Articles | Volume 24, issue 4
https://doi.org/10.5194/nhess-24-1319-2024
https://doi.org/10.5194/nhess-24-1319-2024
Research article
 | 
23 Apr 2024
Research article |  | 23 Apr 2024

Modeling of indoor 222Rn in data-scarce regions: an interactive dashboard approach for Bogotá, Colombia

Martín Domínguez Durán, María Angélica Sandoval Garzón, and Carme Huguet

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
A regional early warning for slushflow hazard
Monica Sund, Heidi A. Grønsten, and Siv Å. Seljesæter
Nat. Hazards Earth Syst. Sci., 24, 1185–1201, https://doi.org/10.5194/nhess-24-1185-2024,https://doi.org/10.5194/nhess-24-1185-2024, 2024
Short summary
A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: advantages of the interactive leaf area index
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024,https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Automated Avalanche Terrain Exposure Scale (ATES) mapping – local validation and optimization in western Canada
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci., 24, 947–971, https://doi.org/10.5194/nhess-24-947-2024,https://doi.org/10.5194/nhess-24-947-2024, 2024
Short summary
Improving the fire weather index system for peatlands using peat-specific hydrological input data
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024,https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024,https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary

Cited articles

Alber, O., Laubichler, C., Baumann, S., Gruber, V., Kuchling, S., and Schleicher, C.: Modeling and predicting mean indoor radon concentrations in Austria by generalized additive mixed models, Stochastic Environmental Research and Risk Assessment, Springer, Berlin, Heidelberg, 1–15, https://doi.org/10.1007/s00477-023-02457-6, 2023. a
Auvinen, A., Salonen, L., Pekkanen, J., Pukkala, E., Ilus, T., and Kurttio, P.: Radon and other natural radionuclides in drinking water and risk of stomach cancer: A case-cohort study in Finland, International journal of cancer, Journal international du cancer, 114, 109–113, https://doi.org/10.1002/ijc.20680, 2005.  a
Beigaitė, R., Mechenich, M., and Žliobaitė, I.: Spatial Cross-Validation for Globally Distributed Data, in: Discovery Science, edited by: Pascal, P. and Ienco, D., Springer Nature Switzerland, Cham, 127–140, ISBN 978-3-031-18840-4, 2022. a
Burke, Ó., Long, S., Murphy, P., Organo, C., Fenton, D., and Colgan, P. A.: Estimation of seasonal correction factors through Fourier decomposition analysis – a new model for indoor radon levels in Irish homes, J. Radiolog. Protect., 30, 433–443, https://doi.org/10.1088/0952-4746/30/3/002, 2010. a
Download
Short summary
In this study we created a cost-effective alternative to bridge the baseline information gap on indoor radon (a highly carcinogenic gas) in regions where measurements are scarce. We model indoor radon concentrations to understand its spatial distribution and the potential influential factors. We evaluated the performance of this alternative using a small number of measurements taken in Bogotá, Colombia. Our results show that this alternative could help in the making of future studies and policy.
Altmetrics
Final-revised paper
Preprint