-blocking technique might be necessary.

Upscaling of lidar data to a coarser grid presents hydro-

dynamic modeling challenges (Fewtrell et al., 2008). Prior

to lidar, our topographic data were generally coarser than

model grid scales (Bates, 2004), so translating topography

to a model grid was a matter of simple interpolation from a

sparse data set and calibrating roughness for effects of un-

known features. With the advent of lidar, as noted by Bates

et al. (2003), “we need methods to identify and connect lin-

ear topographic features . . . given their significant hydraulic

impact.” Indeed, in associated work of Cobby et al. (2003),

Bates’ research team pioneered the use of image-processing

techniques (skeletonization) for linear features that were ei-

ther incorporated in a highly resolved mesh or represented as

roughness. Nevertheless, despite more than 150 citations of

these pioneering works, the general challenge of automati-

cally identifying and connecting linear topographic features

has not been previously addressed, and thus provides the fun-

damental motivation for the present work. Herein we address

this challenge with a new automated method for identifying,

extracting, and representing topographic features that extend

over multiple coarse-grid cells but are so narrow that their

2Depending on the hydrodynamic discretization and the typical

flow velocities.

hydrodynamic blocking effects would be lost in common up-

scaling techniques.

As a simple example of the challenge, consider the satel-

lite photograph and corresponding lidar data in Fig. 1a and b,

which show a portion of a railroad dike that cuts across the

Nueces River delta in Texas, USA, just outside the City of

Corpus Christi. The dike is approximately 5 m across at the

top and 15 m across at the base. If the lidar data are raster-

ized to a 20 m× 20 m grid using a simple arithmetic mean of

the finer-scale data (Fig. 1c), the dike loses both its overall

blocking height and continuity. A hydrodynamic model us-

ing this coarser grid would have flow paths through the dike

at 1.5 to 2 m a.s.l. (above sea level) rather than being contigu-

ously blocked at a 3 m elevation.

Where dikes, embankments, and complex topography are

narrower than a practical hydrodynamic grid, the traditional

solution has been use of unstructured grids designed with

cell boundaries coincident to narrow blocking features (e.g.,

Cobby et al., 2003; Tsubaki and Fujita, 2010). Unfortunately,

unstructured grids usually require significant expertise and

“hands-on” artistry to develop an acceptable balance between

hydrodynamic modeling practicality and fidelity to the phys-

ical topography (Schubert et al., 2008; Mandlburger et al.,

2009). As another approach, Ryan and Hodges (2011) mod-

eled the 7500 ha of the Nueces River delta with a structured

Cartesian grid, where the narrow railroad dike across the

delta (Fig. 1) was represented as an elevated edge feature in

a 2-D hydrodynamic model. Identifying this contiguous edge

feature on the raster grid was a labor-intensive manual task,

but it was critical to obtaining the correct hydraulic blocking

effects.

It can be stated without reservation that hydrodynamic

modeling is simpler if a single size and shape of grid ele-

ment is used across an entire domain. Such a grid might be

called an “arbitrary” grid as, by definition, it is not tuned to

match any particular topographic feature. The problem with

arbitrary grids is that at coarse resolution they will not have

the proper connectivity of either narrow flow paths or narrow

blocking structures. Thus, the simplicity of arbitrary gridding

does not necessarily imply a better model. However, if nar-

row blocking features can be upscaled to the edges of the

arbitrary grid cells and the correct continuity preserved over

multiple cells, then the feature’s effect on flow blocking can

be retained, albeit at some distortion of the shape and loca-

tion of the object. However, such distortions are inherently

at the model grid scale and hence should be acceptable for a

coarse-grid model. That is, both the landscape and an asso-

ciated hydrodynamic model are subject to distortions scaling

on the grid size (e.g., a single grid cell has a uniform ele-

vation and roughness and a single velocity representing the

flow); thus, the distortion caused by moving a subgrid block-

ing feature from the grid cell center to its edge is consis-

tent with approximations associated with the selection of the

coarse-grid scale.
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Figure 1. A 75 ha section of the Rincon Bayou in the Nueces River delta shown in a Google Earth satellite photo (a), which is centered at

27◦53′20′′ N, 97◦34′11′′W. Comparing the 1 m× 1 m resolution lidar DTM (b) courtesy of J. Gibeaut, Texas A & M Corpus Christi, and the

arithmetic mean of the data computed on a 20 m× 20 m grid (c) illustrates the loss of hydrodynamic blocking height and continuity when

a simple mean is used for coarse-grid elevations (results for a 20 m× 20 m median, not shown, are almost indistinguishable). Frames (d)

through (f) show applications of median filtering (see Methods) with varying filter scales, retaining the original 1 m× 1 m resolution but

eliminating unresolvable features from the data set. All elevations are relative to mean sea level (m.s.l.).

For an arbitrary gridding approach to actually simplify

modeling, the definition of the coarse-grid edge blocking

must be automatic – otherwise we are back to treating grid

definition as a labor-intensive art form. The “hands-off” ap-

proach introduced herein captures both the obvious large-

scale features (such as the railroad dike) and smaller fea-

tures that are more difficult to identify. The new approach

uses Cartesian grids that are relatively easy to create, modify,

and hydrodynamically model. Although unstructured grids

have been popular over the past two decades as a way to di-

rect computational power at specifically desired scales, one

can make the argument that continually increasing computer

power will eventually lead to a return to structured grid mod-

eling that provides simpler automation, requires less exper-

tise in model and mesh development, and allows for easier

communication between models.

This paper provides a set of methods to represent fine-

scale topographic data to allow hydrodynamic modeling of

blocking features at coarser scales on a Cartesian grid. Full

implementation and testing of these ideas require a hydro-

dynamic model, whose characteristics will influence the re-

sulting behaviors and would require detailed description and

investigation. To keep the focus of this paper on the topo-

graphic techniques, analysis of the hydrodynamic solution is

reserved for future investigations and will not be addressed

herein.

2 Methods

The goal of our lidar processing is to produce a coarse Carte-

sian grid at some scale, 1C, that retains valuable hydrody-

namic characteristics associated with contiguous blockage

features visible at a finer resolution, 1F (e.g., the railroad

dike in Fig. 1). In a conventional Cartesian raster grid, each

cell has a single piece of data: the landscape elevation. How-

ever, for the coarse grid we will store a representative value

for the elevation over the bulk of the grid cell and separate

blocking elevation values on each cell face, which is typically

allowed in Cartesian grid models (e.g., Casulli and Cheng,

1992) and in some unstructured grid models (Ge et al., 2012).

For convenience in data processing, we will limit our focus to

systems with integer values of the coarse-to-fine raster ratio,

defined as

R1 =
1C

1F
. (1)

For sufficiently fine resolution lidar data, requiring integer

values for R1 is not a significant limitation. It follows that

the coarse-grid raster is of size ncx × ncy such that
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ncx =
nfx

R1
, (2)

ncy =
nfx

R1
, (3)

where nfx and nfy are the number of fine-grid cells in the

data set (this approach generally requires truncating some

fine-grid data at edges to ensure integer values for ncx and

ncy). For simplicity in exposition, we will confine ourselves

to the case where the x and y directions are resolved with

the same R1, although the method is readily extensible to

rectangular vice square grid cells. Further extension to un-

structured grids is theoretically possible, but the methods de-

veloped herein would require significant modification for a

non-Cartesian mesh.

The general procedure for data processing is as follows:

1. create a fine-grid background topography (Fig. 1d),

2. create a coarse-grid representation of background to-

pography (Fig. 2a),

3. compute the difference between fine and coarse topog-

raphy (Fig. 2b),

4. identify contiguous objects that occur in the difference

set (Fig. 3),

5. identify blocking objects and assign elevations to grid

cell faces (Figs. 4 and 5).

Fine-scale background topography – the first step is to

separate unresolvable topographic features (at coarse-scale

1C) from a background topography, i.e., estimating what the

fine-scale landscape would look like with coarse-scale un-

resolvable features removed. Herein we apply a median fil-

ter, which was originally designed for image noise removal

but has proven more widely useful, e.g., removing the sig-

nature of large woody debris from bathymetric data (White

and Hodges, 2005). A median filter replaces the value at po-

sition (x, y) with the median of the values in some neigh-

borhood around the point; the neighborhood size is defined

as the filter size, 1M . The filter operation is accomplished

on a moving window over the fine-scale grid to produce a

smooth rendition of the background elevations that are re-

solvable at a coarser resolution; that is, the original resolu-

tion of the data set is maintained (e.g., unlike the averaging in

Fig. 1c), while the unresolvable features are removed. For ex-

ample, the 1 m× 1 m lidar data are processed with different-

size median filters as shown in Fig. 1d–f, providing smooth,

high-resolution background elevations.

Clearly, the filter scale for defining background topogra-

phy should be equal to or greater than the desired coarse-grid

scale, i.e., 1M ≥1C. If the median filter is smaller than the

coarse grid, then objects that cannot be resolved will remain

in the filtered data set and hence not in the difference data set

(discussed below). Indeed, it seems prudent to generally ap-

ply a median filter of1M ≈ 21C to ensure that objects only

slightly larger than a grid cell are readily identified. That is, if

a 20 m× 20 m coarse grid is desired and a 20 m× 20 m me-

dian filter is applied, there can be features slightly larger than

20 m that will appear across two coarse-grid cells and hence

will not really be hydrodynamically resolved. This effect is

clear in Fig. 1f, where the 20 m× 20 m filter shows a partial

signature of the railroad dike that would be lost in upscaling

to the coarse grid as in Fig. 1c. Sensitivity of blocking iden-

tification to the choice of the 1M parameter is provided in

the Results section, below.

Coarse background and difference data set – the median

filtered fine-scale data, Fig. 1d, are used to produce a coarse-

grid approximation of the landscape elevation, Fig. 2a. This

step can be accomplished using either the simple arithmetic

mean or median of elevations inside the coarse-grid cell

(herein the median is used). This coarse-grid representation

is pushed back to the fine grid (i.e., using identical values

for all the fine cells within a single coarse-grid cell) so that a

fine-scale difference map can be created (Fig. 2b). Note that

it is also possible to directly use the median filtered fine-scale

data for the difference map (i.e., without pushing back to the

coarse grid), but this approach affects the interpretation of

the difference value relative to the coarse-grid cell elevation.

Identification of objects – the difference map (Fig. 2b) con-

tains both negative objects (unresolved depressions) and pos-

itive objects (unresolved blockages). The present work fo-

cusses on the positive objects3 that are relatively easy to han-

dle in a hydrodynamic model that includes cell edge eleva-

tions. To identify blocking positive objects, a cutoff height

(1h) is specified above which an object is deemed a hydro-

dynamic blockage rather than topographic roughness. The

number and size of objects will be a function of this cut-

off. The object size, i.e., the number of fine grid cells in a

contiguous blocking object, is denoted as N with subscripts

to distinguish the x and y faces of a coarse-grid cell. For the

present demonstration, the cutoff height is 1h= 0.2 m. Sen-

sitivity of blocking results to the choice of 1h is provided in

the Results section, below.

A binary data set can be defined as {0, 1} based on whether

fine-grid cells are respectively below or above 1h, as shown

in Fig. 3a. Our goal is to identify discrete objects, where an

object is defined as a contiguous set of cells with the value of

1. Algorithms to identify connected cells are relatively easy

to write but are difficult to make efficient for large data sets.

Fortunately, binary object identification is a standard image-

processing task and efficient algorithms are available (Gon-

zalez et al., 2004).

However, even efficient algorithms have computational

costs scaling on the number of objects, so it is useful to first

remove single cells, i.e., where N = 1, which cannot cause

hydraulic blocking. In image processing, single pixels in a

3Note that negative objects are fine-scale flow paths that are not

represented within the coarse-grid topography and are an important

subject for further research.
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a) 20 x 20 m background

b) 1 x 1 m lidar − background

elevation (m) MSL
0 0.5 1 1.5 2 2.5 3

Figure 2. (a) The 20 m× 20 m coarse-grid background topography

based on the 40 m× 40 m filter of Fig. 1d; (b) the difference be-

tween the 1 m× 1 m lidar data of Fig. 1b and the coarse-grid back-

ground topography.

binary data set are considered “noise” and addressed with

noise-removal techniques. Again, one can readily write an

algorithm to check the neighbors for each cell with a value

of 1 and eliminate all those whose neighbors are all 0, but it is

simpler to rely on the expertise of the image-processing com-

munity for this task. In the present work the Matlab Image

Processing Toolbox bwmorph function with the “clean” op-

tion was used to remove single-cell objects. Identification of

multi-cell objects was accomplished with the Moore neigh-

bor tracing algorithm (Gonzalez et al., 2004) as implemented

in the bwboundaries function in Matlab. The resulting ob-

jects are shown in Fig. 3b.

It is also useful to remove objects that are too small to

block a coarse-grid cell; i.e., for a 20 m× 20 m coarse grid

based on a 1 m× 1 m data set (R1= 20), any object in Fig. 3a

a) binary image of 6 h > 0.2 m

b) discrete objects

Figure 3. Binary image (a) of difference data set from Fig. 2b,

which can be used to identify separate objects, shown in colors

in (b). Note that objects smaller than 20 fine-grid cells in (a) have

been eliminated in (b).

that consists of fewer than 20 fine-grid cells cannot hydrauli-

cally block a coarse-grid cell and can be excised from the

object data set. To allow some flexibility, it is useful to define

a small object removal criterion based onN blocking cells as

N ≤ R1− δ, (4)

where δ ∈ {0, 1, 2, . . . } is a user-defined parameter that allows

nearly blocking objects (δ > 0) to be retained in the object

data set. Herein δ= 1 is used.

Snap-grid object blocking – each object can be processed

separately to provide hydraulic blocking conditions on both

row and column faces of a coarse-grid cell. A typical ob-

ject and its elevations (Fig. 4a) has a binary representation

www.nat-hazards-earth-syst-sci.net/15/1011/2015/ Nat. Hazards Earth Syst. Sci., 15, 1011–1023, 2015
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a) object elevation b) object cells (shifted) c) cells snapped to faces d) blocked faces

elevation (m) MSL
0 0.5 1 1.5

a) object elevation  b) snapped to faces c) snap−grid blocking  d) cross−cell e) blocking  

elevation (m) MSL
0 0.5 1

Figure 4. Blocking caused by a small object. The red × and blue + represent fine-grid blocking cells (gray �) snapped to the coarse-grid

faces Gy and Gx ; black lines are the resulting blocked coarse-grid faces. Here and throughout this paper δ= 1 is used for defining blocking.

The object cells in (b) are slightly shifted from (a) as discussed in the text to better align with coarse grid.

at the fine-grid level, as shown in Fig. 4b. Let fo(xc, yc) be

the set of fine-grid cells of the object, where xc and yc are

coordinates measured relative to the coarse grid. The coarse-

grid demarcation lines are, by definition, integer values in our

coarse-grid numbering scheme. This is perhaps slightly un-

conventional for hydrodynamic modelers as the coarse-grid

cell centers are therefore at non-integer values; i.e., the loca-

tion

(xc,yc)= (i− 1/2,j − 1/2) (5)

defines a coarse-grid cell in the raster set for

i = {1, 2, 3, . . . ncx} (6)

j =
{
1, 2, 3, . . . ncy

}
(7)

with faces at coarse-grid indexes

(xc,yc) ∈ {(i,j − 1/2), (i− 1,j − 1/2), . . .

(i− 1/2,j), (i− 1/2,j − 1)} . (8)

Using this indexing, we can define

Gy(i− 1/2,j)= fo (xc, round(yc)) (9)

as a set of fine-grid cells of varying xc that are “snapped” to

an integer yc face (the red × markers in Fig. 4c). Similarly

Gx(i,j − 1/2)= fo (round(xc) ,yc) (10)

is the set of blocking cells of varying yc snapped to an integer

xc face (the blue + markers in Fig. 4c). For the purposes of

determining whether or not blocking occurs, the cells sets

Gx and Gy are true mathematical sets that do not include

duplicate values. However, data sets with duplicates (denoted

as Gyy and Gxx) are retained for computation of blocking

height (discussed below).

To determine snap-grid blocking of coarse-grid faces

(Fig. 4d), the sizes of set Gy(i− 1/2,j) and Gx(i,j − 1/2)

are defined asNy(i−1/2,j) andNx(i,j−1/2), respectively.

These are the number of unique values of xc on a round (yc)

face (red × markers on a column face) and the number of

unique yc values on a round(xc) face (blue + markers on a

row face). Snap-grid blocking occurs along coarse-grid col-

umn faces that have a number of blocking fine-grid cells ex-

ceeding the removal criterion of Eq. (4), that is,

Ny(i− 1/2,j)≥ R1− δ, (11)

and coarse-grid row faces that satisfy

Nx(i,j − 1/2)≥ R1− δ. (12)

Note that this approach allows the fine cells to serve as block-

ing in the both x and y directions simultaneously, which is

necessary to represent the hydraulic blocking of objects at

an angle to the coarse grid. After a face is blocked, e.g.,

as shown in Fig. 4d, the corresponding Gy(i− 1/2,j) and

Gx(i,j − 1/2) are set to 0 so that the fine-grid cells used to

define a snap-grid block are not used in computing cross-cell

blocking (discussed below).

Small object shift – the snap-grid blocking approach will

necessarily depend on the spatial relationship between the

objects and the coarse grid. For small objects, a slight shift

of the object position can change whether or not the object is

judged to be blocking. For example, the lower column face

blocking in Fig. 4d would not have been identified as block-

ing in the original object position, shown in Fig. 4a, because

some of the fine-grid cells would have shown up in an ad-

jacent column such that Eq. (11) would not have been sat-

isfied for either face. For small objects (overall length less

than 1.51C), it is convenient to simply shift the object (as

in Fig. 4b) to maximize the number of fine-grid blocking

cells within a single coarse-grid cell. As long as the shift is

fewer than 1C/4 cells, it does not significantly affect the

coarse-grid physical relationships. Object shifting can be ac-

complished with an automated algorithm that is based on the

total extent of a small object and the overhang of the object

into adjacent cells.

Cross-cell object blocking – depending on an object’s

topology, the blocked faces determined by the snap-grid ap-

proach (described above) might not provide a contiguous

blocked path. Consider the larger object in Fig. 5a, where

snap-grid blocking provides the results in Fig. 5b and c. It
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a) object elevation  b) snapped to faces c) snap−grid blocking  d) cross−cell e) blocking  

elevation (m) MSL
0 0.5 1

Figure 5. Blocking caused by a large object similar to Fig. 4 for frames (a) through (c). In (d) the remaining Gy and Gx are transformed

to cell-center Hy and Hx blocking shown with red ◦ and blue 4, and different possible blocking paths are illustrated with dashed lines;

(e) shows final blocking paths that are contiguous.

is clear that some hydraulic blocking has not been captured:

the Gx (the blue + markers) and Gy (red × markers) in the

second coarse-grid cell from the top do not satisfy Eqs. (11)

or (12) as they are split between different faces. Furthermore

in the lowermost coarse-grid cell, the red × markers on ei-

ther face are insufficient for blocking. These effects arise be-

cause the snap-grid approach uses rounding, which can split

the blocking fine-grid cells to the upper and lower faces of

the coarse-grid cell. To address this issue, we define a cross-

cell blocking approach for column and row faces. Cross-cell

blocking is conducted after snap-grid blocking and only uses

the fine-grid cells that were not applied in snap-grid blocking,

e.g., the remaining red × and blue + in Fig. 5c.

For the coarse-grid cell centered at (i− 1/2, j − 1/2), we

define sets of unique fine-grid blocking cells across the cell

center as

Hy(i− 1/2,j − 1/2)

=Gy(i− 1/2,j)∪Gy(i− 1/2,j − 1), (13)

Hx(i− 1/2,j − 1/2)

=Gx(i,j − 1/2)∪Gx(i− 1,j − 1/2), (14)

which are illustrated in Fig. 5d. Blocking conditions are de-

fined similar to Eqs. (11) and (12), using Ny and Nx as the

size of the unique Hy and Hx cell sets. For determining ob-

ject blocking height (discussed below), we also define sets

that retain non-unique elements:

Hyy(i− 1/2,j − 1/2)

=Gyy(i− 1/2,j)∪Gyy(i− 1/2,j − 1), (15)

Hxx(i− 1/2,j − 1/2)

=Gxx(i,j − 1/2)∪Gxx(i− 1,j − 1/2). (16)

As the Hy and Hx fine-cell sets cross the coarse-cell cen-

ter, face blocking could be at either of the grid cell faces, as

shown by dashed blocking lines in Fig. 5d. Indeed, there can

be more than one set of blocking faces that provides a reason-

able representation of cross-cell blocking. The critical issue

is ensuring that cross-cell blocking is contiguous; i.e., there

are choices for cross-cell blocking faces in Fig. 5d that would

not provide contiguous blocking. The simplest algorithm for

selecting blocking is to process column faces (red ◦) and row

faces (blue 4) sequentially. If a coarse cell contains only a

single blocked end point (e.g., the lowermost complete cell

in Fig. 5d), then the cross-cell blocked face (either row or

column) must connect to that blocked end. If a coarse cell

contains two blocked end points, then the algorithm must

distinguish between diagonally blocked points (e.g., the sec-

ond coarse cell from the top in Fig. 5d) and co-linear blocked

end points along a face (either row or column). Where two

blocked end points are along a single column face and cell-

center blocking for a column face exists (red ◦), the cell-

center blocking logically must be along the face that con-

nects the blocked end points. Similarly, where two blocked
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Figure 6. Histograms of the number of fine-grid blocking cells at different heights for five randomly selected coarse-grid cells in the data set.

Dashed line represents the blocking height for the coarse-grid face selected as the 75th-percentile blocking height. Note that the maximum

number of fine-grid cells in a single coarse-grid cell is 400.

end points are along a row face and cell-center blocking for

a row face is indicated (blue 4), the blocking is necessar-

ily along the row face connecting the blocked end points.

However, where two blocked end points are co-linear along

a column face and the cell-centered blocking is indicated for

a row face (or vice versa), the choice of which face to block

may be taken arbitrarily. Similarly, when two blocked end

points are diagonally opposed, the selection of the blocking

face is arbitrary. Note that these arbitrary choices will neces-

sarily set up a condition where three end points are blocked.

Because rows and columns are processed sequentially, diag-

onal blocking of two end points solved using columns (first

cycle) sets up a cell with three blocked end points for solving

using rows (second cycle). If three end points are blocked,

then the cross-cell blocking must connect the two blocked

end points that are co-linear along the column or row face

(as appropriate), which ensures continuity of the feature.

In the present data set, all the objects achieved contiguous

edge-blocking representations using the snap-grid and cross-

cell object blocking algorithms outlined above. However, one

can imagine a feature that is longer and narrower than shown

in Fig. 5 for which the procedure might fail. For a long nar-

row feature, it is possible that multiple iterations of the cross-

cell algorithm would be required to define a blocking condi-

tion. That is, the cross-cell algorithm described above com-

bines (for example) the Gx blocking cells of two opposite

column faces into a single cell-centered Hx that is tested for

blocking. If Hx <R1− δ, there is no blocking, and one can

loop the algorithm to look for larger-scale blocking by com-

bining theHx of two adjacent cells into an Ix that is evaluated

on the cell face for blocking. This iterative approach can be

continued for Jx , Kx , etc., until blocking is achieved or the

coarse-grid length of the object is reached.

Object blocking height – the snap-grid and cross-cell

blocking methods determine which faces are blocked by an

object. Unfortunately, establishing an exact fine-grid block-

ing height for a face requires analysis of the lowest contigu-

ous path through the blocking cells. Although such an al-

gorithm is theoretically possible, it has not been attempted.

Given the uncertainties at the fine-grid level within typical

lidar data, there are questions as to whether such a compli-

cated analysis would be worthwhile; thus, a simple statistical

approach is adopted herein.

A blocking face is a single height value that represents a

distribution of the fine-grid cell heights, which are retained

in theGxx ,Gyy , Hxx , and Hyy sets described above. Typical

distributions are shown in Fig. 6. A reasonable estimation of

the blocking height for a Gxx set must be bounded by the

maximum and minimum values in the set. It is convenient

to denote the number of cells in the Gxx as Nxx , with simi-

lar definitions for other cell sets. We then define the relative

“thickness” of the blocking cell set for the xx face as

Txx ≡
Nxx

R1
. (17)

This thickness can be thought of as the number of rows of

fine-grid cells that would be blocked if the fine grid cells were

rearranged against the coarse-grid face. It can be argued that

larger a Txx should lead to higher blocking heights, i.e., mak-

ing it less likely that a low-level path is available through the

object. In the present work, we take an ad hoc approach: if

Txx < 2, we use the median of Gxx as the blocking height.

Where Txx ≥ 2, we take the median of the largest half of the

data set, i.e., the height of the 75th percentile. Similar argu-

ments are used for, e.g., Gyy .

3 Results

Application to complex topography – applying these edge-

blocking methods to the lidar data of Fig. 1b results in coarse-

grid elevations and edge blocking as shown in Fig. 7. Note

that many of the blocked faces are relatively close to the

heights of adjacent cells and so are not obvious in Fig. 7b.

The method is clearly successful in capturing the blocking of

the railroad dike across the landscape, which was the primary

motivation for this work.

However, it should be noted that the narrow section of

the railroad dike across the open-water sections in Fig. 1a

and b is actually a bridge, which is not hydraulically block-

ing and should be removed from the coarse data. Removing

the bridge from the lidar data at the 1 m× 1 m scale before

edge blocking is applied is perhaps possible, but it is difficult
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Figure 7. The snap-grid and cell-center blocking methods applied

to the median-filtered background topography from Fig. 2. In (a) the

locations of all blocked faces are shown; in (b), the blocked faces

are given colors corresponding to their blocking height.

to automate as one must (i) identify bridge pixels and how

they are different from dike pixels and (ii) decide what fill

values to use for the bridge pixels. An advantage of the edge-

blocking approach is that it simplifies removing the bridge

from the coarse-grid data set, although we have not yet de-

veloped an automated approach for this task. Once the edge-

blocking data set is defined, as in Fig. 7b, the start and the

end of the bridge section (visually apparent from the change

in the width of the dike in Fig. 1b) can be used to identify

the edge-blocking cells in between. These data are easily re-

moved from the edge cell set – i.e., their values are simply set

to “not a number”. That is, where edge blocking is not identi-

fiable, there is no need to store any edge-blocking heights. No

fill values for bridge pixels are necessary because the coarse-

grid cell elevations on either side of the bridge edge feature

have already been determined by the median filter. In theory,

this technique might have wider applicability in removing the

bridge from the original 1 m× 1 m lidar. It might be possible

to trace back the relationship between the bridge edges re-

moved, the pixels that represented this blocking (i.e., Gxx ,

Gyy , Hxx , and Hyy), and the difference data set of Fig. 2b so

the corresponding bridge pixels in the 1 m× 1 m lidar Fig. 1b

can be replaced by their median-filtered values from Fig. 1d.

Parameter sensitivity – there are three user-defined param-

eters in this method: the median grid filter (1M) whose ef-

fect is shown in Fig. 1d–f; the object cutoff height (1h) that

determines discrete objects as in Fig. 3a; and the δ of Eq. (4)

that has a minor effect on small object removal. The δ has

no impact on the larger features, and analyses (not shown)

indicate that the set of blocking faces is relatively insensitive

to the choice of δ ∈ {0, 1, 2} for the present work. The set of

blocking faces is also relatively insensitive to the choice of

1M , as shown in Fig. 8. A slight trend of increasing size and

number of blocking features can be seen as the size of the

median filter is increased. The choice of 1M = 21C, i.e.,

the 40 m filter in the present work, seems to be reasonable.

Unsurprisingly, the third parameter,1h, has a significant im-

pact on both the number and size and blocking features, with

higher values of 1h resulting in fewer and smaller blocking

features (Fig. 9). Naturally, these results are highly depen-

dent on the particular topography being studied. The selected

value for 1h depends on the particular goal of the analysis.

Indeed, identification of the 3 m elevation Nueces Delta rail-

road dike could be easily accomplished using 1h= 1 m (not

shown).

Computational considerations – although the median filter

for a large data set can be computationally expensive (tens of

hours on a non-GPU desktop computer for 108 grid cells of a

104 ha data set at 1 m× 1 m resolution), the edge-blocking al-

gorithm is otherwise relatively simple and inexpensive. Raw

object identification from the binary image (Fig. 3a) provides

3754 individual objects from the 7.5× 105 pixels; however

2075 of these are single-pixel objects that are easily elimi-

nated. Further removing objects where Nc≤R1− δ leaves

only 129 objects for processing (Fig. 3b). During the pro-

cessing steps, only 56 objects were found to be large enough

to block any cell faces, and 21 of these blocked only a sin-

gle cell face. The importance of such single-face blocking

should be considered with analysis in hydrodynamic simu-

lations. It may be that such blocking is better represented

by roughness coefficients. For insight on how these results

might translate to a larger scale, analysis of the 104 ha of the

full Nueces River delta (not shown) resulted in 54 889 ob-

jects requiring processing, with 1880 identified as blocking

multiple cell faces and 16 476 single-face blocking features.

This processing required several hours on a non-GPU desk-

top workstation.
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Figure 8. Sensitivity of edge blocking to choice of median filter scale, 1M .
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Figure 9. Sensitivity of edge blocking to choice of object height cutoff 1h.

4 Discussion

The present work is a first attempt at automating the iden-

tification of linear features for hydrodynamic blocking; as

such there remain a number of areas where further analysis

and improvement are needed. One of the less-satisfying as-

pects in the present work is the ad hoc selection of the 75th-

percentile height as the blocking height for a face. There are

a wide variety of statistical approaches that could be used

for estimating the blocking height, and the present approach

merely tries to account for the greater likelihood of higher

blocking from a denser set of blocking fine-grid cells. The

effect of this estimation method remains an open question,

as analysis would be best accomplished in conjunction with

hydrodynamic modeling.

As an exercise in practical application to a larger sys-

tem, the edge-blocking methods have been used for the full

104 ha of the Nueces River delta, with an extract shown in

Fig. 10 for 1100 ha of marshes that are southeast of the rail-

road bridge of Fig. 1. The blockages were computed using

the automated techniques with manual removal of blocking

faces for known bridges and culverts. This figure illustrates a

key future challenge: identifying preferential flow paths that

are unresolved at the coarse-grid scale (i.e., the negative ob-

jects resulting from unresolved depressions). Within the li-

dar data are several important narrow channels that are not

in the 20 m× 20 m grid. This effect can be seen in greater

detail in Fig. 1a, where we can clearly see a narrow stream

channel on one side of the railroad dike. This channel is en-

tirely absent in the final topography of Fig. 7. Such channels

could be readily identified by using the snap-grid and cell-

center blocking techniques as “path” techniques for negative

objects (i.e., objects determined similar to Fig. 3a, but using a

negative1h for discrimination). However, it is not clear how

such objects could be used in most hydrodynamic models.

Definition of preferential narrow flow paths that are unre-

solved within coarse-grid topography remains an area with

no clear solution (D’Alpaos and Defina, 2007). However,

there are interesting possibilities in 1-D–2-D models, such

as that of Viero et al. (2013), which might provide a good

starting point. In any case, inversion of the techniques de-

veloped above provides a basis for defining preferential flow

paths along coarse-grid cell edges, which can be seen as a

precursor for new hydrodynamic modeling techniques.

A potential area where the edge-blocking method might

be expanded is in the estimation of topographic roughness,

which has been a subject of extensive prior research (e.g.,

Abu-Aly et al., 2014; Casas et al., 2010; Dorn et al., 2014;

Forzieri et al., 2011; Straatsma and Baptist, 2008). By defin-

ing edge features, a portion of the difference between the grid

cell elevation and subgrid features can be removed from the

roughness estimation; i.e., we could use, for example, Gxx ,

Gyy , Hxx , and Hyy to remove pixels that have been resolved

in to edge features and only consider the remaining pixels in

a coarse-grid cell as contributing to roughness.

The methods developed above presume the lidar DTM is a

reasonable representation of the underlying topography. Nat-

urally, any DTM has noise, elevation inaccuracies, and the

possible inclusion of permeable features (e.g., vegetation)

as impermeable landscape. For noise and permeable fea-

tures smaller than the coarse-grid scale, the present approach

maintains the typical advantages of a median filter in remov-

ing smaller objects while retaining sharp edges. However, in

larger forested areas or farmlands with thick hedgerows, sim-
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Figure 10. A section of the Nueces River delta (2.2 km× 5 km of a larger data set) centered at 27◦52′25′′ N 97◦32′21′′W. Blocking faces

at bridges and culverts have been manually removed. For clarity in (a), where data are missing from the original lidar DTM (principally at

water surfaces), the data have been replaced by −0.2 m. For the 20 m× 20 m grid, these data have been replaced by survey data.

ple automated application of the present techniques is likely

to create undesirable blocking features. There is an open is-

sue as to whether the signature of such features could be a

priori identified and used to create permeable cell faces with

increased roughness in a hydrodynamic model.

Finally, as pointed out by P. Bates (personal communica-

tion, 2015), we lack a quantitative metric for evaluating how

well the blocking faces model the underlying topography.

Unfortunately, there is no obvious approach for comparing

the results (Fig. 7b) to the original data (Fig. 1b) without re-

sorting to image-processing techniques, which would simply

provide a circular argument. It seems likely that a quantita-

tive metric will require using a hydrodynamic model at both

the original DTM and with the new coarse-grid topography to

evaluate blockage effectiveness at different water elevations.

5 Conclusions

This paper provides automated identification of hydrody-

namic blocking features in fine-scale rasterized lidar topogra-

phy, along with upscaling of the blockage to a coarser raster

grid. These techniques could be used for modeling coastal

flood inundation at the practical coarse-grid scales necessary

for addressing large-scale adaptive management questions,

while retaining the blocking effects of fine-scale features that

cannot otherwise be captured.

A coarse grid developed with the new edge-blocking tech-

nique could be immediately applied in any number of 2-D

and 3-D hydrodynamic models that permit grid cells to use

different topographic elevations on different flow faces. Note

that, because raster topographic data sets with separate face
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elevations have not been generally available, many hydrody-

namic models do not provide for separate cell-face elevation

data. Nevertheless, some models could be readily adapted to

using such data with minor modifications and new tools for

input data manipulation.
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