Articles | Volume 24, issue 7
https://doi.org/10.5194/nhess-24-2383-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-24-2383-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparing components for seismic risk modelling using data from the 2019 Le Teil (France) earthquake
Konstantinos Trevlopoulos
CORRESPONDING AUTHOR
BRGM, 45060 Orléans, France
Pierre Gehl
BRGM, 45060 Orléans, France
Caterina Negulescu
BRGM, 45060 Orléans, France
Helen Crowley
EUCENTRE, 27100 Pavia, Italy
Laurentiu Danciu
Swiss Seismological Service, ETH Zurich, 8092 Zurich, Switzerland
Related authors
Fatemeh Jalayer, Hossein Ebrahimian, Konstantinos Trevlopoulos, and Brendon Bradley
Nat. Hazards Earth Syst. Sci., 23, 909–931, https://doi.org/10.5194/nhess-23-909-2023, https://doi.org/10.5194/nhess-23-909-2023, 2023
Short summary
Short summary
Assessing tsunami fragility and the related uncertainties is crucial in the evaluation of incurred losses. Empirical fragility modelling is based on observed tsunami intensity and damage data. Fragility curves for hierarchical damage levels are distinguished by their laminar shape; that is, the curves should not intersect. However, this condition is not satisfied automatically. We present a workflow for hierarchical fragility modelling, uncertainty propagation and fragility model selection.
Bénédicte Donniol Jouve, Anne Socquet, Céline Beauval, Jesus Piña Valdès, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 25, 1789–1809, https://doi.org/10.5194/nhess-25-1789-2025, https://doi.org/10.5194/nhess-25-1789-2025, 2025
Short summary
Short summary
We investigate how geodetic monitoring enhances accuracy in seismic hazard assessment. By utilizing geodetic strain rate maps for Europe and the European Seismic Hazard Model 2020 source model, we compare geodetic and seismic moment rates across the continent while addressing associated uncertainties. Our analysis reveals primary compatibility in high-activity zones. In well-constrained regions of lower activity, we also observed an overlap in the distribution of seismic and geodetic moments.
Elena F. Manea, Laurentiu Danciu, Carmen O. Cioflan, Dragos Toma-Danila, and Matthew C. Gerstenberger
Nat. Hazards Earth Syst. Sci., 25, 1–12, https://doi.org/10.5194/nhess-25-1-2025, https://doi.org/10.5194/nhess-25-1-2025, 2025
Short summary
Short summary
We test and evaluate the results of the 2020 European Seismic Hazard Model (ESHM20) against observations spanning a few centuries at 12 cities in Romania. The full distributions of the hazard curves at the given locations were considered, and the testing was performed for two relevant peak ground acceleration (PGA) values. Our analysis suggests that the observed exceedance rates for the selected PGA levels are consistent with ESHM20 estimates.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
John Douglas, Helen Crowley, Vitor Silva, Warner Marzocchi, Laurentiu Danciu, and Rui Pinho
EGUsphere, https://doi.org/10.5194/egusphere-2023-991, https://doi.org/10.5194/egusphere-2023-991, 2023
Preprint withdrawn
Short summary
Short summary
Estimates of the earthquake ground motions expected during the lifetime of a building or the length of an insurance policy are frequently calculated for locations around the world. Estimates for the same location from different studies can show large differences. These differences affect engineering, financial and risk management decisions. We apply various approaches to understand when such differences have an impact on such decisions and when they are expected because data are limited.
Fatemeh Jalayer, Hossein Ebrahimian, Konstantinos Trevlopoulos, and Brendon Bradley
Nat. Hazards Earth Syst. Sci., 23, 909–931, https://doi.org/10.5194/nhess-23-909-2023, https://doi.org/10.5194/nhess-23-909-2023, 2023
Short summary
Short summary
Assessing tsunami fragility and the related uncertainties is crucial in the evaluation of incurred losses. Empirical fragility modelling is based on observed tsunami intensity and damage data. Fragility curves for hierarchical damage levels are distinguished by their laminar shape; that is, the curves should not intersect. However, this condition is not satisfied automatically. We present a workflow for hierarchical fragility modelling, uncertainty propagation and fragility model selection.
Cited articles
Ake, J., Munson, C., Stamatakos, J., Juckett, M., Coppersmith, K., and Bommer, J.: Updated Implementation Guidelines for SSHAC Hazard Studies, United States Nuclear Regulatory Commission, Washington, D.C., United States, https://www.nrc.gov/reading-rm/doc-collections/ nuregs/staff/sr2213/index.html (last access: 9 July 2024), 2018.
Baker, J. W. and Jayaram, N.: Correlation of Spectral Acceleration Values from NGA Ground Motion Models, Earthq. Spectra, 24, 299–317, https://doi.org/10.1193/1.2857544, 2008.
Bommer, J. J., Strasser, F. O., Pagani, M., and Monelli, D.: Quality Assurance for Logic-Tree Implementation in Probabilistic Seismic-Hazard Analysis for Nuclear Applications: A Practical Example, Seismol. Res. Lett., 84, 938–945, https://doi.org/10.1785/0220130088, 2013.
Caprio, M., Tarigan, B., Worden, C. B., Wiemer, S., and Wald, D. J.: Ground Motion to Intensity Conversion Equations (GMICEs): A Global Relationship and Evaluation of Regional Dependency, B. Seismol. Soc. Am., 105, 1476–1490, https://doi.org/10.1785/0120140286, 2015.
Causse, M., Cornou, C., Maufroy, E., Grasso, J.-R., Baillet, L., and El Haber, E.: Exceptional ground motion during the shallow Mw 4.9 2019 Le Teil earthquake, France, Commun. Earth Environ., 2, 14, https://doi.org/10.1038/s43247-020-00089-0, 2021.
CEA/LDG: Séisme de magnitude ML 5,4 le 11/11/2019 près de Le Teil (Ardèche), French Alternative Energies and Atomic Energy Commission (CEA), https://www-dase.cea.fr/actu/dossiers_scientifiques/2019-11-11/index.html (last access: 11 January 2024), 2011.
Crowley, H., Despotaki, V., Rodrigues, D., Silva, V., Toma-Danila, D., Riga, E., Karatzetzou, A., and Fotopoulou, S.: SERA Deliverable D26.3 – Methods for Developing European Commercial and Industrial Exposure Models and Update on Residential Model, EUCENTRE, http://www.sera-eu.org/export/sites/sera/home/.galleries/Deliverables/SERA_D26.2_Residential_Exposure_Models.pdf (last access: 9 July 2024), 2019.
Crowley, H., Despotaki, V., Rodrigues, D., Silva, V., Toma-Danila, D., Riga, E., Karatzetzou, A., Fotopoulou, S., Zugic, Z., Sousa, L., Ozcebe, S., and Gamba, P.: Exposure model for European seismic risk assessment, Earthq. Spectra, 36, 252–273, https://doi.org/10.1177/8755293020919429, 2020.
Crowley, H., Dabbeek, J., Despotaki, V., Rodrigues, D., Martins, L., Silva, V., Romão, X., Pereira, N., Weatherill, G., and Danciu, L.: European Seismic Risk Model (ESRM20), EFEHR Technical Report 002, V1.0.1, 84 pp., https://doi.org/10.7414/EUC-EFEHR-TR002-ESRM20, 2021a.
Crowley, H., Despotaki, V., Rodrigues, D., Silva, V., Costa, C., Toma-Danila, D., Riga, E., Karatzetzou, A., Fotopoulou, S., Sousa, L., Ozcebe, S., Gamba, P., Dabbeek, J., Romão, X., Pereira, N., Castro, J. M., Daniell, J., Veliu, E., Bilgin, H., Adam, C., Deyanova, M., Ademović, N., Atalic, J., Bessason, B., Shendova, V., Tiganescu, A., Zugic, Z., Akkar, S., and Hancilar, U.: European Exposure Model Data Repository (v1.0), Zenodo [data set], https://doi.org/10.5281/ZENODO.4062044, 2021b.
Crowley, H., Despotaki, V., Silva, V., Dabbeek, J., Romão, X., Pereira, N., Castro, J. M., Daniell, J., Veliu, E., Bilgin, H., Adam, C., Deyanova, M., Ademović, N., Atalic, J., Riga, E., Karatzetzou, A., Bessason, B., Shendova, V., Tiganescu, A., Toma-Danila, D., Zugic, Z., Akkar, S., and Hancilar, U.: Model of seismic design lateral force levels for the existing reinforced concrete European building stock, B. Earthq. Eng., 19, 2839–2865, https://doi.org/10.1007/s10518-021-01083-3, 2021c.
Dabbeek, J., Crowley, H., Silva, V., Weatherill, G., Paul, N., and Nievas, C. I.: Impact of exposure spatial resolution on seismic loss estimates in regional portfolios, B. Earthq. Eng., 19, 5819–5841, https://doi.org/10.1007/s10518-021-01194-x, 2021.
Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., and Giardini, D.: The 2020 update of the European Seismic Hazard Model: Model Overview, EFEHR Technical Report 001, V1.0.0, https://doi.org/10.12686/A15, 2021.
DeBruine, L.: faux: Simulation for Factorial Designs R package version 1.2.1, Zenodo [code], https://doi.org/10.5281/zenodo.2669586, 2023.
Duverger, C., Mazet-Roux, G., Bollinger, L., Guilhem Trilla, A., Vallage, A., Hernandez, B., and Cansi, Y.: A decade of seismicity in metropolitan France (2010–2019): the CEA/LDG methodologies and observations, BSGF – Earth Sci. Bull., 192, 25, https://doi.org/10.1051/bsgf/2021014, 2021.
EMSC: M 4.9 – FRANCE – 2019-11-11 10:52:45 UTC, https://www.emsc-csem.org/Earthquake/earthquake.php?id=804595 (last access: 11 January 2024), 2019.
European Committee for Standardization: Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings, https://www.boutique.afnor.org/en-gb/standard/nf-en-19981/eurocode-8-design-of-structures-for-earthquake-resistance-part-1-general-ru/fa103832/25574 (last access: 9 July 2024), 2004.
Faenza, L. and Michelini, A.: Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap, Geophys. J. Int., 180, 1138–1152, https://doi.org/10.1111/j.1365-246X.2009.04467.x, 2010.
Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu, L., Field, E. H., Fujiwara, H., Luco, N., Ma, K. -F., Meletti, C., and Petersen, M. D.: Probabilistic Seismic Hazard Analysis at Regional and National Scales: State of the Art and Future Challenges, Rev. Geophys., 58, e2019RG000653, https://doi.org/10.1029/2019RG000653, 2020.
GEM Foundation: KothaEtAl2020Site, openquake 3.18 reference, https://docs.openquake.org/oq-engine/3.17/reference/openquake.hazardlib.gsim.html?highlight=kothaetal2020site#openquake.hazardlib.gsim.kotha_2020.KothaEtAl2020Site (last access: 9 July 2024), 2023a.
GEM Foundation: KothaEtAl2020ESHM20SlopeGeology, openquake 3.18 reference, https://docs.openquake.org/oq-engine/3.17/reference/openquake.hazardlib.gsim.html?highlight=slopegeology#openquake.hazardlib.gsim.kotha_2020.KothaEtAl2020ESHM20SlopeGeology (last access: 9 July 2024), 2023b.
Goulet, J. A., Michel, C., and Kiureghian, A. D.: Data‐driven post‐earthquake rapid structural safety assessment, Earthq. Eng. Struct. D., 44, 549562, https://doi.org/10.1002/eqe.2541, 2015.
Grünthal, G.: European Macroseismic Scale 1998, Conseil de l'Europe, Luxembourg, https://media.gfz-potsdam.de/gfz/sec26/resources/documents/PDF/EMS-98_Original_englisch.pdf (last access: 9 July 2024), 1998.
Higham, N. J.: Computing the nearest correlation matrix – a problem from finance, IMA J. Numer. Anal., 22, 329–343, https://doi.org/10.1093/imanum/22.3.329, 2002.
Jayaram, N. and Baker, J. W.: Correlation model for spatially distributed ground-motion intensities, Earthq. Eng. Struct. D., 38, 1687–1708, https://doi.org/10.1002/eqe.922, 2009.
Kotha, S. R., Weatherill, G., Bindi, D., and Cotton, F.: A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe, B. Earthq. Eng., 18, 4091–4125, https://doi.org/10.1007/s10518-020-00869-1, 2020.
Lagomarsino, S. and Giovinazzi, S.: Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings, B. Earthq. Eng., 4, 415–443, https://doi.org/10.1007/s10518-006-9024-z, 2006.
Mak, S. and Schorlemmer, D.: A Comparison between the Forecast by the United States National Seismic Hazard Maps with Recent Ground-Motion Records, B. Seismol. Soc. Am., 106, 1817–1831, https://doi.org/10.1785/0120150323, 2016.
Marzocchi, W., Taroni, M., and Selva, J.: Accounting for Epistemic Uncertainty in PSHA: Logic Tree and Ensemble Modeling, B. Seismol. Soc. Am., 105, 2151–2159, https://doi.org/10.1785/0120140131, 2015.
Matrix package authors and Oehlschlägel, J.: Matrix: Sparse and Dense Matrix Classes and Methods, https://cran.r-project.org/web/packages/Matrix/index.html (last access: 20 December 2023), 2023.
Monfort, C. and Roullé, A.: Estimation statistique de la répartition des classes de sol Eurocode 8 sur le territoire français – Phase 1: Rapport final, BRGM, https://infoterre.brgm.fr/rapports//RP-66250-FR.pdf (last access: 9 July 2024), 2016.
Musson, R. M. W., Grünthal, G., and Stucchi, M.: The comparison of macroseismic intensity scales, J. Seismol., 14, 413–428, https://doi.org/10.1007/s10950-009-9172-0, 2010.
Negulescu, C., Smai, F., Quique, R., Hohmann, A., Clain, U., Guidez, R., Tellez-Arenas, A., Quentin, A., and Grandjean, G.: VIGIRISKS platform, a web-tool for single and multi-hazard risk assessment, Nat. Hazards, 115, 593–618, https://doi.org/10.1007/s11069-022-05567-6, 2023.
OpenStreetMap contributors: OpenStreetMap, https://planet.osm.org (last access: 9 July 2024), https://www.openstreetmap.org (last access: 9 July 2024), 2017.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., and Vigano, D.: OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model, Seismol. Res. Lett., 85, 692–702, https://doi.org/10.1785/0220130087, 2014.
Perez, R.: Risque sismique pour l'analyse des dommages observés suite au séisme du Teil, GCRN & BRGM, 2020.
R Core Team: R: A Language and Environment for Statistical Computing, https://www.r-project.org/ (last access: 20 December 2023), 2023.
Ritz, J.-F., Baize, S., Ferry, M., Larroque, C., Audin, L., Delouis, B., and Mathot, E.: Surface rupture and shallow fault reactivation during the 2019 Mw 4.9 Le Teil earthquake, France, Commun. Earth Environ., 1, 10,, https://doi.org/10.1038/s43247-020-0012-z, 2020.
Rood, A. H., Rood, D. H., Stirling, M. W., Madugo, C. M., Abrahamson, N. A., Wilcken, K. M., Gonzalez, T., Kottke, A., Whittaker, A. C., Page, W. D., and Stafford, P. J.: Earthquake Hazard Uncertainties Improved Using Precariously Balanced Rocks, AGU Adv., 1, e2020AV000182, https://doi.org/10.1029/2020AV000182, 2020.
Schlupp, A., Sira, C., Maufroy, E., Provost, L., Dretzen, R., Bertrand, E., Beck, E., and Schaming, M.: EMS98 intensities distribution of the “Le Teil” earthquake, France, 11 November 2019 (Mw 4.9) based on macroseismic surveys and field investigations, CR Geosci., 353, 465–492, https://doi.org/10.5802/crgeos.88, 2022.
Sedan, O., Negulescu, C., Terrier, M., Roulle, A., Winter, T., and Bertil, D.: Armagedom — A Tool for Seismic Risk Assessment Illustrated with Applications, J. Earthq. Eng., 17, 253–281, https://doi.org/10.1080/13632469.2012.726604, 2013.
Silva, V., Crowley, H., Pagani, M., Monelli, D., and Pinho, R.: Development of the OpenQuake engine, the Global Earthquake Model's open-source software for seismic risk assessment, Nat. Hazards, 72, 1409–1427, https://doi.org/10.1007/s11069-013-0618-x, 2014.
Silva, V., Brzev, S., Scawthorn, C., Yepes, C., Dabbeek, J., and Crowley, H.: A Building Classification System for Multi-hazard Risk Assessment, Int. J. Disast. Risk Sc., 13, 161–177, https://doi.org/10.1007/s13753-022-00400-x, 2022.
Taillefer, N., Arroucau, P., Leone, F., Defossez, S., and Clément, C.: Association Française du Génie Parasismique: rapport de la mission du séisme du Teil du 11 novembre 2019 (Ardèche), Association Française du Génie Parasismique, https://www.afps-seisme.org/file/1484 (last access: 9 July 2024), 2021.
USGS: M 4.8–5 km WNW of Rochemaure, France, https://earthquake.usgs.gov/earthquakes/eventpage/us60006a6i/moment-tensor (last access: 9 July 2024), 2019.
Wald, D. J., Worden, C. B., Thompson, E. M., and Hearne, M.: ShakeMap operations, policies, and procedures, Earthq. Spectra, 38, 756–777, https://doi.org/10.1177/87552930211030298, 2022.
Weatherill, G., Kotha, S. R., and Cotton, F.: A regionally-adaptable “scaled backbone” ground motion logic tree for shallow seismicity in Europe: application to the 2020 European seismic hazard model, B. Earthq. Eng., 18, 5087–5117, https://doi.org/10.1007/s10518-020-00899-9, 2020.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, B. Seismol. Soc. Am., 84, https://doi.org/10.1785/BSSA0840040974, 1994.
Short summary
The models used to estimate the probability of exceeding a level of earthquake damage are essential to the reduction of disasters. These models consist of components that may be tested individually; however testing these types of models as a whole is challenging. Here, we use observations of damage caused by the 2019 Le Teil earthquake and estimations from other models to test components of seismic risk models.
The models used to estimate the probability of exceeding a level of earthquake damage are...
Special issue
Altmetrics
Final-revised paper
Preprint