Articles | Volume 25, issue 2
https://doi.org/10.5194/nhess-25-467-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-467-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Predicting the thickness of shallow landslides in Switzerland using machine learning
Christoph Schaller
CORRESPONDING AUTHOR
Bern University of Applied Sciences – HAFL, Länggasse 85, 3052 Zollikofen, Switzerland
University of Amsterdam UVA – IBED, Science Park 904, 1098 XH Amsterdam, the Netherlands
Luuk Dorren
Bern University of Applied Sciences – HAFL, Länggasse 85, 3052 Zollikofen, Switzerland
Massimiliano Schwarz
Bern University of Applied Sciences – HAFL, Länggasse 85, 3052 Zollikofen, Switzerland
Christine Moos
Bern University of Applied Sciences – HAFL, Länggasse 85, 3052 Zollikofen, Switzerland
Arie C. Seijmonsbergen
University of Amsterdam UVA – IBED, Science Park 904, 1098 XH Amsterdam, the Netherlands
E. Emiel van Loon
University of Amsterdam UVA – IBED, Science Park 904, 1098 XH Amsterdam, the Netherlands
Related authors
No articles found.
Didier Hantz, Michel Jaboyedoff, Christine Moos, Luuk Dorren, Antoine Guerin, Antoine Guillemot, Jean-Pierre Rossetti, and Marc Janeras
EGUsphere, https://doi.org/10.5194/egusphere-2025-6247, https://doi.org/10.5194/egusphere-2025-6247, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Quantifying rockfall activity is essential for risk analysis. A new method is presented for estimating the activity, even if the inventory contains a small number of events. It was applied to 22 inventories from natural mountain rock walls in temperate climate zones and below the permafrost area. It appears that the activity varies from 0.01 to 20 failures larger than 1 m3 per year and per square hectometre of cliff, according to the geomorphological and geological features of the cliff.
Elisa Marras, Dominik May, Luuk Dorren, and Filippo Giadrossich
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-226, https://doi.org/10.5194/nhess-2024-226, 2025
Preprint under review for NHESS
Short summary
Short summary
The simulation of runout zones is crucial for mitigating gravitational natural hazards. To address the trade off between accuracy and simplicity, equations of motion for the energy line principle are implemented and applied in a case study. The results show that this approach improves simulation accuracy while maintaining model simplicity. This method offers a promising solution for preliminary analyses of gravitational natural hazards at large scales.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assessment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMAP) that can assess the shallow-landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Carrie L. Thomas, Boris Jansen, E. Emiel van Loon, and Guido L. B. Wiesenberg
SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, https://doi.org/10.5194/soil-7-785-2021, 2021
Short summary
Short summary
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into soil and can be useful for studying organic carbon cycling. We performed a systematic review of available data of one type of plant-derived chemical, n-alkanes, to determine patterns of degradation or preservation from the source plant to the soil. We found that while there was degradation in the amount of n-alkanes from plant to soil, some aspects of the chemical signature were preserved.
Cited articles
Ali, A., Huang, J., Lyamin, A. V., Sloan, S. W., Griffiths, D. V., Cassidy, M. J., and Li, J. H.: Simplified quantitative risk assessment of rainfall-induced landslides modelled by infinite slopes, Eng. Geol., 179, 102–116, https://doi.org/10.1016/j.enggeo.2014.06.024, 2014. a
Arnold, P. and Dorren, L.: The Importance of Rockfall and Landslide Risks on Swiss National Roads, in: Engineering Geology for Society and Territory – Volume 6, edited by: Lollino, G., Giordan, D., Thuro, K., Carranza-Torres, C., Wu, F., Marinos, P., and Delgado, C., Springer International Publishing, Cham, 671–675, ISBN 978-3-319-09060-3, https://doi.org/10.1007/978-3-319-09060-3_120, 2015. a
Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, 2016. a
BAFU: Produktionsregionen LFI, https://data.geo.admin.ch/ch.bafu.landesforstinventar-produktionsregionen/, 2020. a
Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS – a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Open-File Report, https://doi.org/10.3133/ofr02424, 2002. a, b, c, d
Beven, K.: Environmental Modelling: An Uncertain Future?, CRC Press, London, ISBN 978-1-315-27350-1, https://doi.org/10.1201/9781482288575, 2018. a
Bezzola, G. R. and Hegg, C.: Ereignisanalyse Hochwasser 2005, Teil 1 – Prozesse, Schäden und erste Einordnung, in: Umwelt-Wissen, vol. 707, p. 215, Bundesamt für Umwelt BAFU; Eidgenössische Forschungsanstalt WSL, Bern, Birmensdorf, https://www.bafu.admin.ch/dam/bafu/de/dokumente/naturgefahren/uw-umwelt-wissen/ereignisanalyse_hochwasser2005teil1prozesseschaedenundersteeinor.pdf.download.pdf (last access: 23 January 2025), 2007. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a, b, c
Brenning, A.: Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models, in: SAGA – Seconds Out (= Hamburger Beitraege zur Physischen Geographie und Landschaftsoekologie, vol. 19), edited by: Boehner, J., Blaschke, T., and Montanarella, L., 23–32, https://fiona.uni-hamburg.de/e2bfe5e6/boehner-et-al--saga-seconds-out.pdf (last access: 23 January 2025), 2008. a
Burren, S. and Eyer, W.: StorMe – Ein informatikgestützter Ereigniskataster der Schweiz, Internationales Symposion, Interpraevent, 25–35, ISBN 3901164057, 2000. a
Böhner, J., Koethe, R., Conrad, O., Gross, J., Ringeler, A., and Selige, T.: Soil regionalisation by means of terrain analysis and process parameterisation, Soil Classification 2001, 213–222, https://esdac.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/esb_rr/n07_ESBResRep07/601Bohner.pdf (last access: 23 January 2025), 2002. a
Caine, N.: The Rainfall Intensity – Duration Control of Shallow Landslides and Debris Flows, Geogr. Ann. A, 62, 23–27, https://doi.org/10.1080/04353676.1980.11879996, 1980. a
CCSol: Swiss Competence Center for Soils home page, https://ccsols.ch/de/home/ (last access: 23 January 2025), 2024. a
Chang, W.-J., Chou, S.-H., Huang, H.-P., and Chao, C.-Y.: Development and verification of coupled hydro-mechanical analysis for rainfall-induced shallow landslides, Eng. Geol., 293, 106337, https://doi.org/10.1016/j.enggeo.2021.106337, 2021. a
Chinkulkijniwat, A., Tirametatiparat, T., Supotayan, C., Yubonchit, S., Horpibulsuk, S., Salee, R., and Voottipruex, P.: Stability characteristics of shallow landslide triggered by rainfall, J. Mt. Sci., 16, 2171–2183, https://doi.org/10.1007/s11629-019-5523-7, 2019. a, b, c
Cohen, D., Lehmann, P., and Or, D.: Fiber bundle model for multiscale modeling of hydromechanical triggering of shallow landslides, Water Resour. Res., 45, W10436, https://doi.org/10.1029/2009WR007889, 2009. a
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015. a
Dahl, M.-P. J., Mortensen, L. E., Veihe, A., and Jensen, N. H.: A simple qualitative approach for mapping regional landslide susceptibility in the Faroe Islands, Nat. Hazards Earth Syst. Sci., 10, 159–170, https://doi.org/10.5194/nhess-10-159-2010, 2010. a, b
Da Re, D., Tordoni, E., Lenoir, J., Lembrechts, J. J., Vanwambeke, S. O., Rocchini, D., and Bazzichetto, M.: USE it: Uniformly sampling pseudo-absences within the environmental space for applications in habitat suitability models, Methods Ecol. Evol., 14, 2873–2887, https://doi.org/10.1111/2041-210X.14209, 2023. a
Di Napoli, M., Di Martire, D., Bausilio, G., Calcaterra, D., Confuorto, P., Firpo, M., Pepe, G., and Cevasco, A.: Rainfall-Induced Shallow Landslide Detachment, Transit and Runout Susceptibility Mapping by Integrating Machine Learning Techniques and GIS-Based Approaches, Water, 13, 488, https://doi.org/10.3390/w13040488, 2021. a
Dietrich, W. E., Reiss, R., Hsu, M.-L., and Montgomery, D. R.: A process-based model for colluvial soil depth and shallow landsliding using digital elevation data, Hydrol. Process., 9, 383–400, https://doi.org/10.1002/hyp.3360090311, 1995. a
D'Odorico, P. and Fagherazzi, S.: A probabilistic model of rainfall-triggered shallow landslides in hollows: A long-term analysis, Water Resour. Res., 39, 1262, https://doi.org/10.1029/2002WR001595, 2003. a
Dorren, L. and Schwarz, M.: Quantifying the Stabilizing Effect of Forests on Shallow Landslide-Prone Slopes, in: Ecosystem-Based Disaster Risk Reduction and Adaptation in Practice, edited by: Renaud, F. G., Sudmeier-Rieux, K., Estrella, M., and Nehren, U., Advances in Natural and Technological Hazards Research, Springer International Publishing, Cham, 255–270, ISBN 978-3-319-43633-3, https://doi.org/10.1007/978-3-319-43633-3_11, 2016. a
Dorren, L., Sandri, A., Raetzo, H., and Arnold, P.: Landslide risk mapping for the entire Swiss national road network, in: Landslide Processes: from Geomorphologic Mapping to Dynamic Modelling, edited by: Mallet, J.-P., Remaitre, A., and Boggard, T., Strasbourg, CERG, 277–281, ISBN 9782951831711, 2009. a
Emberson, R., Kirschbaum, D., and Stanley, T.: New global characterisation of landslide exposure, Nat. Hazards Earth Syst. Sci., 20, 3413–3424, https://doi.org/10.5194/nhess-20-3413-2020, 2020. a
Fallot, J.-M.: Climate Setting in Switzerland, in: Landscapes and Landforms of Switzerland, edited by: Reynard, E., Springer International Publishing, Cham, 31–45, ISBN 978-3-030-43203-4, https://doi.org/10.1007/978-3-030-43203-4_3, 2021. a, b
FDFA: Geography – Facts and Figures, https://www.eda.admin.ch/aboutswitzerland/en/home/umwelt/geografie/geografie---fakten-und-zahlen.html (last access: 23 January 2025), 2023. a
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018. a
FSO: Land use in Switzerland – Results of the Swiss land use statistics 2018 | Publication, Swiss Statistics, Federal Statistical Office, ISBN 978-3-303-02130-9, https://www.bfs.admin.ch/asset/en/19365054 (last access: 23 January 2025), 2021. a
GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software Library, https://gdal.org (last access: 23 January 2025), 2021. a
Gupta, K., Satyam, N., and Segoni, S.: A comparative study of empirical and machine learning approaches for soil thickness mapping in the Joshimath region (India), CATENA, 241, 108024, https://doi.org/10.1016/j.catena.2024.108024, 2024. a, b
Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., and Rossi, M.: Distribution of landslides in the Upper Tiber River basin, central Italy, Geomorphology, 96, 105–122, https://doi.org/10.1016/j.geomorph.2007.07.015, 2008a. a
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall intensity–duration control of shallow landslides and debris flows: an update, Landslides, 5, 3–17, https://doi.org/10.1007/s10346-007-0112-1, 2008b. a
Hastie, T. J. and Tibshirani, R. J.: Generalized Additive Models, vol. 43, CRC Press, ISBN 0412343908, 1990. a
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on machine learning, PLOS ONE, 12, 0169748, https://doi.org/10.1371/journal.pone.0169748, 2017. a, b
Ho, J.-Y., Lee, K. T., Chang, T.-C., Wang, Z.-Y., and Liao, Y.-H.: Influences of spatial distribution of soil thickness on shallow landslide prediction, Eng. Geol., 124, 38–46, https://doi.org/10.1016/j.enggeo.2011.09.013, 2012. a, b, c, d
Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Nat. Hazards Earth Syst. Sci., 13, 869–885, https://doi.org/10.5194/nhess-13-869-2013, 2013. a
Huang, B. F. F. and Boutros, P. C.: The parameter sensitivity of random forests, BMC Bioinformatics, 17, 331, https://doi.org/10.1186/s12859-016-1228-x, 2016. a
Huggett, R.: Regolith or soil? An ongoing debate, Geoderma, 432, 116387, https://doi.org/10.1016/j.geoderma.2023.116387, 2023. a
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167–194, https://doi.org/10.1007/s10346-013-0436-y, 2014. a, b, c
Iida, T.: A stochastic hydro-geomorphological model for shallow landsliding due to rainstorm, CATENA, 34, 293–313, https://doi.org/10.1016/S0341-8162(98)00093-9, 1999. a, b, c, d
Iverson, R. M.: Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897–1910, https://doi.org/10.1029/2000WR900090, 2000. a
Jaboyedoff, M., Carrea, D., Derron, M.-H., Oppikofer, T., Penna, I. M., and Rudaz, B.: A review of methods used to estimate initial landslide failure surface depths and volumes, Eng. Geol., 267, 105478, https://doi.org/10.1016/j.enggeo.2020.105478, 2020. a
Jalaian, B., Lee, M., and Russell, S.: Uncertain Context: Uncertainty Quantification in Machine Learning, AI Mag., 40, 40–49, https://doi.org/10.1609/aimag.v40i4.4812, number: 4, 2019. a, b, c
Jia, N., Mitani, Y., Xie, M., and Djamaluddin, I.: Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area, Comput. Geotech., 45, 1–10, https://doi.org/10.1016/j.compgeo.2012.04.007, 2012. a, b, c
Kaur, H., Gupta, S., Parkash, S., Thapa, R., Gupta, A., and Khanal, G. C.: Evaluation of landslide susceptibility in a hill city of Sikkim Himalaya with the perspective of hybrid modelling techniques, Ann. GIS, 25, 113–132, https://doi.org/10.1080/19475683.2019.1575906, 2019. a
Kuhn, M.: Building Predictive Models in R Using the caret Package, J. Stat. Softw., 28, 1–26, https://doi.org/10.18637/jss.v028.i05, 2008. a
Lanni, C., Borga, M., Rigon, R., and Tarolli, P.: Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution, Hydrol. Earth Syst. Sci., 16, 3959–3971, https://doi.org/10.5194/hess-16-3959-2012, 2012. a, b, c
Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion controlled by hillslope material, Nat. Geosci., 3, 247–251, https://doi.org/10.1038/ngeo776, 2010. a, b
Lateltin, O., Haemmig, C., Raetzo, H., and Bonnard, C.: Landslide risk management in Switzerland, Landslides, 2, 313–320, https://doi.org/10.1007/s10346-005-0018-8, 2005. a
Leonarduzzi, E., Molnar, P., and McArdell, B. W.: Predictive performance of rainfall thresholds for shallow landslides in Switzerland from gridded daily data, Water Resour. Res., 53, 6612–6625, https://doi.org/10.1002/2017WR021044, 2017. a
Li, W. C., Lee, L. M., Cai, H., Li, H. J., Dai, F. C., and Wang, M. L.: Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil slope, Eng. Geol., 153, 105–113, https://doi.org/10.1016/j.enggeo.2012.11.017, 2013. a, b, c
Li, Y. and Mo, P.: A unified landslide classification system for loess slopes: A critical review, Geomorphology, 340, 67–83, https://doi.org/10.1016/j.geomorph.2019.04.020, 2019. a
McColl, S. T. and Cook, S. J.: A universal size classification system for landslides, Landslides, 21, 111–120, https://doi.org/10.1007/s10346-023-02131-6, 2024. a
Meier, C., Jaboyedoff, M., Derron, M.-H., and Gerber, C.: A method to assess the probability of thickness and volume estimates of small and shallow initial landslide ruptures based on surface area, Landslides, 17, 975–982, https://doi.org/10.1007/s10346-020-01347-0, 2020. a, b
Meisina, C. and Scarabelli, S.: A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils, Geomorphology, 87, 207–223, https://doi.org/10.1016/j.geomorph.2006.03.039, 2007. a
Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R., and Abderrahmane, B.: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance, Earth-Sci. Rev., 207, 103225, https://doi.org/10.1016/j.earscirev.2020.103225, 2020. a, b, c
Milledge, D. G., Bellugi, D., McKean, J. A., Densmore, A. L., and Dietrich, W. E.: A multidimensional stability model for predicting shallow landslide size and shape across landscapes, J. Geophys. Res.-Eearth, 119, 2481–2504, https://doi.org/10.1002/2014JF003135, 2014. a
Montgomery, D. R. and Dietrich, W. E.: A physically based model for the topographic control on shallow landsliding, Water Resour. Res., 30, 1153–1171, https://doi.org/10.1029/93WR02979, 1994. a, b, c, d
Murgia, I., Giadrossich, F., Mao, Z., Cohen, D., Capra, G. F., and Schwarz, M.: Modeling shallow landslides and root reinforcement: A review, Ecol. Eng., 181, 106671, https://doi.org/10.1016/j.ecoleng.2022.106671, 2022. a, b
Pack, R., Tarboton, D., and Goodwin, C.: The SINMAP approach to terrain stability mapping, Procedeengs of the 8th congress of the international association of engineering geology, Vancouver, British Columbia, Canada, 21–25, ISBN 9054109912, https://digitalcommons.usu.edu/cee_facpub/2583/ (last access: 23 January 2025), 1998. a, b, c
Patton, N. R., Lohse, K. A., Godsey, S. E., Crosby, B. T., and Seyfried, M. S.: Predicting soil thickness on soil mantled hillslopes, Nat. Commun., 9, 3329, https://doi.org/10.1038/s41467-018-05743-y, 2018. a, b
Pebesma, E. and Bivand, R.: Spatial Data Science: With Applications in R, Chapman and Hall/CRC, https://doi.org/10.1201/9780429459016, 2023. a
Pfiffner, O. A.: The Geology of Switzerland, in: Landscapes and Landforms of Switzerland, edited by: Reynard, E., Springer International Publishing, Cham, 7–30, ISBN 978-3-030-43203-4, https://doi.org/10.1007/978-3-030-43203-4_2, 2021. a, b
Piegari, E., Cataudella, V., Di Maio, R., Milano, L., and Nicodemi, M.: A cellular automaton for the factor of safety field in landslides modeling, Geophys. Res. Lett., 33, L01403, https://doi.org/10.1029/2005GL024759, 2006. a
Planchon, O. and Darboux, F.: A fast, simple and versatile algorithm to fill the depressions of digital elevation models, CATENA, 46, 159–176, https://doi.org/10.1016/S0341-8162(01)00164-3, 2002. a
Probst, P., Wright, M. N., and Boulesteix, A.-L.: Hyperparameters and tuning strategies for random forest, WIREs Data Min. Knowl., 9, e1301, https://doi.org/10.1002/widm.1301, 2019. a, b
Ran, Q., Hong, Y., Li, W., and Gao, J.: A modelling study of rainfall-induced shallow landslide mechanisms under different rainfall characteristics, J. Hydrol., 563, 790–801, https://doi.org/10.1016/j.jhydrol.2018.06.040, 2018. a, b
R Core Team: R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (last access: 23 January 2025), 2022. a
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically-based landslide susceptibility models, Earth-Sci. Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018. a
Reynard, E., Häuselmann, P., Jeannin, P.-Y., and Scapozza, C.: Geomorphological Landscapes in Switzerland, in: Landscapes and Landforms of Switzerland, edited by: Reynard, E., Springer International Publishing, Cham, 71–80, ISBN 978-3-030-43203-4, https://doi.org/10.1007/978-3-030-43203-4_5, 2021. a, b
Rickli, C., McArdell, B., Badoux, A., and Loup, B.: Database shallow landslides and hillslope debris flows, 13th congress INTERPRAEVENT 2016. 30 May to 2 June 2016. Lucerne, Switzerland. Extended abstracts “Living with natural risks”, 242–243, https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:20790/ (last access: 23 January 2025), 2016. a, b, c
Rickli, C., Graf, F., Bebi, P., Bast, A., Loup, B., and McArdell, B.: Schützt der Wald vor Rutschungen? Hinweise aus der WSL-Rutschungsdatenbank, Schweizerische Zeitschrift für Forstwesen, 170, 310–317, https://doi.org/10.3188/szf.2019.0310, 2019. a, b
Schaller, C.: HAFL-WWI/Landslide_Thickness_Prediction: Release for Predicting shallow landslide thickness using ML v0.1.5, Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.14778278, 2025. a, b
Schaller, C., Ginzler, C., van Loon, E., Moos, C., Seijmonsbergen, A. C., and Dorren, L.: Improving country-wide individual tree detection using local maxima methods based on statistically modeled forest structure information, Int. J. Appl. Eearth Obs., 123, 103480, https://doi.org/10.1016/j.jag.2023.103480, 2023. a, b
Schuster, R. and Wieczorek, G.: Landslide triggers and types, in: Landslides – Proceedings of the First European Conference on Landslides, Prague, Czech Republic, 24–26 June 2002, Routledge, London, 59–78, ISBN 978-0-203-74919-7, https://doi.org/10.1201/9780203749197-4, 2018. a
Schwarz, M., Preti, F., Giadrossich, F., Lehmann, P., and Or, D.: Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy), Ecol. Eng., 36, 285–291, https://doi.org/10.1016/j.ecoleng.2009.06.014, 2010. a
Shano, L., Raghuvanshi, T. K., and Meten, M.: Landslide susceptibility evaluation and hazard zonation techniques – a review, Geoenvironmental Disasters, 7, 18, https://doi.org/10.1186/s40677-020-00152-0, 2020. a
Sidle, R. and Ochiai, H.: Landslides: Processes, Prediction, and Land Use, ISBN 978-0-87590-322-4, https://doi.org/10.1029/WM018, 2013. a
Simmonds, E. G., Adjei, K. P., Andersen, C. W., Hetle Aspheim, J. C., Battistin, C., Bulso, N., Christensen, H. M., Cretois, B., Cubero, R., Davidovich, I. A., Dickel, L., Dunn, B., Dunn-Sigouin, E., Dyrstad, K., Einum, S., Giglio, D., Gjerløw, H., Godefroidt, A., González-Gil, R., Gonzalo Cogno, S., Große, F., Halloran, P., Jensen, M. F., Kennedy, J. J., Langsæther, P. E., Laverick, J. H., Lederberger, D., Li, C., Mandeville, E. G., Mandeville, C., Moe, E., Navarro Schröder, T., Nunan, D., Sicacha-Parada, J., Simpson, M. R., Skarstein, E. S., Spensberger, C., Stevens, R., Subramanian, A. C., Svendsen, L., Theisen, O. M., Watret, C., and O’Hara, R. B.: Insights into the quantification and reporting of model-related uncertainty across different disciplines, iScience, 25, 105512, https://doi.org/10.1016/j.isci.2022.105512, 2022. a, b
Skempton, A. and deLory, F.: Stability of natural slopes in London Clay, in: Proc. 4th Internal Conference on Soil Mechanics and Foundation Engng., London, 1957, vol. 15, 378–381, Thomas Telford Publishing, London, UK, https://www.issmge.org/uploads/publications/1/41/1957_02_0074.pdf (last access: 23 January 2025), 1957. a
Steger, S., Schmaltz, E., Seijmonsbergen, A. C., and Glade, T.: The Walgau: A Landscape Shaped by Landslides, in: Landscapes and Landforms of Austria, edited by: Embleton-Hamann, C., Springer International Publishing, Cham, 237–251, ISBN 978-3-030-92815-5, https://doi.org/10.1007/978-3-030-92815-5_15, 2022. a
Stumpf, F., Behrens, T., Schmidt, K., and Keller, A.: Exploiting Soil and Remote Sensing Data Archives for 3D Mapping of Multiple Soil Properties at the Swiss National Scale, Remote Sensing, 16, 2712, https://doi.org/10.3390/rs16152712, 2024. a, b, c
Swisstopo: Maps of Switzerland – Rock density, https://map.geo.admin.ch/#/map?lang=en¢er=2599631.84,1188720.65&z=1.549&bgLayer=ch.swisstopo.pixelkarte-grau&topic=ech&swisssearch=Rock+density&layers=ch.swisstopo.geologie-gesteinsdichte (last access: 23 January 2025), 2024a. a
Swisstopo: swissBOUNDARIES3D, https://www.swisstopo.admin.ch/en/landscape-model-swissboundaries3d (last access: 23 January 2025), 2024b. a
Swisstopo: WMTS-FSDI service, layer “Light base map relief”, https://wmts.geo.admin.ch/EPSG/3857/1.0.0/WMTSCapabilities.xml?lang=de (last access: 23 January 2025), 2024c. a
Swisstopo: WMTS-FSDI service, layer “SWISSIMAGE Background”, https://wmts.geo.admin.ch/EPSG/3857/1.0.0/WMTSCapabilities.xml?lang=de (last access: 23 January 2025), 2024d. a
Swisstopo: GeoCover v2, https://www.swisstopo.admin.ch/en/geodata/geology/maps/geocover.html (last access: 23 January 2025), 2023c. a
van Zadelhoff, F. B., Albaba, A., Cohen, D., Phillips, C., Schaefli, B., Dorren, L., and Schwarz, M.: Introducing SlideforMAP: a probabilistic finite slope approach for modelling shallow-landslide probability in forested situations, Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, 2022. a, b, c, d, e, f, g
Varnes, D. J.: Slope movement types and processes, Special report, 176, 11–33, https://onlinepubs.trb.org/Onlinepubs/sr/sr176/176-002.pdf (last access: 23 January 2025), 1978. a
Wadoux, A. M. J. C., Minasny, B., and McBratney, A. B.: Machine learning for digital soil mapping: Applications, challenges and suggested solutions, Earth-Sci. Rev., 210, 103359, https://doi.org/10.1016/j.earscirev.2020.103359, 2020. a
Wager, S., Hastie, T., and Efron, B.: Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife, J. Mach. Learn. Res., 15, 1625–1651, http://jmlr.org/papers/v15/wager14a.html (last access: 23 January 2025), 2014. a
Waser, L. and Ginzler, C.: Forest Type NFI, National Forest Inventory (NFI), https://doi.org/10.16904/1000001.7, 2018. a, b
Waser, L., Ginzler, C., and Rehush, N.: Wall-to-Wall Tree Type Mapping from Countrywide Airborne Remote Sensing Surveys, Remote Sensing, 9, 766, https://doi.org/10.3390/rs9080766, 2017. a, b, c
Watakabe, T. and Matsushi, Y.: Lithological controls on hydrological processes that trigger shallow landslides: Observations from granite and hornfels hillslopes in Hiroshima, Japan, CATENA, 180, 55–68, https://doi.org/10.1016/j.catena.2019.04.010, 2019. a, b
Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. Roy. Stat. Soc. B, 73, 3–36, https://doi.org/10.1111/j.1467-9868.2010.00749.x, 2011. a, b
Wright, M. N. and Ziegler, A.: ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R, J. Stat. Softw., 77, 1–17, https://doi.org/10.18637/jss.v077.i01, 2017. a
WSL: Datenbank flachgründige Rutschungen und Hangmuren, https://www.wsl.ch/de/services-produkte/datenbank-flachgruendige-rutschungen-und-hangmuren/ (last access: 23 January 2025), 2024. a
Xiao, T., Segoni, S., Liang, X., Yin, K., and Casagli, N.: Generating soil thickness maps by means of geomorphological-empirical approach and random forest algorithm in Wanzhou County, Three Gorges Reservoir, Geosci. Front., 14, 101514, https://doi.org/10.1016/j.gsf.2022.101514, 2023. a, b, c, d, e, f, g
Zhang, S., Xu, Q., and Zhang, Q.: Failure characteristics of gently inclined shallow landslides in Nanjiang, southwest of China, Eng. Geol., 217, 1–11, https://doi.org/10.1016/j.enggeo.2016.11.025, 2017. a
Zimmermann, F., McArdell, B. W., Rickli, C., and Scheidl, C.: 2D Runout Modelling of Hillslope Debris Flows, Based on Well-Documented Events in Switzerland, Geosciences, 10, 70, https://doi.org/10.3390/geosciences10020070, 2020. a
Zweifel, L., Samarin, M., Meusburger, K., and Alewell, C.: Investigating causal factors of shallow landslides in grassland regions of Switzerland, Nat. Hazards Earth Syst. Sci., 21, 3421–3437, https://doi.org/10.5194/nhess-21-3421-2021, 2021. a
Short summary
We developed a machine-learning-based approach to predict the potential thickness of shallow landslides to generate improved inputs for slope stability models. We selected 21 explanatory variables, including metrics on terrain, geomorphology, vegetation height, and lithology, and used data from two Swiss field inventories to calibrate and test the models. The best-performing machine learning model consistently reduced the mean average error by at least 20 % compared to previous models.
We developed a machine-learning-based approach to predict the potential thickness of shallow...
Altmetrics
Final-revised paper
Preprint