Articles | Volume 24, issue 4
https://doi.org/10.5194/nhess-24-1319-2024
https://doi.org/10.5194/nhess-24-1319-2024
Research article
 | 
23 Apr 2024
Research article |  | 23 Apr 2024

Modeling of indoor 222Rn in data-scarce regions: an interactive dashboard approach for Bogotá, Colombia

Martín Domínguez Durán, María Angélica Sandoval Garzón, and Carme Huguet

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024,https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024,https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary

Cited articles

Alber, O., Laubichler, C., Baumann, S., Gruber, V., Kuchling, S., and Schleicher, C.: Modeling and predicting mean indoor radon concentrations in Austria by generalized additive mixed models, Stochastic Environmental Research and Risk Assessment, Springer, Berlin, Heidelberg, 1–15, https://doi.org/10.1007/s00477-023-02457-6, 2023. a
Auvinen, A., Salonen, L., Pekkanen, J., Pukkala, E., Ilus, T., and Kurttio, P.: Radon and other natural radionuclides in drinking water and risk of stomach cancer: A case-cohort study in Finland, International journal of cancer, Journal international du cancer, 114, 109–113, https://doi.org/10.1002/ijc.20680, 2005.  a
Beigaitė, R., Mechenich, M., and Žliobaitė, I.: Spatial Cross-Validation for Globally Distributed Data, in: Discovery Science, edited by: Pascal, P. and Ienco, D., Springer Nature Switzerland, Cham, 127–140, ISBN 978-3-031-18840-4, 2022. a
Burke, Ó., Long, S., Murphy, P., Organo, C., Fenton, D., and Colgan, P. A.: Estimation of seasonal correction factors through Fourier decomposition analysis – a new model for indoor radon levels in Irish homes, J. Radiolog. Protect., 30, 433–443, https://doi.org/10.1088/0952-4746/30/3/002, 2010. a
Download
Short summary
In this study we created a cost-effective alternative to bridge the baseline information gap on indoor radon (a highly carcinogenic gas) in regions where measurements are scarce. We model indoor radon concentrations to understand its spatial distribution and the potential influential factors. We evaluated the performance of this alternative using a small number of measurements taken in Bogotá, Colombia. Our results show that this alternative could help in the making of future studies and policy.
Altmetrics
Final-revised paper
Preprint