Articles | Volume 25, issue 2
https://doi.org/10.5194/nhess-25-467-2025
https://doi.org/10.5194/nhess-25-467-2025
Research article
 | 
05 Feb 2025
Research article |  | 05 Feb 2025

Predicting the thickness of shallow landslides in Switzerland using machine learning

Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon

Related authors

Analysis of factors influencing rockfall activity with a new method to estimate the release frequency in case of scarce data
Didier Hantz, Michel Jaboyedoff, Christine Moos, Luuk Dorren, Antoine Guerin, Antoine Guillemot, Jean-Pierre Rossetti, and Marc Janeras
EGUsphere, https://doi.org/10.5194/egusphere-2025-6247,https://doi.org/10.5194/egusphere-2025-6247, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Implementing the Equations of Motion in the Energy Line Principle to Simulate the Runout Zones of Gravitational Natural Hazards
Elisa Marras, Dominik May, Luuk Dorren, and Filippo Giadrossich
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-226,https://doi.org/10.5194/nhess-2024-226, 2025
Preprint under review for NHESS
Short summary
Comparison of paleobotanical and biomarker records of mountain peatland and forest ecosystem dynamics over the last 2600 years in central Germany
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023,https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Introducing SlideforMAP: a probabilistic finite slope approach for modelling shallow-landslide probability in forested situations
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022,https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Delimiting rockfall runout zones using reach probability values simulated with a Monte-Carlo based 3D trajectory model
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32,https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary

Cited articles

Ali, A., Huang, J., Lyamin, A. V., Sloan, S. W., Griffiths, D. V., Cassidy, M. J., and Li, J. H.: Simplified quantitative risk assessment of rainfall-induced landslides modelled by infinite slopes, Eng. Geol., 179, 102–116, https://doi.org/10.1016/j.enggeo.2014.06.024, 2014. a
Arnold, P. and Dorren, L.: The Importance of Rockfall and Landslide Risks on Swiss National Roads, in: Engineering Geology for Society and Territory – Volume 6, edited by: Lollino, G., Giordan, D., Thuro, K., Carranza-Torres, C., Wu, F., Marinos, P., and Delgado, C., Springer International Publishing, Cham, 671–675, ISBN 978-3-319-09060-3, https://doi.org/10.1007/978-3-319-09060-3_120, 2015. a
Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, 2016. a
BAFU: Topographische Einzugsgebiete Schweizer Gewässer Schweiz, Ausgabe 2019, https://data.geo.admin.ch/ch.bafu.wasser-teileinzugsgebiete_2/ (last access: 23 January 2025), 2019. a, b
BAFU: Produktionsregionen LFI, https://data.geo.admin.ch/ch.bafu.landesforstinventar-produktionsregionen/, 2020. a
Download
Short summary
We developed a machine-learning-based approach to predict the potential thickness of shallow landslides to generate improved inputs for slope stability models. We selected 21 explanatory variables, including metrics on terrain, geomorphology, vegetation height, and lithology, and used data from two Swiss field inventories to calibrate and test the models. The best-performing machine learning model consistently reduced the mean average error by at least 20 % compared to previous models.
Share
Altmetrics
Final-revised paper
Preprint