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Abstract. Landslide thickness is a key variable in various
types of landslide susceptibility models. In this study, we de-
veloped a model providing improved predictions of poten-
tial shallow-landslide thickness for Switzerland. We tested
three machine learning (ML) models based on random forest
(RF) models, generalised additive models (GAMs), and lin-
ear regression models (LMs). Next, we compared the results
to three simple models that link soil thickness to slope gradi-
ent (Simple-S/linear interpolation and SFM/log-normal dis-
tribution) and elevation (Simple-Z/linear interpolation). The
models were calibrated using data from two field inventories
in Switzerland (HMDB with 709 records and KtBE with 515
records). We explored 39 different covariates, including met-
rics on terrain, geomorphology, vegetation, and lithology, at
three different cell sizes. To train the ML models, 21 vari-
ables were chosen based on the variable importance derived
from RF models and expert judgement. Our results show that
the ML models consistently outperformed the simple models
by reducing the mean absolute error by at least 20 %. The
RF models produced a mean absolute error of 0.25 m for the
HMDB and 0.20 m for the KtBE data. Models based on ML
substantially improve the prediction of landslide thickness,
offering refined input for enhancing the performance of slope
stability simulations.

1 Introduction

Rainfall-induced spontaneous landslides pose serious threats
to infrastructure and inhabited areas worldwide (Froude and
Petley, 2018; Emberson et al., 2020). In Switzerland, land-

slides regularly cause extensive infrastructure damage and
closures, evacuations, and even fatalities. For instance, 74
people died as a result of 40 different landslide events
between 1946 and 2015 (Badoux et al., 2016). In Au-
gust 2005, shallow landslides and the resulting hillslope
debris flows caused damage amounting to USD 167 mil-
lion across Switzerland within 48 h (Bezzola and Hegg,
2007). Approximately USD 17 million is spent each year on
landslide protective measures in Switzerland (Dorren et al.,
2009). To mitigate this risk, regional landslide hazard map-
ping and modelling provide an important basis for indicat-
ing potential hazard areas (Dahl et al., 2010; Kaur et al.,
2019; Shano et al., 2020; Di Napoli et al., 2021). In Switzer-
land, national-scale shallow-landslide modelling was carried
out within the SilvaProtect-CH project (Dorren and Schwarz,
2016). Results from this project have provided an important
basis for, among other things, the delimitation of landslide
protective forests across the country and preliminary risk
analyses for national roads (Arnold and Dorren, 2015) and
railways.

1.1 Background on landslide failure thickness

In general, landslides can be defined as the movement of a
rock or soil mass along a slope (Varnes, 1978; Hungr et al.,
2014). The term shallow landslides typically refers to trans-
lational sliding movements of soil material (earth and/or de-
bris) from the upper soil layers, characterised by a well-
defined sliding surface (Cruden and Varnes, 1996; Hungr
et al., 2014). Often, shallow landslides result in hillslope de-
bris flows, which can be very destructive because of their
velocity and resulting impact pressure (Zimmermann et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.



468 C. Schaller et al.: Predicting the thickness of shallow landslides in Switzerland

Figure 1. Schematic representation of a shallow landslide with its
failure, transport, and deposit area, including important definitions
used in this study. Variations in shading reflect differences in soil
characteristics.

2020). Landslides are usually classified as shallow landslides
if the thickness of the instable mass does not exceed 2 m,
which is also used as a definition in Switzerland (Lateltin
et al., 2005). However, in some cases, the failure plane lies
within the top 3 m (Sidle and Ochiai, 2013; Rickli et al.,
2019; Li and Mo, 2019). With a median release area of
around 200 m2 and an average thickness of 0.5 to 1 m, shal-
low landslides generally fall into the category of small (100–
103 m3) landslides, as proposed by McColl and Cook (2024).
Occasionally, they can fall into the category of very small
(10−3–100 m3) or medium (103–106 m3) landslides. In this
study, we define landslide thickness as the average thickness
of the instable mass measured perpendicular to the original
slope surface down to the failure plane (TL in Fig. 1).

The basic disposition for shallow landslides is determined
by the slope gradient, the slope morphology, and the geotech-
nical properties of the soil, which have a strong link to the
underlying geology (Hungr et al., 2014; Watakabe and Mat-
sushi, 2019; Chinkulkijniwat et al., 2019). The definition of
what constitutes soil varies between disciplines. In the con-
text of landslides, soil is primarily viewed from an engineer-
ing perspective, which considers soil to be identical to the
regolith cover (i.e. the entire unconsolidated material above
the bedrock) (Huggett, 2023). Most landslides occur in wet,
partially saturated soils and are triggered by water input due
to e.g. rainfall or seismic activity (Leonarduzzi et al., 2017;
Schuster and Wieczorek, 2018). An increasing water content
in the soil induces a reduction in soil shear strength, leading
to the failure of soil material within a shear band. This is usu-
ally situated at the interface of below-ground discontinuities,
such as between regolith and bedrock (Catani et al., 2010;
Zhang et al., 2017; Xiao et al., 2023) or between layers with

different soil characteristics (Li et al., 2013; Ali et al., 2014;
Ran et al., 2018; Chinkulkijniwat et al., 2019). This boundary
defines the failure plane of shallow landslides and is as such
implemented in physically based models (Ran et al., 2018).
The hydrological properties of the soil and the local hydro-
logical conditions influence the occurrence and depth of the
failure plane of shallow landslides. Examples are the rainfall
characteristics and the runoff disposition of the upslope area,
as well as the groundwater table and the pore-water pressure
(Caine, 1980; Iverson, 2000; Guzzetti et al., 2008b; Li et al.,
2013; Chinkulkijniwat et al., 2019).

In many studies, soil thickness is used as a proxy for
landslide thickness (e.g. Montgomery and Dietrich, 1994;
Pack et al., 1998; Iida, 1999; Baum et al., 2002; D’Odorico
and Fagherazzi, 2003; Segoni et al., 2012; Ho et al., 2012;
Merghadi et al., 2020). When describing or modelling land-
slides, care should be taken to define the thickness unambigu-
ously. Sometimes the terms soil thickness and depth are used
interchangeably. However, in most studies, depth refers to a
measurement in the vertical direction, while thickness refers
to a measurement perpendicular to the surface of the slopes
surrounding the release area (e.g. Meisina and Scarabelli,
2007; Catani et al., 2010; Jia et al., 2012; Ho et al., 2012;
Lanni et al., 2012; Patton et al., 2018). Some studies use a
reverse definition of the two terms, using the term thickness
for vertical measurements and the term depth for perpendicu-
lar measurements (e.g. Cruden and Varnes, 1996; Pack et al.,
1998). Similarly, the depth of the failure plane may be de-
fined in the vertical direction (Watakabe and Matsushi, 2019;
Meier et al., 2020; Chang et al., 2021) or perpendicular to
the slope (Iida, 1999; Schwarz et al., 2010; Li et al., 2013).
The perpendicular direction seems to be favoured if the thick-
ness is used for calculating the landslide volume (WSL and
BAFU, 2018; Jaboyedoff et al., 2020; Hählen, 2023). In this
study, we use the term depth when measuring in the vertical
direction (depth at scarp DF and soil depth DS in Fig. 1) and
thickness when measuring perpendicular to the slope (TL in
Fig. 1).

1.2 Models for estimating soil thickness for landslide
modelling

Landslide thickness (or soil thickness) is a key variable in
various types of models for simulating landslide susceptibil-
ity, dating back to the first pioneering equations (e.g. Skemp-
ton and deLory, 1957). The references used for calibrating
these models are usually based on field measurements (e.g.
by digging soil pits Catani et al., 2010, or by drilling, Xiao
et al., 2023) or data from landslide inventories (van Zadel-
hoff et al., 2022). However, dense field measurements are
only available for small extents. Even then, the resulting soil
thickness maps have high uncertainties due to the large het-
erogeneity in soil variables (Cohen et al., 2009; Jia et al.,
2012; Lanni et al., 2012). To deal with the uncertainties
in landslide thickness, different modelling approaches have
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been adopted. These models can be grouped into three cat-
egories: conceptual models, physically based models, and
empirical models (data-driven models, e.g. machine learn-
ing (ML)) (Murgia et al., 2022). Conceptual models aim
to provide a simplified methodology for estimating changes
in slope stability (Murgia et al., 2022), e.g. using cellular
automaton models (Piegari et al., 2006). Physically based
models can be further divided into deterministic (e.g. Mont-
gomery and Dietrich, 1994; Baum et al., 2002) and proba-
bilistic models (e.g. Pack et al., 1998; Horton et al., 2013; van
Zadelhoff et al., 2022). Empirical models predict landslide
occurrence based on factors that can be directly or indirectly
linked to slope instability (Reichenbach et al., 2018). Such
models are gaining interest and have become more common-
place in predicting inputs for landslide models due to im-
proved data availability as well as improved data quality and
increasing research on ML and other computational tech-
niques (Hengl et al., 2017; Merghadi et al., 2020; Wadoux
et al., 2020; Xiao et al., 2023).

Table 1 gives an overview of models found in the literature
for predicting soil thickness, with a focus on those applied
in shallow-landslide simulations. The explanatory variables
used in these models have informed the choice of covari-
ates for this study. Furthermore, they provide good exam-
ples of the model types used to predict soil depth. Most of
these models are either deterministic (e.g. Montgomery and
Dietrich, 1994; Baum et al., 2002) or probabilistic (e.g. van
Zadelhoff et al., 2022).

The accuracy of the potential landslide thickness is of
paramount importance for the performance of slope stability
models (cf. Iida, 1999; Larsen et al., 2010; Milledge et al.,
2014; van Zadelhoff et al., 2022). Consequently, improving
the estimation of landslide thickness is key for enhancing the
performance of slope stability models. With the overall aim
of developing a model that provides a more accurate predic-
tion of the potential shallow-landslide thickness compared to
pre-existing simple models, the four main objectives of this
study are the following:

1. to present descriptive statistics on data regarding the
thickness of shallow landslides and additional poten-
tially explanatory data from two field inventories in
Switzerland;

2. to develop and test new models for predicting the po-
tential thickness of shallow landslides in Switzerland
based on ML (random forest (RF) models, generalised
additive models (GAMs), and linear regression models
(LMs)) using input variables including terrain metrics
and vegetation;

3. to evaluate the performance of the developed models us-
ing data from the two shallow-landslide inventories;

4. to compare the performance of the developed mod-
els with three previously published models that predict

shallow-landslide thickness based on altitude, slope,
and cumulative slope distribution.

2 Study area

The study area is distributed across Switzerland (Fig. 2),
which has a total area of 41 291 km2 (FSO, 2021). The
Swiss landscape can roughly be divided into the Alps, cov-
ering around 58 % of the country; the Central Plateau, cov-
ering 31 %; and the Jura, covering 11 % (FDFA, 2023). The
Jura mountains in the northwest are mainly characterised by
limestones and marls (Pfiffner, 2021; Zappone and Kissling,
2021). The Central Plateau, extending from Geneva towards
the northeast, is a molasse sedimentation basin covered by
thick Quaternary deposits resulting from the erosion of the
Alpine chain (Reynard et al., 2021). With the Helvetic, Pen-
ninic, and Austroalpine nappes, the Alps include three ma-
jor nappe systems. Parts of these nappes can be referred
to as pre-Alps (see Fig. 2), which include lower mountain
ranges and in the most northern parts even foothills. The
alpine nappe piles have led to the amalgamation of very
different rock types. These include continental and oceanic
basement rocks (granites, gneisses, and schists); shallow-
marine carbonates (limestones and marls); deep-marine clas-
tics (sandstones and conglomerates), which locally resulted
from turbidites known as flysch deposits; and radiolarian
chert (Pfiffner, 2021). Switzerland is characterised by a tem-
perate semi-continental climate that is strongly influenced
by its altitude and its complex topography (Fallot, 2021).
The mean annual air temperature varies with the altitude,
showing 8.5–11.9 °C at 500 m above sea level, 6.2–9.6 °C
at 1000 m, and 3.9–7.3 °C at 1500 m over the period from
1981–2010 (Fallot, 2021). The mean annual rainfall in-
creases with altitude, with values from 900–1300 mm for the
Central Plateau, and gradually increases from the southern
piedmont of the Jura mountains towards the northern side of
the Alps where these amounts exceed 2000 mm and reach up
to 3000 mm yr−1 or more on the wettest summits in the Cen-
tral Alps.

3 Materials

3.1 Landslide inventories

This study used reference datasets compiled from two differ-
ent Swiss landslide inventories. The first dataset (hereafter
HMDB), created by Rickli et al. (2016, 2019), is based on a
comprehensive database of shallow landslides and hillslope
debris flows (WSL, 2024) that occurred between 1997 and
2021. Most of the HMDB records were collected after heavy
rainfall events within defined perimeters. The data in this in-
ventory are based on field surveys performed with identical
protocols that include relevant variables such as the dimen-
sions of the landslides, site characteristics, and runout char-
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Table 1. List with a summary of soil thickness models found in the literature.

Model used Explanatory variables Relationship with soil depth Reference

Constant soil thickness
across the study area

Mean soil thickness, possibly
combined with standard deviation

Constant value Montgomery and Dietrich (1994);
Baum et al. (2002); Ho et al. (2012)

Elevation Elevation Linear scaling Saulnier et al. (1997); Catani et al.
(2010); Segoni et al. (2012)

Slope gradient linear Slope gradient Linear scaling Saulnier et al. (1997); Catani et al.
(2010); Segoni et al. (2012)

Linear relationship statistically fitted Lanni et al. (2012)

Slope gradient
exponential

Slope gradient Exponential law Segoni et al. (2012)

Slope gradient
cumulative

Thickness measurements and slope
values from a landslide inventory

Cumulative normal distribution of
slope values

van Zadelhoff et al. (2022)

Hillslope curvature Curvature Linear relationship; varies across
different landscapes as a function of
the standard deviation in catchment
curvatures

Patton et al. (2018)

Topographic wetness
index (TWI)

TWI Linear relationship Ho et al. (2012)

Linear model with
terrain indices

Slope gradient, plan curvature, profile
curvature, specific catchment area, and
relative position on the hillslope

Linear relationship established by
multi-linear regression

Jia et al. (2012)

Process-based models Time since the last denuding by
landslides

Linked to soil development over time
by approximating the development
using a logarithmic function

Iida (1999)

Bulk density of the rock, elevation, and
slope

Mass balance between soil production
from underlying bedrock and the
divergence of diffusive soil transport
by solving the evolving soil depth
using a finite-difference model under
varying initial conditions

Dietrich et al. (1995)

Geomorphologically
indexed soil thickness
(GIST)

Slope gradient, horizontal and vertical
slope curvature, and relative position
within the hillslope profile

The gradient and curvature are
connected to the kinematic stability of
the regolith cover, while the distance
from the hill crest accounts for the
position within the soil toposequence

Catani et al. (2010); Segoni et al.
(2012); Xiao et al. (2023)

sGIST Slope gradient, horizontal and vertical
slope curvature, and relative position
within the hillslope profile

GIST without geomorphological
indexing

Catani et al. (2010); Segoni et al.
(2012)

GIST-RF GIST inputs with altitude, plan
curvature, and terrain roughness index
(TRI) as covariates

Random forest regression Xiao et al. (2023)

GIST-MCS GIST method additionally
incorporating Latin hypercube
sampling-based Monte Carlo
simulations to model uncertainties in
determining the influence of the slope
factor

GIST and Monte Carlo simulations Gupta et al. (2024)

Machine learning
ensemble

158 remote-sensing-based soil
covariates (primarily derived from
MODIS land products, SRTM DEM
derivatives, climatic images, and global
landform and lithology maps)

Ensemble including random forests
and gradient boosting and/or
multinomial logistic regression

Hengl et al. (2017)
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acteristics (Rickli and Graf, 2009; WSL and BAFU, 2018).
If values could not be measured in the field (e.g. because of
terrain changes since the event), the database may contain
estimated values that are marked accordingly (Rickli et al.,
2016). The location of the landslides is recorded by geo-
graphical x and y coordinates of the failure point in the Swiss
coordinate system LV95 measured at the upper edge of the
scarp. Of the 760 entries in the inventory, 75 comprised mea-
sured thickness values and 199 comprised estimated thick-
ness values in the field. These were recorded perpendicular to
the original slope surface (TL in Fig. 1). We were able to esti-
mate the thickness by dividing the recorded landslide volume
by the recorded failure area for 435 records. This approach
was chosen based on an exchange with the author of the
database (Christian Rickli, personal communication, 2023),
as the mean landslide thickness in the HMDB is mainly used
for the estimation of the failure volume (Rickli et al., 2016).
In the end, we had 711 records with thickness values. Since
we removed two records with an estimated value larger than
2 m from the dataset, the resulting dataset comprised 709
records.

The second dataset (hereafter KtBE) is based on an inven-
tory created by the office for natural hazards of the canton
of Bern (Hählen, 2023) and comprises 519 landslides, 6 of
which are also recorded in the HMDB inventory. The land-
slides in the KtBE inventory were recorded between 2005
and 2021. For the inventory, the failure zones and runout
envelopes of shallow landslides were digitised as polygons
from orthoimages. The mean thickness of the landslides is
derived from expert estimates based on the orthoimages. The
author estimated that there is a possible error of between
25 % and 50 % for the thickness (Hählen, 2023). Since only
events for which the entire process area could reliably be
reconstructed from the orthoimages were recorded, many
events in forests or intensively cultivated areas were not in-
cluded in the inventory. This limits the possibility of mak-
ing comparisons between landslides within and outside of
forests. Four records were filtered out from the dataset be-
cause of a missing thickness value or a thickness value larger
than 2 m, leaving 515 records in the final dataset.

The distribution of the landslide locations across Switzer-
land (Fig. 2) and the number of landslides per canton (Ta-
ble 2) are uneven. The fact that the datasets only contain
records for 9 of the 26 cantons in Switzerland is caused by
not only uneven occurrence of landslides but also differences
in the availability of recorded data. While the recorded land-
slides are distributed across large parts of Switzerland, there
is a clear concentration on the northern parts of the Alps and
pre-Alps. Locally clustered occurrences were mostly caused
by specific extreme precipitation events in combination with
unfavourable geological substrata such as flysch or molasse
(Reynard et al., 2021; Steger et al., 2022).

3.2 Model input data

The following datasets were used as input for the models in
this study:

– the light detection and ranging (lidar)-based
swissALTI3D digital elevation model (DEM) with
a cell size of 0.5 m (Swisstopo, 2023a);

– EU-DEM v1.1 with a cell size of 25 m (EEA, 2016);

– a lidar-based vegetation height model (VHM) with a
cell size of 1 m (cf. Schaller et al., 2023);

– a National Forest Inventory (NFI) forest type raster
(2018) with a cell size of 10 m, indicating the propor-
tion of coniferous trees (Waser and Ginzler, 2018);

– modelled data on extreme point precipitation (Frei and
Fukutome, 2022) with a cell size of 1 km for different
return periods (2, 10, 30, 50, 100, 200, and 300 years);

– rock densities across Switzerland in the form of a
vector-based dataset (Swisstopo, 2020);

– soil property maps with a cell size of 30 m, providing
predictions for clay, sand, and silt contents at 0–30, 30–
60, and 60–120 cm (Stumpf et al., 2024);

– the ground cover layer of swissTLM3D (Swisstopo,
2023b);

– topographic catchment areas of Swiss water bodies
(BAFU, 2019).

Section 4 explains why these datasets and the derived covari-
ates were included. Note that we used a preliminary version
of the soil property maps, kindly provided by the Swiss Com-
petence Center for Soils (CCSol, 2024).

4 Methods

In the first part, we analysed the distributions of the thickness
and slope gradients of the landslides in the HMDB and KtBE
datasets. We used the R environment for statistical comput-
ing (R Core Team, 2022) to calculate the descriptive statis-
tics. These included the minimum, maximum, mean, stan-
dard deviation, median, and mean absolute deviation (MAD)
for the landslide thickness and slope gradient recorded in the
inventories as well as the elevation and slope gradient from
the covariates.

The subsequent modelling part is divided into three stages
(Fig. 3). In stage 1, intermediate DEM rasters for the sub-
sequent stage were prepared. During stage 2, the data used
for the final modelling and analysis stage were prepared. The
covariates, such as terrain variables or geology, were derived
based on the DEM and other input data. Following this, the
covariates were added to the reference data by sampling the
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.

Figure 2. Map of the recorded shallow-landslide locations across Switzerland for the HMDB (orange triangles) and KtBE (green diamonds)
datasets. The Jura, Central Plateau, pre-Alps, and Alps are indicated with different shades of grey. Background: swissBOUNDARIES3D
(Swisstopo, 2024b), production regions NFI (BAFU, 2020), and light base map relief (Swisstopo, 2024c)

Table 2. Number of recorded landslides per canton in the HMDB and KtBE shallow-landslide datasets.

Canton Abbreviation Area HMDB KtBE
in km2

Appenzell Ausserrhoden AR 244 103 0
Appenzell Innerrhoden AI 172 2 0
Bern BE 5959 170 483
Fribourg FR 1671 0 1
Grisons GR 7105 106 0
Lucerne LU 1494 86 33
Obwalden OW 491 240 0
Vaud VD 3212 1 0
Zurich ZH 1729 1 0

Total 22 077 709 517

generated rasters at the landslide failure points. The analysis
and modelling based on the previously prepared dataset were
performed in stage 3, including the training of three types of
machine learning (ML) models and the application of three
simple model types.

All three stages were implemented in R. The calculation of
some variables was implemented in R using the sf (Pebesma
and Bivand, 2023) and terra (Hijmans, 2023) packages. How-
ever, the processing of most variables was implemented us-
ing System for Automated Geoscientific Analyses (SAGA)
GIS (Conrad et al., 2015) via the RSAGA package (Bren-
ning, 2008) or using Geospatial Data Abstraction Library
(GDAL) tools (GDAL/OGR contributors, 2021) from R. The

code for the entire process can be found in the repository ac-
companying this study (Schaller, 2025).

4.1 DEM preparation

The covariates for the ML models were calculated as rasters
with a cell size of 5, 10, and 25 m (outputs O1.1, O1.2, and
O1.3 in Fig. 3). The 0.5 m cell size swissALTI3D DEM was
used as input for the terrain-based covariates. The original
DEM was first aggregated to a 5 m cell size using gdalwarp
with the average function (step S1.1 in Fig. 3). The areas
outside the Swiss borders are not covered by swissALT3D.
Covariates calculated over a window would lead to incorrect
values near the border. Therefore, the areas outside the border
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Figure 3. Flowchart of the methodology applied in this study. The
three separate grey boxes delineate the (1) DEM preparation, (2) co-
variate preparation, and (3) modelling and analysis stages.

were filled using EU-DEM. For this purpose, the original ex-
tent of the 5 m DEM was first buffered by 4 km to accommo-
date the largest radius used in the covariate calculations (step
S1.2 in Fig. 3). The areas with no data within that buffered
extent were then filled using values from EU-DEM resam-
pled to 5 m using gdalwarp with a bilinear function (step S1.3
in Fig. 3). This filled raster was the primary input for the ter-
rain analysis. The additional DEM rasters with 10 and 25 m
cell sizes were derived by aggregating the filled 5 m DEM us-
ing gdalwarp with the average function (steps S1.4 and S1.5
in Fig. 3). Although the resampling of EU-DEM introduces
a certain error in the elevation values outside the border, we
regard this error as an acceptable trade-off for the good data
availability and the simplified data preparation process.

4.2 Covariate preparation

4.2.1 Calculating covariate rasters

As can be seen in the overview of the processed variables
and their corresponding cell sizes (Table 3), some covariates
were calculated for all three cell sizes, while others were
only calculated for specific cell sizes. Vector-based input
data were rasterised, including the generation of separate 0/1
encoded rasters for categorical variables. The terrain-based
covariates calculated from the DEM included metrics com-
monly used in terrain analysis, hydrology, and geomorphol-
ogy that were also used in other studies aiming to predict
failure or soil depth. To represent the influence of the for-
est, the VHM was used to calculate statistics on vegetation
height, while the NFI forest type raster was used as an indi-
cator of species composition, which can influence the stabil-
ising influence of forests. The rock densities across Switzer-
land (Swisstopo, 2020) served to represent the underlying
lithology. The density of rocks varies based on their chemical
composition and the structure of their minerals (from crys-
talline to amorphous) (Zappone and Kissling, 2021). Each
entry in the dataset is assigned to 1 of the 21 defined litho-
logical groups and shows the expected range in which the
mean bulk density of the local lithology varies (Swisstopo,
2020). For an overview of the lithology groups and densities,
refer to the visualisations in Zappone and Kissling (2021)
and the documentation included in Swisstopo (2020) or its
visualisation in the Swisstopo web map portal (Swisstopo,
2024a). Similarly, the soil property maps were used to test
their influence on landslide depth. The modelled data on ex-
treme point precipitation (Frei and Fukutome, 2022) were
used as a proxy variable assuming that locations with poten-
tially extreme rainfall amounts would experience increased
erosion and landsliding activity, which would lead to reduced
soil cover. The swissTLM3D ground cover layer (Swisstopo,
2023b) was tested as a categorical covariate and was used to
identify areas with rock cover.

To optimise the calculation of covariates for the entire area
of Switzerland, the processing of the covariates was paral-
lelised (step S2.1 in Fig. 3). For this purpose, Switzerland
was divided into tiles based on aggregated catchments. The
tiles based on catchments ensure that the values calculated
for hydrological covariates are correct within the catchment
area. We used the pre-defined aggregation level of the topo-
graphic watershed dataset (BAFU, 2019), which defines wa-
tersheds with a size of approx. 150 km2. These correspond
to a tile size with acceptable processing times while keep-
ing the number of tiles at a manageable level. For the ac-
tual processing, the extents of the catchments were buffered
by 500 m (5 and 10 m rasters) or 4 km (25 m rasters) to en-
sure data availability for covariates calculated with window
sizes that go beyond the catchment border. Only the covari-
ate values within the catchment borders were used for fur-
ther processing since the values outside the border may be
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Table 3. Variables explored as covariates for the machine learning models along with their input data and the tools used for their processing.

Cell size

Covariate name 5 m 10 m 25 m Tool used Input data

Elevation above sea level x1 x x swissALTI3D (Swisstopo, 2023a), EU-DEM
(EEA, 2016)

Slope in degrees x x1 x SAGA “Slope, Aspect, Curvature”

Aspect in degrees x x x

General curvature x x1 x

Profile curvature x x x1

Plan curvature x x x

Aspect northness x x1 x R with terra

Aspect eastness x x x

Elevation percentile with 50 and 200 m
radiuses

x

Topographic position indexes (TPIs)
with 15 m radius

x

TPI with 50 and 200 m radiuses x

TPI with radiuses of 500 m, 1 km,
2 km, and 4 km

x1

Toposcale x x x

Catchment area x x x1 SAGA “SAGA Wetness Index”

Catchment slope x x x1

Modified catchment area x x x

Topographic wetness index x x x

Topographic wetness index SAGA x1 x x SAGA “Topographic Wetness Index” (TWI)

Flow accumulation (top-down)
contributing area

x x x SAGA “Flow Accumulation (Top-Down)”

Negative openness with 50 and 200 m
radiuses

x1 SAGA “Topographic Openness”

Multiresolution index of valley bottom
flatness (MRVBF)

x x1 x SAGA “Multiresolution Index of Valley Bottom Flatness” (MRVBF)

Multiresolution index of ridge top
flatness (MRRTF)

x x x1

Convergence index x x x SAGA “Convergence Index”

Upslope curvature x x x SAGA “Upslope and Downslope Curvature”

Downslope curvature x x x

Morphometric protection index x x x SAGA “Morphometric Protection Index”

Vector ruggedness measure (VRM) x x x1 SAGA “Vector Ruggedness Measure” (VRM)

Terrain ruggedness index (TRI) x1 x1 x SAGA “Terrain Ruggedness Index” (TRI)

Slope height x x x1 SAGA “Relative Heights and Slope Positions”

Valley depth x x x1

Normalised height x x x

Standardised height x x x1

Mid-slope position x x x

Geomorphon with 50 and 200 m
radiuses

x SAGA “Geomorphons”

Ground cover x gdalrasterize swissTLM3D (Swisstopo, 2023b)

Extreme point precipitation values for
60 min duration with 10-year return
period

x gdalwarp Frei and Fukutome (2022)

Maximum of vegetation height within
cell based on 1 m cell size VHM

x1 x x Schaller et al. (2023)

Percent coniferous trees x Waser and Ginzler (2018)

Mean bulk density of the underlying
bedrock2

x1 gdalrasterize Zappone and Kissling (2021)

Clay, sand, and silt content at three
depth levels (0–30, 30–60,
60–120 cm)3

x gdalwarp Stumpf et al. (2024)

1Variables and cell size used in the final ML models. 2Sampled directly from the original vector data. 3Sampled directly on the original 30 m cell size raster.
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incorrect. Note that variables connected to hydrology were
not calculated based on the original DEM raster but a sink-
filled version of the DEM generated using the SAGA GIS
tool “Fill Sinks” based on the method by Planchon and Dar-
boux (2002).

4.2.2 Sampling covariate values

After calculating the covariate rasters, we prepared the
dataset for the subsequent modelling and analysis stage. This
was achieved by merging the event data from the inventories
with the covariate values by sampling the cell values at the
failure point of the landslides (step S2.3 in Fig. 3). In the case
of the HMDB dataset, the reported coordinates of the failure
point were used directly. For the KtBE dataset, only the event
envelopes were available as input. Therefore, the failure point
was approximated based on the envelope polygon. First, the
elevation for the vertices was determined by sampling the
5 m cell size DEM. Following this, the x and y coordinates
of the approximate failure point were calculated as the aver-
age for the corresponding coordinates of the vertices with an
elevation equal to or higher than the 95th percentile of the
elevation of all vertices of the envelope polygon.

The inventories only contained entries for locations with
actual landslides and therefore a sufficient soil thickness. To
better reflect the fact that landslides cannot occur in areas
with bare rock, additional points with a landslide thickness
of 0 m in rocky areas were added to the analysis dataset
(step S2.2 in Fig. 3). The points were randomly generated
within the areas marked as rock or loose rock in the ground
cover layer of the swissTLM3D landscape model (Swis-
stopo, 2023b) using the spatSample() function of the terra
package in R (Hijmans, 2023). The points were generated
separately for each dataset and only within the rock signa-
tures in the catchments containing slide events. After gener-
ation, the points were manually checked for plausibility us-
ing the SWISSIMAGE orthoimages (Swisstopo, 2024d). The
number of generated points actually included in the datasets
is proportional to the percentage of the catchments cov-
ered by the rock signature, namely 34 points for the HMDB
dataset (4.1 % rock cover) and 53 points (9.7 % rock cover)
for the KtBE dataset.

4.3 Modelling and analysis

4.3.1 Models and covariate selection

We tested three different types of ML models for predict-
ing the potential failure thickness of shallow landslides. The
R Classification And REgression Training (caret) package
(Kuhn, 2008) was used to fit these models. Due to the promis-
ing performance of random forests (RFs) in other studies,
our development efforts were mainly focused on RF mod-
els (Breiman, 2001), implemented using the ranger package
(Wright and Ziegler, 2017). In addition, we tested linear re-

gression models (LMs) using the built-in lm function of R
and generalised additive models (GAMs) using the mgcv
package (Wood, 2011), which allowed us to model non-
linear relationships. We chose these model types to evaluate
whether they could achieve performance similar to RF mod-
els while maintaining explainability (James et al., 2021).

All three model types were trained using the same in-
put data and validation procedures. The covariates included
in the models were chosen based on a combination of ex-
ploratory analysis, inputs from the literature (especially the
works listed in Table 1), and expert knowledge of the au-
thors (step S3.1 in Fig. 3). The exploratory analysis included
test-fitting RF models with both the HMDB and the KtBE
datasets to determine variable importance and attempts at
automatic variable selection using recursive feature elimina-
tion. The inputs from the literature and the expert knowledge
of the authors influenced the overall selection of the tested
covariates. From the pool of candidates, we aimed to select
covariates with high importance, whose combination resulted
in good model performance, while keeping the number of co-
variates and, therefore, model complexity low. At the same
time, we tried to balance the inputs from the test fittings with
the expert-based input, leading to the following choices of
covariates:

– aspect_nness_10, northness of the aspect calculated as
cosine(aspect) at a 10 m cell size;

– curvature_10 and curvature_profile_25, general curva-
ture at a 10 m cell size and profile curvature at a 25 m
cell size, as calculated by the SAGA module Slope, As-
pect, Curvature;

– h_5, altitude above sea level sampled at a 5 m cell size;

– mrrtf_25, multiresolution index of the ridge top flatness
at a 25 m cell size;

– mrvbf_10, multiresolution index of valley bottom flat-
ness at a 10 m cell size;

– openness_neg_200_5, negative openness calculated
with a radius of 200 m at a 5 m cell size;

– rhob_m, mean bulk density of the local lithology;

– slope_10, slope gradient in degrees at a 10 m cell size;

– slope_height_25, standardised_height_25, and val-
ley_depth_25, slope height, standardised height, and
valley depth at a 25 m cell size calculated by the SAGA
module Relative Heights and Slope Positions (Böhner
and Selige, 2006);

– tpi_500m_25 and tpi_4km_25, topographic position in-
dexes 500 m and 4 km with a window size at a 25 m cell
size;
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– tri_r5_5 and tri_r5_10, terrain ruggedness index with a
radius of five cells for 5 and 10 m cell sizes;

– twi_5, catchment_area_25, and catchment_slope_25,
topographic wetness index, catchment area, and catch-
ment slope at 5 and 25 m cell sizes, as calculated by
the SAGA module SAGA Wetness Index (Böhner et al.,
2002; Böhner and Selige, 2006);

– vhm_max_5, maximum vegetation height at a 5 m cell
size;

– vrm_r5_25, vector ruggedness measure with a radius of
five cells at a 25 m cell size.

Additionally, three simple models for predicting soil depth
were applied as a comparison to the three ML models. The
first two models that we adapted were proposed by Saulnier
et al. (1997) and predict soil thickness, which is often used
as a proxy for landslide thickness. They use a predicted soil
depth based on either elevation (hereafter Simple-Z) or slope
gradient (hereafter Simple-S) by applying a linear interpola-
tion based on the minimum and maximum values in a set of
reference data. The third method used for comparison, pro-
posed by van Zadelhoff et al. (2022) (hereafter SFM), also
uses the slope gradient to predict soil depth. However, to ac-
count for the shallow soils on steep slopes, the method de-
rives the soil thickness from a log-normal distribution and
multiplies it by a correction factor, which is a function of the
slope gradient. For the Simple-Z model, the elevation sam-
pled at a 5 m cell size was used to train the model. For the
Simple-S and the SFM models, the slope sampled at a 10 m
cell size was used since it showed the best fit with the slopes
at the failure point recorded in the inventories.

4.3.2 Training and validation

Separate models were trained for the HMDB and KtBE
datasets, resulting in 12 models overall (step S3.2 in Fig. 3).
Both datasets were split into training data (80 %) and val-
idation data (20 %). All models were trained using 10-fold
cross-validation (James et al., 2021). The built-in caret func-
tions were used for the RF model, GAM, and LM. Cus-
tom cross-validation methods were written for the Simple-Z,
Simple-S, and SFM models. The structure of the RF model,
GAM, and LM was automatically determined by caret during
the training process.

The hyper-parameters of an RF model can significantly
influence model performance (Huang and Boutros, 2016;
Probst et al., 2019). Therefore, the training of the RF model
was combined with a hyper-parameter tuning leveraging a
modified version of the tune-grid functionality included in
the caret package. The function performs a grid search over a
defined set of parameters and values (see Table 4). Similarly,
the standard hyper-parameters for GAM and LM available in
caret were tuned. The final RF model showed clear differ-
ences in the chosen hyper-parameters. The HMDB-trained

model used the split rule “extratrees”, a minimum node size
of 2, 2 variables to split at, and 100 trees with a maximum
depth of 50. The KtBE-trained model used the split rule
“maxstat”, a minimum node size of 10, 8 variables to split at,
and 50 trees with a maximum depth of 150. For the GAMs of
both datasets, the REML method was used for smoothing pa-
rameter estimation. The KtBE-trained model was fitted with
possible penalisation of terms (i.e. each term can potentially
be removed from the model during fitting by adding an ad-
ditional penalty), while the HMDB-trained model was fitted
without. For the LM, the hyper-parameter tuning resulted in
a fit without intercept for the HMDB-trained model and a fit
with intercept for the KtBE-trained model.

Performance measures were calculated based on the appli-
cation of the trained models to the respective validation data
in order to assess model performance (step S3.3 in Fig. 3).
In addition, the models trained with the HMDB dataset were
cross-applied to the KtBE validation data and vice versa to
evaluate the transferability across datasets.

We used the MAE of predicted landslide thickness versus
landslide thickness from the inventory as the primary perfor-
mance assessment measure, which was calculated as

MAE=
1

nslides
6

nslides
i=1

∣∣∣yActuali − yPredictedi

∣∣∣, (1)

where MAE is the mean absolute error of the landslide failure
thickness, yActuali is the landslide failure thickness in metres
for landslide i according to the inventory, yPredictedi

is the
landslide failure thickness in metres for landslide i predicted
by the model, and nslides is the total number of landslides in
the reference data.

Additionally, we calculated the coefficient of determina-
tion R2 to judge how good the fit between the predicted and
actual data is:

R2
= cor(yActual,yPredicted)

2, (2)

where R2 is the coefficient of determination, yActual is the
landslide failure thicknesses in metres according to the inven-
tory, and yPredicted is the landslide failure thickness in metres
predicted by the model.

5 Results

5.1 Statistical properties of landslide inventories

The distributions of the landslide thickness in the HMDB and
KtBE datasets are very similar, with mean and median val-
ues that lie close to each other (see Table 5). The histogram
of the landslide thickness (Fig. 4a) shows that 90 % of the
landslides had a thickness smaller than or equal to 1 m in
the HMDB and KtBE datasets, and both show peaks at 0.5
and 1 m. This is especially the case for the KtBE dataset,
which also shows additional small peaks at 1.5 and 2 m land-
slide thickness. In both the HMDB and the KtBE datasets,
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Table 4. Parameters and values used for tuning the hyper-parameters for the random forest (RF) model, generalised additive model (GAM),
and linear regression model (LM).

Model Parameter Default value Values

RF number of variables considered to split
at each node

square root of the number of variables 2, 6, 8, 10, 22

splitting rule variance 'variance', 'extratrees',
'maxstat'

minimal node size to split at 5 (for regressions) 2, 6, 8, 10, 12

number of trees 500 50, 100, 200

maximal tree depth unlimited 50, 100, 150, 200, 250

GAM smoothing parameter estimation
method

generalised cross-validation (GCV)
with Mallows’ Cp for scale

'GCV.Cp', 'REML'

possible removal of terms through
penalisation

false TRUE, FALSE

LM whether to fit with or without intercept fit with intercept TRUE, FALSE

landslides mainly occurred at slope angles above 15°, with a
tendency for the number of occurrences to increase with the
slope angle and a sharp decrease above 40° (Fig. 4b). Half
of the landslides occurred above 36° in the HMDB dataset
and above 31° in the KtBE dataset. Almost no landslides oc-
curred on slopes with a slope angle higher than 55° or be-
low 15°. Visual verification of the landslides outside these
boundaries using orthoimages and maps confirmed that the
failures are plausible. The landslides above a 55° slope angle
(HMDB: n= 4) were all located in forested areas, and most
landslides below 15° (HMDB: n= 16, KtBE: n= 5) were
located at a transition between flat and steep terrain, such as
a terrace or a road. The comparison of the recorded slope
values with those from the covariates sampled at 5 m cell
size showed slightly lower mean and median values for the
HMDB dataset and very similar values for the KtBE dataset.
The elevation range where shallow landslides occurred, as
well as its distribution, is similar in both datasets (Table 5).
In the distribution of the landslide thickness over the slope
classes (Fig. 5), the KtBE dataset shows a slight tendency
towards decreasing landslide thicknesses and lower variance
with increasing slope steepness. The HMDB dataset shows a
similar, albeit even weaker, tendency towards such a decrease
and no discernible pattern in the variance.

5.2 Modelling results

Overall, the RF models performed best, with an MAE of
0.25 m for the HMDB dataset and 0.20 m for the KtBE
dataset (see Table 6). While the MAE values of the GAMs
and LMs are comparable for the respective datasets, their R2

values tend to be lower than those of the RF models. Further-
more, both the GAMs and the LMs show some outliers with
negative prediction values of up to −0.73 m. The Simple-Z

and Simple-S models clearly show worse performance, with
MAE values exceeding 1 m. The SFM model achieved MAE
values of 0.37 m for HMDB and 0.38 m for KtBE. When
comparing the performance between the datasets, the mod-
els for the KtBE dataset performed slightly better than the
HMDB-trained models. The results for the cross-application
are variable. In most cases, MAE values were comparable to
those of the model trained with the same dataset, with differ-
ences between 0 and 7 cm for the ML models and between
−7 and 9 cm for the simple models.

The data points of the measured vs. ML-predicted land-
slide thickness are located closer to the identity line when
compared to the three simple models (see Fig. 6). How-
ever, all three models showed a tendency to slightly over-
estimate lower landslide thicknesses and distinctly underes-
timate higher thicknesses. The Simple-S model tended to
overestimate the landslide thickness clearly across the en-
tire range. The Simple-Z model showed a similar tendency
but with a higher variance. The SFM model also exhibited a
high variance but with predictions closer to the identity line.
In particular, the added points with 0 m landslide thickness
showed high variances in all three of the simple models.

The distribution of the residuals per slope class (Fig. 7)
was similar for most slope classes where training and vali-
dation data stem from the same dataset. Some classes, like
e.g. the 40° class of the HMDB dataset, show higher vari-
ance. The simple models generally also had higher variances
than the ML models. Looking at the cross-application of the
models (Fig. A1 in Appendix A1), there were evidently more
outliers and higher variances across all slope classes. In par-
ticular, the 15° class of the HMDB-trained models applied to
the KtBE data consistently showed high variances.
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Table 5. Summary statistics including the total number of records (n); n within forests; and the minimum, median, median absolute devi-
ation (MAD), mean, standard deviation (SD), and maximum for important characteristics of shallow landslides derived from the landslide
inventories and from covariates derived from swissALTI3D (Swisstopo, 2023a). Note that lower sample sizes result from missing values in
the inventory.

Source Variable Dataset n (n in forest) Min Median MAD Mean SD Max

Inventory

Landslide thickness [m] HMDB 709 (319) 0.1 0.7 0.3 0.6 0.3 2.0
KtBE 515 (20) 0.2 0.6 0.1 0.5 0.3 2.0

Slope [°] HMDB 648 (295) 1.0 35.1 7.4 36.0 9.0 80.0
KtBE 515 (20) 8.3 31.0 5.3 31.1 5.8 52.5

Covariates

Elevation [m a.s.l.] HMDB 709 (319) 523 1214 346 1188 290 2257
KtBE 515 (20) 624 1334 406 1283 470 2288

Slope 5 m [°] HMDB 709 (319) 6.0 33.3 6.9 34.3 7.8 58.9
KtBE 515 (20) 8.2 31.3 6.1 31.8 6.6 48.3

Figure 4. Histograms showing the distribution of (a) the landslide thickness and (b) the mean slope values in the release areas recorded in
the HMDB (upper row) and KtBE (lower row) datasets.

The analysis of the variable importance of the ML mod-
els showed clear differences between the models. However,
the variable elevation, terrain roughness index at 10 m cell
size, mean density of the local lithology, negative openness,
and multiresolution valley bottom flatness are found more
often among the top-ranked ones (compare Fig. A2 in sup-
plementary materials). The hyper-parameter tuning resulted
in a reduction in the MAE of up to 2 cm for certain mod-
els. The chosen parameters were the same across most of the
datasets.

6 Discussion

6.1 Landslide inventories

The slope values recorded in the HMDB and KtBE landslide
inventories (cf. Fig. 4) largely match the ranges found in the
literature, with reported values from 5 to 35° (Guzzetti et al.,

2008a), 20 to 35° (Meier et al., 2020), 22 to 40° (Dahl et al.,
2010), and 19 to 50°, with predominant values from 25 to
45° (Rickli and Graf, 2009).

Larsen et al. (2010) compared data on landslide thickness
from several landslide inventories located across the globe,
some of which showed peaks around 0.5, 1, and 2 m, sim-
ilar to the ones observed in the HMDB and KtBE inven-
tories. Particularly in the KtBE dataset, the observed peaks
are a possible bias of the expert estimations. For the KtBE
dataset, the errors in the landslide thickness were estimated
to be 25 % to 50 % (Hählen, 2023). In general, the data qual-
ity of the inventory data is crucial for its suitability for ML.
A contrasting example is the Swiss national register of nat-
ural hazard events (“StorMe”), which is maintained by the
Federal Office for the Environment (FOEN) and the cantons
(Burren and Eyer, 2000). The distribution of the landslide
depth of a selection of 2988 shallow landslides recorded in
StorMe (Fig. 8) shows similar peaks but in a much more pro-
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Figure 5. Box plots showing the distribution of the landslide thickness over slope classes based on (a) the reported slope for the different
datasets and (b) the slope values sampled at 10 m cell size. The red dots represent the mean value, while the blue numbers show the number
of records per slope class. Individual cross-shaped points are shown for classes with fewer than five data points.

nounced manner. We also attribute these peaks and the gaps
in between to rough estimates by many different experts per-
forming the recording of event characteristics in the field. We
tested the StorMe data for possible use in this study. How-
ever, the anomalies in the landslide thickness distribution to-
gether with other data quality issues, like missing or unrealis-
tic values, led to the exclusion of the dataset. This illustrates
that initiatives like the HMDB and the acquisition of more
high-quality data play a key role in obtaining the input data
necessary for future ML-based modelling.

6.2 Model performance

Among the three ML models tested, our study focused on
RF because of its potential. The LMs and GAMs served as
reference models with different properties. RF models can
flexibly capture non-linear relationships and interactions be-
tween variables and covariates (Breiman, 2001; James et al.,
2021). However, their complex model structure and ensem-
ble nature hinder model explainability and result interpreta-
tion (Breiman, 2001; James et al., 2021). LMs have the ad-
vantage of a transparent model structure that is simple to im-
plement but cannot capture non-linear relationships (James
et al., 2021). GAMs are an extension of LMs that allow us
to model non-linear relationships by fitting smoothing func-
tions to the explanatory variables (Hastie and Tibshirani,
1990; James et al., 2021). However, they are more suscepti-

ble to overfitting (Wood, 2011). In addition, interactions must
be explicitly specified for LMs and GAMs, since they are not
captured automatically (James et al., 2021). The results from
the model tests reflect some of the different model proper-
ties and, overall, confirmed the potential of the ML models
for predicting the potential failure thickness of shallow land-
slides.

The ML models clearly outperformed the two simple mod-
els based on the elevation and slope gradient proposed by
Saulnier et al. (1997). However, it has to be noted that those
models were originally intended to be used in smaller areas
like single catchments with more uniform terrain, whereas
our application covers a much larger area in Switzerland
with more diverse terrain conditions. Although the SFM
model proposed by van Zadelhoff et al. (2022), calibrated
with the values from the inventories, produced better results,
the RF model still yielded MAE values that were 20 % to
44 % lower. While the ML models exhibited low errors, they
all tended to underestimate higher landslide thickness val-
ues. We attribute this to the low number of records with a
landslide thickness of more than 1 m in the datasets used
for model training. The cross-application of the ML models
showed that they are mostly transferable between the HMDB
and KtBE datasets. One limiting factor might be the spatial
and temporal hierarchy in the HMDB data resulting from the
fact that most of the data were recorded in perimeters af-
ter defined heavy rainfall events. However, tests showed no
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Figure 6. Scatter plots showing the measured vs. predicted landslide thickness differentiated by model type (rows) and dataset (columns):
(a) model trained and tested with the HMDB dataset, (b) model trained and tested with the KtBE dataset, (c) model trained with the HMDB
dataset and tested with the KtBE dataset, and (d) model trained with the KtBE dataset and tested with the HMDB dataset. The diagrams have
2D kernel density contours in the background and an identity line in red. Where present, the blue text denotes the number of outliers outside
the display range of the plots.
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Table 6. Performance of the trained models. Results are shown for the application of the respective dataset to the validation data and for the
cross-application to the other dataset. ntest denotes the number of records in the validation data. Predictionmin and Predictionmax correspond
to the minimum and maximum predicted values, while Errormin and Errormax correspond to the minimum and maximum errors. AEp90
denotes the 90th percentile of the absolute error.

Model type Training dataset Validation dataset ntest MAE R2 Predictionmin Predictionmax Errormin Errormax AEp90

Random forest HMDB HMDB 138 0.25 0.08 0.01 0.86 −0.58 1.43 0.54
Random forest BE BE 114 0.20 0.32 0.02 1.36 −0.86 1.34 0.39
Random forest BE HMDB 743 0.25 0.07 0.01 1.16 −0.70 1.65 0.53
Random forest HMDB BE 576 0.28 0.18 0.00 0.91 −0.82 1.52 0.51
GAM HMDB HMDB 138 0.25 0.09 0.08 0.79 −0.48 1.49 0.50
GAM BE BE 114 0.21 0.30 −0.48 1.23 −0.71 1.39 0.45
GAM BE HMDB 743 0.25 0.08 −0.29 1.17 −0.67 1.68 0.56
GAM HMDB BE 576 0.26 0.23 −0.29 0.80 −0.64 1.48 0.42
LM HMDB HMDB 138 0.25 0.09 0.16 0.89 −0.41 1.51 0.49
LM BE BE 114 0.23 0.23 −0.73 1.26 −0.67 1.47 0.45
LM BE HMDB 743 0.25 0.07 −0.53 1.25 −0.95 1.68 0.51
LM HMDB BE 576 0.26 0.20 −0.45 0.93 −0.68 1.70 0.46

Simple-S HMDB HMDB 138 0.90 0.00 1.26 1.93 −1.93 0.63 1.25
Simple-S BE BE 114 1.09 0.06 1.11 1.96 −1.96 0.45 1.37
Simple-S BE HMDB 743 0.99 0.05 1.04 2.07 −2.07 0.58 1.33
Simple-S HMDB BE 576 1.02 0.13 0.96 1.93 −1.93 0.50 1.32
Simple-Z HMDB HMDB 138 0.87 0.09 0.50 2.01 −1.46 0.42 1.31
Simple-Z BE BE 114 0.87 0.20 −0.13 1.97 −1.45 0.82 1.29
Simple-Z BE HMDB 743 0.92 0.08 −0.11 2.07 −1.77 0.71 1.31
Simple-Z HMDB BE 576 0.88 0.16 −0.02 1.98 −1.83 0.87 1.31
SFM HMDB HMDB 138 0.37 0.00 0.01 1.43 −0.92 1.79 0.73
SFM BE BE 114 0.38 0.00 0.00 1.54 −1.24 1.70 0.81
SFM BE HMDB 743 0.37 0.01 0.00 1.62 −1.10 1.99 0.74
SFM HMDB BE 576 0.35 0.02 0.00 1.71 −1.31 1.89 0.75

significant signs of spatial autocorrelation in the model pre-
dictions. Another limiting factor may be the missing events
in forests or in intensively cultivated areas not recorded in
the KtBE inventory. Nevertheless, there appears to be enough
similarity in the distributions of the landslide thickness over
the slope classes and the covariates in both datasets to con-
clude that the models are transferable. This is supported by
an additional test with a cross-application of the HMDB-
trained model to the StorMe dataset, which showed a clear
decline in performance. We attribute this mainly to the dis-
tinctly different distribution of the landslide thickness in the
StorMe inventory with the dominant peaks at 0.5, 1, and 2 m.
This indicates a limited generalisability of the trained mod-
els, although this may also be due to differences in data qual-
ity.

Although comparability is limited due to differences in
the study area extents and the use of soil depth landslide
thickness instead of soil depth as the target variable, our re-
sults show similar tendencies to comparable studies. Catani
et al. (2010) applied two simple models based on the eleva-
tion and slope proposed by Saulnier et al. (1997), along with
the geomorphology-based GIST model in the Terzona catch-
ment (24 km2) in Italy. The Simple-Z and Simple-S models
performed the worst, with MAE values of 0.94 and 0.54 m,
while the GIST model had an MAE of 0.11 m. Subsequently,

Segoni et al. (2012) applied the same models in the Armea
catchment (37 km2) in Italy. The Simple-Z and Simple-S
models again performed worse, with MAE values of 0.78 and
1.03 m compared to an MAE of 0.23 m for the GIST model.
An additional model linking the soil depth to the slope us-
ing an exponential function showed an MAE of 0.45 m but
tended to give unrealistically low prediction values. Xiao
et al. (2023) applied the GIST model and the random-forest-
based GIST-RF model to generate soil depth maps in a sec-
tion along the Yangtze River in Wanzhou County (27 km2),
where soil depth ranges from 0 to 40 m. The MAE values of
10.6 m for the GIST showed that the original model cannot
deal with the complex geological settings and high variability
in soil depth at the study site. However, the GIST-RF model
showed an MAE of 3.52 m, demonstrating the potential for
improvement through ML techniques. Gupta et al. (2024) ap-
plied GIST, GIST-MCS, and GIST-RF models in a study as-
sessing soil thickness along three important roads (673 km2)
in the Joshimath region (Indian Himalaya). The GIST, GIST-
MCS, and GIST-RF models showed MAEs of 3.94, 2.86, and
1.64 m, thus further confirming the potential of GIST-RF.

The results of the ML models are promising. The RF
model showed the overall best performance, with the best fit
and no undesired outliers. The performance of the GAMs and
LMs was comparable, although they had an overall worse
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Figure 7. Box plots showing slope classes sampled at 5 m cell size vs. the residuals of the predicted landslide thickness for the best three
models differentiated by model type (rows) and dataset (columns; see caption of Fig. 6 for details). The red dots represent the mean value,
while the blue numbers show the number of entries per slope class. Individual cross-shaped points are shown for classes with fewer than five
data points. For readability, those that occurred above the 55° slope gradient class are not displayed here.

Figure 8. Histogram showing the distribution of the landslide thick-
ness recorded for 2988 shallow landslides in the Swiss national reg-
ister of natural hazard events (StorMe).

fit and showed undesired outliers (especially negative ones).
The partial effect plots for the GAMs showed that the de-
gree of smoothing is low or close to zero for most terms.
This is, at least in part, a result of the automatic estimation
of the smoothing functions performed by caret, which does
not allow any manual intervention. We expect that the GAMs
could be improved by manually building a model with in-
dividualised terms and smoothing functions. Overall, addi-
tional tests and optimisation may be advisable. In particular,
we would expect the inclusion of additional records with a

landslide thickness between 1 and 2 m to improve the model
performance. The hyper-parameter tuning only yielded im-
provements that did not exceed a reduction in the MAE by
1 cm. However, the difference of up to 2 cm between some of
the hyper-parameter combinations for the RF models shows
that hyper-parameter tuning is generally worthwhile. The re-
sults of the hyper-parameter tuning for the RF models also
showed tendencies that are mostly in line with the findings
reported by Probst et al. (2019). Additional model variants
with and without additional points with 0 m landslide thick-
ness in rock signatures have been explored. However, while
the addition of the points did increase the overall MAE of the
ML models by about 1 to 5 cm, most of the R2 values clearly
improved. At the same time, the points with 0 m landslide
thickness also influenced the mean of the predicted values.
For the ML models and the SFM model, there was a de-
crease of 2.4 to 6.4 cm in the overall mean of the predicted
values. For the Simple-S and Simple-Z models, the mean of
the predicted values increased by 13.1 to 21.6 cm. Due to this
influence and given the large variance of the predictions for
the 0 m thickness points, it is still not clear to us whether the
addition of the points is recommendable. The scheme used
for random sampling in space could potentially introduce a
bias and class overlap (i.e. overlap between conditions as-
sociated with occurrences of events and pseudo-absences),
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which may be mitigated by adopting a uniform sampling ap-
proach (Da Re et al., 2023).

6.3 Covariate selection

The selected covariates in the ML models mostly describe
the terrain and its geomorphology. This shows parallels to
models aiming to predict soil depth in general based on ge-
omorphology (Catani et al., 2010; Xiao et al., 2023). The el-
evation, slope, TWI, curvature, and aspect included in our
covariates were also identified by Zweifel et al. (2021) as
important causal factors of shallow landslides in grassland
regions of Switzerland. In addition, the inclusion of covari-
ates in the vegetation and underground are worth mentioning.
The influence of the vegetation (especially the forest) was
realised by including the maximum of the VHM. This vari-
able consistently showed higher importance for the models
trained with the HMDB data compared to the KtBE-trained
models. This may be due to the low number of landslides
within the forest present in the KtBE data. While the high
importance of the maximum of the VHM suggests a signifi-
cant influence of the forest, the NFI forest type raster with the
proportion of coniferous trees was not included in the final
model. The reason was the very low or even negative impor-
tance values, suggesting a lack of relationship with the target
variable, which could be a result of the distribution of the
landslides inside the forest. The geological substratum was
included by the mean local density of the underlying bedrock
serving as a proxy for the lithology. While the importance
of lithology varied significantly between the different model
types and dataset combinations, it was high enough to war-
rant inclusion in the model. The covariates on soil proper-
ties were ultimately not included in the final model. On the
one hand, the importance of the clay, sand, and silt content at
the different depths varied considerably from negative impor-
tance to moderately important depending on the dataset. We
tested several covariate selections, including different com-
binations of reasonably important soil property variables and
the mean bedrock density. While some of these combinations
showed an MAE close to or even slightly better than the fi-
nal selection, they also showed lower R2 values. In addition,
adding up to nine different variables would have increased
the model complexity considerably. Together with the uncer-
tainties related to the soil property data, this led to the deci-
sion not to include any soil property covariates in the final
model.

A variant of the ML models including the rainfall amount
for a duration of 60 min for an extreme point precipitation
event with a 10-year return period as an additional variable
was also explored. The results, however, were almost identi-
cal to the model without this additional variable. We specu-
lated a priori that this variable might be related to soil thick-
ness due to an erosion effect, but this is apparently not the
case or not detectable. Aiming for a model with less com-
plexity, we finally opted to exclude this variable.

6.4 Uncertainty

Although the performance of the model is promising, it is
subject to uncertainties, which are a challenge in natural haz-
ard modelling and prediction. Uncertainty quantification is
critical for improving the reliability and interpretability of
predictive models, particularly in applications that inform
risk management and mitigation. While various methods ex-
ist for quantifying uncertainty, they differ significantly across
disciplines and model types, with no universally applicable
solutions for machine learning models (Beven, 2018; Jala-
ian et al., 2019; Simmonds et al., 2022). Unlike classical
statistical models such as linear regression, which offer es-
tablished confidence interval formulas, machine learning ap-
proaches often lack analogous tools, creating additional chal-
lenges for systematic uncertainty evaluation (Jalaian et al.,
2019). In this study, we did not apply uncertainty quantifica-
tion due to the heterogeneous nature of the tested models and
the inherent difficulties in quantifying uncertainties in both
reference and covariate data. These data constitute a signif-
icant source of uncertainty, as inaccuracies in inputs propa-
gate through the models, ultimately influencing predictions
(Simmonds et al., 2022). Addressing these data uncertainties
is crucial for enhancing the robustness of ML-based models
and should be prioritised in future research, similar to the
work of Meinshausen (2006) and Wager et al. (2014), who
provided confidence intervals for RF.

The main uncertainties in the covariate data lie in the soil,
geological substratum, and forest type datasets. The soil and
geological substratum cannot, for the most part, be mea-
sured directly, making data subject to uncertainties based
on model assumptions and mapping precision. Similar to
the model in our study, the values in the tested soil prop-
erty maps were predicted using a quantile regression for-
est (Meinshausen, 2006) based on sparse field measurements
and a large number of covariates derived from remote sens-
ing (Stumpf et al., 2024). The resulting predictions are al-
ready subject to a considerable degree of uncertainty, espe-
cially due to the 30 m cell size and the high local hetero-
geneity in soil properties. In the geological data, uncertain-
ties stemming from different surveyors and methodologies
cannot be ruled out. This is exemplified by the discontinu-
ities in the data stemming from different map sheets in the
original data on bedrock and unconsolidated deposits from
the GeoCover dataset (Swisstopo, 2023c) used in prelimi-
nary tests. The bulk density dataset of local lithology ex-
plicitly attempts to quantify variability and uncertainty by
including percentile values of the density distributions (Swis-
stopo, 2020; Zappone and Kissling, 2021). While this ap-
proach enhances transparency, the uncertainty still reflects
natural variability within lithologies, errors in physical prop-
erty measurements, and sparse sampling coverage (Zappone
and Kissling, 2021). Forest type data, modelled using RF
and neural networks using remote sensing data (Waser et al.,
2017), are similarly subject to uncertainty. Significant devia-
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tions from the national forest inventory, particularly in the
underestimation of broadleaved trees, highlight the limita-
tions of current methods (Waser et al., 2017). The authors
primarily attributed these deviations to errors in the input im-
age data rather than the classification approach itself (Waser
et al., 2017).

Uncertainties in the field inventory data used to train the
models also influenced the accuracy of model predictions.
Positional errors in the failure points, e.g. due to imprecise
GPS measurements, can result in inaccurate sampling of co-
variates, reducing model reliability. This issue is partially
mitigated by the averaging effects of the larger cell sizes
and windowed calculations used for the covariate rasters. Ad-
ditionally, errors in estimating landslide thickness present a
challenge, as these inaccuracies can render datasets unsuit-
able for ML applications. For example, the limitations of the
StorMe dataset due to unreliable thickness estimates high-
light the necessity for improved field data protocols tailored
to ML requirements.

The uncertainty in the model results is also largely influ-
enced by the choice of model type, training data, and covari-
ates used during the training process (Jalaian et al., 2019).
Different combinations of training records and covariates
can lead to significant variability in the structure and out-
puts of the RF models, GAMs, and LMs used. For instance,
cross-validation introduces a random factor that can result
in variability, particularly when models are trained on small
datasets. This variability highlights the need for systematic
sensitivity analyses to identify robust covariate combinations
that optimise model performance. Moreover, the selection
process revealed numerous covariate combinations with sim-
ilar performance metrics, suggesting a potential for overfit-
ting or underutilising critical variables (cf. Merghadi et al.,
2020). Given that optimal covariate combinations may vary
depending on cell sizes, input datasets, and model types, fu-
ture studies should explore adaptive methods for covariate
selection that are tailored to specific data and model contexts.
This would align model configurations more closely with the
specific characteristics of the study area.

7 Conclusions

In this study, we presented an ML-based approach to predict
the potential thickness of shallow landslides. The new ma-
chine learning models consistently performed at least 20 %
better when comparing the MAE to simple models based on
slope gradient and elevation. We conclude that the selected
set of covariates, including metrics on terrain, geomorphol-
ogy, vegetation, and lithology, is a suitable basis for predict-
ing shallow-landslide thickness using ML. Considering the
overall performance and the lack of outliers in the predic-
tions, we consider the RF model to be the most accurate ap-
proach to generate improved inputs for slope stability mod-
els. For future work, we plan to adapt this study’s RF model,
which is built for predictions on single sample points, for the
generation of rasters covering large extents. Additionally, the
model can be further developed, especially by improving the
input dataset with additional field data, by testing variants
with additional sample points and sampling schemes for lo-
cations with 0 m landslide thickness and by further refining
the selection of covariates.
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Appendix A: Additional material

A1 Detailed results

Figure A1. Box plots showing slope classes sampled at 5 m cell size vs. the residuals of the predicted landslide thickness for all models
differentiated by model type (rows) and dataset (columns): (a) model trained and tested with the HMDB dataset, (b) model trained and tested
with the KtBE dataset, (c) model trained with the HMDB dataset and tested with the KtBE dataset, and (d) model trained with the KtBE
dataset and tested with the HMDB dataset. The red dots represent the mean value, while the blue numbers show the number of entries per
slope class. Individual points are shown for classes with fewer than five measurements.
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A2 Variable importance and model tuning

Variable importance values were extracted for the ML-based
models (Fig. A2). The values of the RF model and LM
were extracted from the overall result of the 10-fold cross-
validation result. Since no meaningful overall values could
be extracted from the GAM fit, the importance values from
the best model were extracted. The results show that there
are differences in the importance of the individual variables
depending on the dataset and the model. Nevertheless, sev-
eral variables are more often among the top-ranked variables,
including the elevation, the terrain roughness index at 10 m
cell size, the mean density of the local lithology, the negative
openness, and the multiresolution valley bottom flatness.

Figure A2. Heatmap showing the overall variable importance extracted from 10-fold cross-validation for the RF model and LM and the
importance of the best fit for the GAM. The number in the cells and their colour correspond to the importance rank of the variable within the
model, with 21 (green) being the most important variable and 1 (yellow) being the least important variable. The variables are sorted by the
sum of the ranks of each row.
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