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Abstract. Radon (222Rn) is a naturally occurring gas that
represents a health threat due to its causal relationship
with lung cancer. Despite its potential health impacts,
several regions have not conducted studies, mainly due
to data scarcity and/or economic constraints. This study
aims to bridge the baseline information gap by build-
ing an interactive dashboard (http://ircmodelingdashboard.
eu.pythonanywhere.com/, last access: 17 April 2024) that
uses inferential statistical methods to estimate the spatial dis-
tribution of indoor radon concentration (IRC) for a target
area. We demonstrate the functionality of the dashboard by
modeling IRC in the city of Bogotá, Colombia, using 30 in
situ measurements. IRC measured was the highest reported
in the country, with a geometric mean of 91± 14 Bq m−3

and a maximum concentration of 407 Bq m−3. In 57 % of
the residences, RC exceeded the WHO’s recommendation of
100 Bq m−3. A prediction map for houses registered in Bo-
gotá’s cadaster was built in the dashboard by using a log-
linear regression model fitted with the in situ measurements,
together with meteorological, geologic and building-specific
variables. The model showed a cross-validation root mean
squared error of 57 Bq m−3. Furthermore, the model showed
that the age of the house presented a statistically significant
positive association with RC. According to the model, IRC
measured in houses built before 1980 presents a statistically
significant increase of 72 % compared to IRC of those built
after 1980 (p value= 0.045). The prediction map exhibited
higher IRC in older buildings most likely related to cracks
in the structure that could enhance gas migration in older

houses. This study highlights the importance of expanding
222Rn studies in countries with a lack of baseline values and
provides a cost-effective alternative that could help deal with
the scarcity of IRC data and get a better understanding of
place-specific variables that affect IRC spatial distribution.

1 Introduction

Radon gas (222
86 Rn) represents a natural hazard that can have

great impact on human health and remains largely unex-
plored in some regions (World Health Organization, 2019).
This noble gas is colorless, odorless, highly radioactive and
part of the 238U decay chain (Field, 2015). In 1988, 222Rn
was classified as a group-1 carcinogenic agent (IARC, 1988)
because it and its decay products (i.e., 218Po and 214Po) emit
alpha particles and, at high 222Rn concentrations (i.e., above
100 Bq m−3), these particles can affect the lung’s epithelial
tissues and lead to the development of lung cancer and other
medical conditions (Auvinen et al., 2005; Turner et al., 2012;
Field, 2015; Lehrer et al., 2017; Ruano-Ravina et al., 2017).
The risk of lung cancer increases 16 % for every 100 Bq m−3

increment in concentrations of residential 222Rn (e.g., Darby
et al., 2005). In the 66 countries that have had national 222Rn
surveys, it is estimated that 226 057 people die every year
from lung cancer due to 222Rn exposure (Gaskin et al., 2018).
This type of estimation has prompted some national and in-
ternational entities to assess levels of residential 222Rn and
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implement policies to address this public health issue (WHO,
2009).

Despite radon’s proven adverse health effects, there re-
main evident disparities between countries regarding 222Rn
policies and monitoring programs. In 2007 an international
222Rn survey was carried out by the World Health Organi-
zation (WHO). In it, 32 countries, of which 81 % are part of
the Global North, presented their mean values of residential
radon (WHO, 2007); 12 years later, the Global Health Ob-
servatory showed that the number of countries that have re-
ported their average levels of indoor radon had risen to 44.
However, only 22 % of these countries are in the Global
South (see Fig. 1a). Furthermore, only 1 out of the 24 coun-
tries committed to evaluating indoor radon concentration
(IRC) using a national radon database is in the Global South
(see Fig. 1b). For multiple countries, especially in Latin
America, Africa and Asia, discrete studies, in which mean
levels were calculated for one or two cities, were used to re-
port national levels. Nevertheless, as radon presents high spa-
tial variability, this type of discrete study cannot represent an
entire country. To address and understand its spatial variabil-
ity, radon mapping has been employed in previous studies
(Cohen et al., 1994; Tollefsen et al., 2011). However, even
though efforts have been made in the Global South (Hadad
and Mokhtari, 2015; Idriss et al., 2020), these solutions are
more prevalent and widespread in countries located in the
Global North. This can be associated with the limited dataset
availability in the Global South.

In terms of action levels, even though some organizations
like the WHO and the United States Environmental Protec-
tion Agency (US EPA) recommend IRC to remain under
100 and 148 Bq m−3, respectively, multiple countries still do
not have any action level or their levels do not align with the
ones recommended (US EPA, 1987; WHO, 2009). In South
and Central America, only seven countries have governmen-
tal regulations in which action levels are presented. Notably,
countries like Argentina or Chile do not have any regulations
for indoor radon. Additionally, the action levels in the coun-
tries with regulations largely surpass the recommended val-
ues (Giraldo-Osorio et al., 2020). For instance, in the case
of Colombia, the action level is 400 Bq m−3 and there is no
222Rn monitoring program (Ministerio de Minas y Energía,
2002).

While efforts have been made to assess this public health
issue in Latin America and the Caribbean (LAC), IRC re-
mains largely unexplored in the region (Canoba et al., 2002;
Giraldo-Osorio et al., 2020). For instance, in Colombia only
two studies of residential 222Rn have been conducted so far,
both in the urban and rural areas of Manizales with 18 and
202 dwellings measured, respectively (Garzon et al., 2013;
Giraldo-Osorio et al., 2021). There is thus a clear lack of
baseline information about this carcinogenic gas in the coun-
try as well as the LAC region. This lack of baseline infor-
mation may be a reason why regulations regarding 222Rn are
outdated or still missing in the region (Giraldo-Osorio et al.,

Figure 1. Spatial distribution of measurements of indoor radon
by country. Countries colored in grey have not reported any
radon information. (a) Arithmetic mean values reported per coun-
try (Bq m−3). (b) Countries with an existing radon database are col-
ored in blue. Data retrieved from World Health Organization (2019).

2020). It is paramount to find innovative ways to bridge this
information gap more efficiently. In this study, the potential
of dashboards to give place-specific estimates of IRC is pre-
sented.

Dashboards are organized information systems whose
main objective is to summarize quantitative data in a way that
can be easily understood and used by a target audience (Ni-
jkamp and Kourtit, 2022). In public health, dashboards may
guide agency decisions on resource allocation (Dasgupta and
Kapadia, 2022). The dashboard created in this study aims to
understand the variables that can affect the radon distribu-
tion for a specific place, provide summarized IRC informa-
tion for place-specific policy and decision-making, guide the
direction in which further studies should be made, and be a
potential tool to estimate the IRC distribution in cities where
IRC measurements are scarce. To the best of the authors’
knowledge this is the first dashboard developed for perform-
ing radon modeling.

The high spatial variability of radon is well known and
has been associated with three main types of variables that
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could act as predictors of IRC: meteorological, geologic
and building-specific variables (e.g., Gundersen et al., 1993;
Karpińska et al., 2009; Mullerova et al., 2017). These vari-
ables can either increase or decrease levels of residential
IRC, and their influence depends greatly on the location.
For example, a city’s IRC might be highly dependent on
building-specific variables, while another city’s IRC might
be more influenced by geologic variables. Understanding the
factors associated with IRC distribution in a city is crucial to
assessing the magnitude of a possible public health hazard.

Several models have previously been used to estimate
radon concentrations in residences (Demoury et al., 2013;
Elío et al., 2017; Vienneau et al., 2021). These models can
be either mechanistic or statistical. Some advantages of sta-
tistical models are that they quantify the relationship between
variables and that they allow the inclusion of different types
of variables, even if the underlying association between them
is not yet well understood. On the other hand, mechanistic
models are based on the understanding of the physical mech-
anisms that control a phenomenon. For instance, in the case
of indoor air quality, mechanistic models are made to under-
stand the mechanisms governing the transport of the pollu-
tant (Wei et al., 2019). The dashboard designed in this study
uses a log-linear regression model to recognize the most in-
fluential variables and estimate IRC by using these variables
as predictors. Unlike similar studies employing various pre-
diction strategies (Demoury et al., 2013; Elío et al., 2017;
Vienneau et al., 2021), the dashboard presented in this study
distinguishes itself by seamlessly combining statistical mod-
els with a user-friendly interface. This integration enhances
usability without extensive technical expertise, marking a
significant advancement in the accessibility and applicabil-
ity of radon concentration estimation tools.

Even though Bogotá’s geologic, climatic and construction
characteristics could facilitate high IRC, no baseline studies
have been conducted in the city. This makes Bogotá an ideal
place to evaluate the performance of the dashboard in esti-
mating the IRC spatial distribution in a data-scarce region
through statistical learning.

The structure of this paper is as follows. The methodol-
ogy is presented in Sect. 2, where the study area and the data
acquisition are presented first (Sect. 2.1) and then the statis-
tical analysis and the dashboard architecture are explained
in Sect. 2.2. Next, the results for the city of Bogotá are pre-
sented and discussed in Sect. 3. First, the levels of indoor
radon detected in situ are presented in Sect. 3.1. Then, in
Sect. 3.2 and 3.3 the results of the modeling dashboard are
discussed in terms of the potential influential factors for high
IRC and the potential hazard posed by 222Rn in Bogotá. Next,
the dashboard’s functionality was assessed in Sect. 3.4.

2 Materials and methods

2.1 Study area and data acquisition

2.1.1 Study area

Bogotá is located at the western side of the eastern An-
des cordillera at an average altitude of 2640 m a.s.l. (above
sea level) (Fig. 2). The urban area of Bogotá is divided in
20 localities, 5 of which were included in the present study
(Fig. 2; Departamento Administrativo Nacional de Estadís-
tica, 2018b). Bogotá’s temperature ranges between 8 and
19 °C throughout the year, with an annual average value of
13 °C. It has an average precipitation of 80 mm per month
throughout the year with a minimum of around 40 mm in
January and a maximum of around 120 mm in May (IDEAM,
2015). The geology of the Bogotá region is characterized by
outcrops from the late Cretaceous to the Quaternary (Mon-
toya and Reyes, 2007). According to the Geologic Map of
Colombia (Gómez Tapias et al., 2015) the main lithologies
in Bogotá with their respective chronostratigraphic codes are
limestones and shales (k1k6-Stm) near the municipality of
La Calera, alluvial fans and colluvial deposits (Q-ca) to the
east of the city, and clays (Q1-l) in the central area of Bogotá
(see Fig. B1). Additionally, due to an excessive extraction of
water from underlying aquifers, there is strong subsidence
in the city, reaching values of 3.5 cm yr−1 (Mora-Paez et al.,
2020). Furthermore, Bogotá’s rapid growth in the first half of
the 20th century resulted in nearly 35 % of the houses in the
city being built over 40 years ago (Departamento Adminis-
trativo Nacional de Estadística, 2018a).

2.1.2 222Rn sampling

Since this study was performed during the COVID-19 pan-
demic, an online registration form was sent via social media
and filled out by 79 owners of residences who wanted to par-
ticipate. Based on previous studies the selection criteria to
determine which dwellings would be sampled were the type
of residence (house or apartment), the presence of a base-
ment (Lorenzo-Gonzlez et al., 2017; Giraldo-Osorio et al.,
2021; Li et al., 2022) and the lithology below the dwelling
(Gundersen et al., 1993; Salazar et al., 2004; Maestre and
Iribarren, 2018). The influence of these factors on IRC is pre-
sented in Table 1. The selection of houses was also made to
ensure that indoor measurements in the five localities sur-
veyed would have a minimum sampling rate of one sample
every 15 km2.

Several methods for measuring radon currently exist; how-
ever, the most economic and widely used is the alpha-track
detectors (e.g., Field, 2015). In this study, Kodak LR-115
alpha-track detectors were placed in the selected houses for a
period of 35 d between 20 February and 28 March 2021. The
detectors were supplied by the Applied Nuclear Physics and
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Table 1. Criteria considered to select the studied residences based on factors reported to enhance indoor radon concentrations (Gundersen
et al., 1993; Giraldo-Osorio et al., 2021; Li et al., 2022).

Parameter Reasons Reference

Type of residence Only houses were selected to ensure that the residence had at Lorenzo-Gonzlez et al. (2017),
least one level in contact with the ground. Concentrations on Giraldo-Osorio et al. (2021)
ground floors usually are higher than upper levels.

Presence of basement Six houses with basements were selected. The high density of Lorenzo-Gonzlez et al. (2017),
radon (9.73 g L−1) and the proximity with the source Li et al. (2022)
of the gas favors the accumulation of radon on lower levels,
such as basements.

Lithology Houses with three different lithologies were included in the Gundersen et al. (1993)
survey. Lithologies with higher contents of uranium have higher
radon emanation rates.

Figure 2. Map of the study area. (a) General map of Colombia with
the study area marked in red. (b) Detailed map of the surveyed area
with the 30 dwellings where measurements were made. Bogotá,
D.C: Bogotá, Distrito Capital. Basemap source: © OpenStreetMap
contributors, the GIS User Community and Departamento Admin-
istrativo Nacional de Estadística (2018b).

Simulation (FINUAS) laboratory, and the diffusion chambers
were assembled as shown in Fig. 3.

The LR-115 film was placed in the upper part of the dif-
fusion chamber as described by Nikolaev and Ilić (1999)
(see Fig. 3b). The dimensions of the diffusion cham-
ber were selected to ensure that the conversion factor
(1.4 tracks cm−2 (kBq m−3 h)−1) used by Faisca et al. (1992)
could be applied. This conversion factor has been used with
LR-115 film and validated against active methods (see Rojas-
Arias et al., 2020, for details).

The alpha-track detectors were placed at a height of 60–
180 cm above the ground; at a minimum distance of 15 cm
from the walls; and away from doors, windows and elec-
tronic devices to avoid environmental interference that may
induce larger measurement errors (Lorenzo-Gonzlez et al.,
2017). Additionally, a thin film of polyethylene was added to
the lower part of the chamber to avoid humidity and/or dust.
Once installed, residents of the dwellings sent pictures of the
sensors on a weekly basis so that any changes in the location
and/or conditions of the detector could be recorded.

After the 35 d exposure, the detectors were retrieved and
shipped to the FINUAS lab in Tunja, Colombia, where they
were analyzed. The analysis consisted of etching the LR-115
film with the process described by Rojas-Arias et al. (2020).
The alpha-track density (ρtr) was then determined by count-
ing the number of etched tracks per square centimeter under
the microscope. Afterwards, IRC was calculated using the
conversion factor determined by Faisca et al. (1992) as de-
scribed in Eq. (1).

IRC
[
Bqm3

]
=

ρtr

t ·CF · 1000
, (1)

where ρtr represents the density of alpha tracks (tracks
per square centimeter), t is the time exposed (h) and the con-
version factor (CF= (1.4 tracks cm−2 (kBq m−3 h)−1) is the
same determined by Faisca et al. (1992).

To evaluate the precision of the detectors, duplicate LR-
115 film was included in 11 of the diffusion chambers se-
lected randomly and placed in front of the other film inside
the diffusion chamber. The relative percent difference (RPD)
was calculated as suggested by WHO (2009) (see Eq. 2).

RPD=
|IRCsample− IRCduplicate|

mean(IRC)
× 100 (2)

2.1.3 Data acquisition of independent variables and
pre-processing

The predictor variables for fitting the regression model,
which include geologic, meteorological and building-specific

Nat. Hazards Earth Syst. Sci., 24, 1319–1339, 2024 https://doi.org/10.5194/nhess-24-1319-2024



M. Domínguez Durán et al.: Dashboard for modeling of indoor radon 1323

Figure 3. Images showing the diffusion chambers used to detect radon. (a) Outside of the diffusion chamber (assembled). (b) Inside of the
chamber with the location of the LR-115 film.

factors, were acquired from multiple sources. These sources
included an online form completed by the participants and
six other distinct data sources listed in Table A1. The spatial
distribution of the meteorological and geologic variables can
be found in Appendix B in the additional images.

The regression model used three dummy variables which
included the house age and two variables related to the lithol-
ogy. For the variables explaining the lithologies in the area,
the reference category was selected to be the lithology char-
acterized by clays (Q1-l). Furthermore, the houses built af-
ter 1980 were chosen as the reference category for the house
age variable.

Finally, the dataset to which the regression model was ap-
plied was retrieved from Bogotá’s cadaster dataset. A sub-
set of the dataset was selected while making sure that the
residences followed two criteria: (i) buildings with less than
three stories (houses) and (ii) buildings where one of the
three studied lithologies, analyzed in the statistical analysis,
was present. The data of the predictor variables were finally
added to each house in this dataset.

The result of the pre-processing resulted in two tabular
datasets that from now on will be called the in situ dataset
and cadaster dataset for simplicity. In the first one, the data
consisted of the in situ measurements and the predictor vari-
ables. On the other hand, the second one contains the spatial
and predictor information of the houses in the cadaster to
which the regression model was applied.

2.2 Dashboard for modeling of indoor Rn

Once data for both the radon measurements and the pre-
dictors have been gathered, the IRC can be modeled
by using the dashboard (http://ircmodelingdashboard.eu.

pythonanywhere.com/, last access: 17 April 2024) created in
this study. In the following section, both the underlying sta-
tistical analysis and the dashboard architecture are presented.

2.2.1 Statistical analysis

The statistical analysis consisted of (i) fitting a log-linear
regression model to the dataset with in situ measure-
ments, (ii) evaluating the performance using cross-validation,
(iii) undergoing a process of feature selection, (iv) fitting a fi-
nal log-linear regression model, (v) estimating the radon con-
centration using the final model and (vi) visualizing the IRC
estimations spatially (Fig. 4).

Regression analysis

A log-linear multivariate regression model was used to
establish the association between one dependent vari-
able (log(IRC)) and five independent variables. The model
included geologic, meteorological and construction vari-
ables. Similar approaches have been used to estimate IRC
in other study areas (Demoury et al., 2013; Vienneau et al.,
2021; Alber et al., 2023). The log-linear regression model
was fitted with Eq. (3). Every independent variable in the
log-linear model can be interpreted by finding a percentage
change in IRC due to an increase of that independent variable
by a unit. This percentage change can be calculated for each
variable as described in Eq. (4). The statistical analysis was
performed using the statsmodels and scikit-learn
packages in Python 3.11.

log(IRC)= β ·X+ ξ, (3)
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Figure 4. Flowchart of the statistical analysis performed using
Python 3.11. Yellow represents processes executed for the statistical
analysis. Blue represents outputs of the analysis. Orange represents
input datasets: the in situ dataset is composed of the in situ IRC mea-
surements and the predictor variables. The cadaster dataset contains
the spatial and predictor information of the houses in the cadaster
to which the regression model was applied. CV: cross-validation,
VIF: variance inflation factor.

where β represents a vector with coefficients for each inde-
pendent variable, X is a matrix with the values of the inde-
pendent variables and ξ is the error.

Percentage changei[%] = 100 ·
(
eβi − 1

)
(4)

Cross-validation

The performance of the regression model was assessed us-
ing the leave-one-out cross-validation approach. This cross-
validation method gives an estimation of the test error that is
approximately unbiased (Hastie et al., 2021). To measure the
error of the model, the root mean squared error (RMSE) was
used as described in Eq. (5).

RMSE=

√√√√ n∑
i=1

(
ŷi − yi

)2
n

(5)

In addition to the leave-one-out cross-validation, the
Python package spacv (https://github.com/SamComber/
spacv, last access: 17 April 2024) was used to perform a 15-
fold spatial cross-validation to further validate the robustness
and generalization capabilities of the regression model’s pre-
dictions (Comber, 2024). Spatial cross-validation accounts

for potential spatial auto-correlations in the data, providing a
more comprehensive assessment of the model’s performance
across diverse spatial contexts (Beigaitė et al., 2022).

Feature selection

Originally, the log-linear model included four more variables
that we considered could have an association with high IRC
(fault proximity, temperature, urban/rural area and land sub-
sidence). Nevertheless, they were later removed to reduce
the chance of overfitting and increase the model performance
by focusing on the most informative features. According to
their high variance inflation factor, the variables of land sub-
sidence, temperature and urban/rural area introduced multi-
collinearity problems into the model; therefore they were dis-
carded. Moreover, since fault proximity values in houses of
Bogotá are above the 150 m threshold that previous authors
have shown to have a significant association with higher IRC
in dwellings, this variable was not considered in the present
study (Drolet and Martel, 2016). Removing these features did
not substantially affect the cross-validation estimation of the
test error.

Final model fitting

The fitting of the final model was finally done with the se-
lected features. The final log-linear regression model fol-
lowed Eq. (3) and was trained using the statsmodels and
scikit-learn packages in Python 3.11.

Spatial visualization

The log-linear multivariate regression model fitted with the
in situ dataset was used to produce a map of estimated IRC
with the cadaster dataset. The IRC estimated for the houses
was then aggregated in a grid of cells of 100 m× 100 m. The
grid was created and then visualized using the GeoPandas
and Plotly packages in Python 3.11.

2.2.2 Dashboard design

A dashboard web application that allows for the modeling
and spatial visualization of estimated IRC by using in situ
measurements was developed. The dashboard layout con-
sists of three main blocks that are shown in Fig. 5. In the
first block, the user is expected to add the two sets of tabular
data (previously called the in situ and cadaster dataset). Then,
the second block allows the user to explore the in situ data,
choose the parameters for the modeling and run the model
(left section of block 2 in Fig. 5). The visualizations in this
block show the distribution of IRC measured with respect to
reference levels, a correlation matrix of the predictors in the
in situ dataset and the variance inflation factor for the pre-
dicted variables (right section of block 2 in Fig. 5). Further-
more, the parameters that can be chosen by the user are the
type of model to be fitted, features selected to train the model,
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Figure 5. Overview of the layout of the dashboard developed for the modeling of indoor radon concentration. The three blocks that make up
the dashboard are highlighted in red (1), blue (2) and green (3). Block 1 is the data-uploading block, where the user can upload both datasets
used for modeling (the in situ measurements and the cadaster dataset). Block 2 presents visualizations of the in situ data and allows the user
to choose the parameters and run the model. In this block the IRC distribution can be observed and some statistics from the in situ dataset
can be obtained (i.e., the percentage of measurements exceeding reference levels and correlations between covariates). Block 3 is the result
block, where in the left panel the feature importance can be observed and in the right panel the prediction map is presented. The dashboard
can be accessed at https://ircmodelingdashboard.eu.pythonanywhere.com/ (last access: 17 April 2024).

a high-quality model to get a higher-spatial-resolution result
and the projected coordinate reference system in which the
cadaster data are projected. Finally, the third block exhibits
the results of the model. On the left side the feature impor-
tance and the cross-validation scores are presented, and on
the right side the spatial distribution modeled is presented in
an interactive map.

The dashboard web application was built and de-
ployed using the Dash package in Python 3.11 and the
servers of pythonanywhere.com (https://eu.pythonanywhere.
com/, last access: 17 April 2024). Furthermore, the dash-
board can be accessed at http://ircmodelingdashboard.eu.
pythonanywhere.com/ (last access: 17 April 2024).

3 Results and discussion

3.1 Levels of indoor radon

The measured radon concentrations in the 30 dwellings se-
lected ranged between 15 and 407± 10 Bq m−3, with a ge-
ometric mean of 91 Bq m−3 (Fig. 6a). The result of the 11
duplicates was a relative percent difference (RPD) of 14 %,
which falls within the typical uncertainty (10 %–25 %) re-
ported for alpha-track detectors (WHO, 2009).

3.1.1 Reported radon levels in the LAC region and
reference levels

The study of residential 222Rn in Latin America and the
Caribbean (LAC) remains largely unexplored (Giraldo-
Osorio et al., 2020). This was the third study of indoor 222Rn
conducted in Colombia and had the second largest number
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Figure 6. (a) Measured radon concentrations shown as a histogram of measured IRC in the Bogotá region within the context of Colombia and
Latin America and the Caribbean (LAC). The geometric mean (GM) is indicated by the dashed red line. The dashed black line represents the
accumulated percentage of samples. Dashed green lines represent reference levels, and dashed blue lines show the minimum and maximum
average values reported in studies in Colombia and the LAC region. (b) Ratio of studies made in the LAC region with more or less than
30 measurements. (c) Ratio of studies with more than 30 measurements that have a greater or lower geometric mean than the one obtained
in the current study. Information retrieved from Table 1 in Giraldo-Osorio et al. (2020).

of observations (Giraldo-Osorio et al., 2020). Both previous
studies were conducted in Manizales and presented a mean
IRC of 8.5 and 68 Bq m−3 (Giraldo-Osorio et al., 2021).
Our study presents the highest levels found in the country.
The higher levels found in Bogotá with respect to Manizales
could be explained by a smaller ventilation rate, related with
a lower frequency of window and door opening, caused by
lower mean temperatures (Chao et al., 1997). Additionally,
the exclusive measurement in ground floors and basements
in our study could also explain the high IRC levels measured
(Lorenzo-Gonzlez et al., 2017; Li et al., 2022). The proxim-
ity of these areas to radon sources contributes to the higher
accumulation of 222Rn in these spaces (Field, 2015).

The mean values reported in the 31 previous studies
done in the LAC region ranged between 9 and 358 Bq m−3

(Fig. 6a). The IRC measured in this study is in the up-
per range of the reported levels for the LAC region. Un-
til 2020, it was reported that 24 out of the 31 studies had

measured IRC in more than 30 residences (Giraldo-Osorio
et al., 2020, Fig. 6b). The geometric mean IRC of the current
study exceeds the geometric mean of 58 % of these 24 stud-
ies (Giraldo-Osorio et al., 2020, Fig. 6c). This corroborates
the high IRC measured in Bogotá compared to the values re-
ported in the region.

The WHO’s recommended level (100 Bq m−3) was
exceeded in 57 % of the residences analyzed in this
study (Fig. 7). Even though the Colombian action level
(400 Bq m−3) was exceeded only in one house (Fig. 7), there
is enough scientific evidence to assert that the exposure to
IRC, even below the WHO’s recommended level, can affect
human health (WHO, 2009). Therefore, high IRC levels such
as the ones found in this study raise concerns about the po-
tential health impacts that 222Rn could be causing in Bogotá’s
population.
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Figure 7. Pie chart with the percentage of the measurements exceeding the different reference levels. The reference levels considered were
retrieved from WHO (2009), US EPA (1987) and Ministerio de Minas y Energía (2002).

3.2 Potential influential factors on IRC in the surveyed
area

The statistical analysis performed considered five indepen-
dent geologic, meteorological and construction variables.
The results of feature importance derived from the dash-
board are presented in Table 2. Moreover, the log-linear re-
gression model presented a leave-one-out cross-validation
RMSE of 57 Bq m−3 and a 15-fold spatial cross-validation
of 64 Bq m−3 (Fig. D1). The observed high RMSE can be at-
tributed to the limited size of the dataset used for model train-
ing. It is anticipated that augmenting the dataset with addi-
tional IRC measurements would likely enhance the model’s
performance. However, it is essential to acknowledge that
a significant prediction uncertainty persists in radon model-
ing, which originates from imperfect environmental predic-
tors and the absence of additional crucial information such
as ventilation intensity, building materials and the air tight-
ness of buildings (Petermann et al., 2021). Even though the
estimated error is higher than the ones reported in previous
studies, the log-linear model found significant associations
with predictors that could explain high IRC values in the city
(Vienneau et al., 2021). The inferential capability of the dash-
board could therefore be used to focus future research and/or
policy in high-priority areas.

House age was the only construction variable with a sta-
tistically significant (p value< 0.05) association with IRC
(Table 2). On the other hand, the association of geologic
variables with IRC was only marginally significant for the
dummy comparing alluvial fans and clays. Finally, the asso-
ciation of meteorological variables with IRC (i.e., precipita-
tion) was not statistically significant in this survey.

Even though the influence of geologic variables on IRC
has been extensively documented (e.g., Gundersen et al.,
1993; Salazar et al., 2004; Maestre and Iribarren, 2018), the

log-linear model fitted only showed a marginally significant
association of lower IRC in houses that were built over al-
luvial fans and colluvial deposits (Q-ca) rather than over
clays (Q1-l). The model suggests that IRC could be 63 %
lower in houses above alluvial fans and colluvial deposits
compared to those above clays. This could be explained by
the size of soil particles and the uranium content in the differ-
ent lithologies. Previous studies have reported positive corre-
lations between Rn emanation and the number of soil parti-
cles with diameters below 0.1 mm (Thu et al., 2019); there-
fore higher Rn emanation rates could be present in clays
rather than in alluvial and colluvial deposits that are mainly
composed by a sandy matrix (Corredor et al., 2015). Fur-
thermore, according to the Geochemical Atlas of Colom-
bia the uranium content, which has been proven to deter-
mine the geogenic 222Rn potential (Gundersen et al., 1993),
is slightly higher in soils containing clays (1.93 mg kg−1)
than in soils formed in alluvial fans and colluvial deposits
(1.904 mg kg−1) (Servicio Geológico Colombiano, 2016).

Several studies have concluded that residential IRC shows
important seasonal variations throughout the year because of
changes in temperature and precipitation (e.g., Burke et al.,
2010; Mullerova et al., 2017; Schubert et al., 2018; Crockett
et al., 2018). The present study aimed to gauge the poten-
tial association of the spatial distribution of these two me-
teorological factors with IRC throughout a measuring pe-
riod of 35 d. However, since both variables introduced multi-
collinearity problems to the regression, the analysis was only
done with precipitation data. Precipitation did not present a
statistically significant association with IRC in the regres-
sion model. Despite this, previous studies suggest that the
highest IRC in Bogotá could be measured in January and the
lowest could be measured in May, due to the previously re-
ported negative association of precipitation with IRC (Schu-
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Table 2. Mean radon concentrations (IRC) and results of the statistical analysis for each independent variable used as predictor. Results for
the log-linear regression model (β and eβ ) are presented with a significance level represented by the p value. n represents the number of
samples with that possible value. Values denoted in bold represent the reference value for each categorical variable.

Variable Type Values n IRC β eβ

Basement Construction
No 23 100 Bq m−3 0 1.000
Yes 7 166 Bq m−3 0.34 1.405

Age Construction
Built after 1980 18 86 Bq m−3 0 1.000
Built before 1980 12 159 Bq m−3 0.54∗∗ 1.716

Lithologies Geologic
Clays 27 123 Bq m−3 0 1.000
Alluvial fans and colluvial deposits (Q-ca) 2 32 Bq m−3

−0.989∗ 0.372
Limestones and shales (k1k6-Stm) 1 77 Bq m−3 0.0004 1.0004

Precipitation Meteorological 71.54–137.18 mm – – −0.0099 0.9901

∗
=p value< 0.10. ∗∗ =p value< 0.05.

bert et al., 2018; Mullerova et al., 2017; Grasty, 1994). Ad-
ditionally, the results of previous surveys indicate that higher
indoor 222Rn could be measured during nighttime (5 °C) in
the city as a result of the negative association of mean air
temperature with IRC (Schubert et al., 2018). Temporal vari-
ations of IRC should be taken into account for future studies.

The main factor to correlate with IRC was found to be
the house age (r = 0.44, p value= 0.01, Fig. C1). In addi-
tion, the log-linear model suggests that IRC in houses built
before 1980 could be 72 % higher than in houses built af-
ter 1980. The positive association of house age with IRC has
been widely studied and is usually explained by the increase
of cracks and the lack of continuity of construction materi-
als, which can enhance 222Rn migration (Karpińska et al.,
2009). For the specific case of Bogotá’s dwellings, those fac-
tors could be exacerbated throughout the years because of
the occurrence of land subsidence throughout the city as has
been seen in cities with similar characteristics, such as Mex-
ico City (Poreh et al., 2020). Likewise, land subsidence and
the occurrence of other geologic phenomena such as earth-
quakes could, in turn, have a cumulative effect on structural
damage of dwellings increasing IRC measured in old houses.
Considering that 35 % of the houses registered in Bogotá’s
cadaster were built over 40 years ago, the positive associa-
tion of this variable with IRC points to a high probability of
having 222Rn hazard zones in the city.

Finally, a positive correlation was found between IRC and
the measurements in a basement (r = 0.35, p value= 0.06,
Fig. C1). This is supported by previous studies (e.g.,
Lorenzo-Gonzlez et al., 2017; Giraldo-Osorio et al., 2021;
Li et al., 2022) and can be explained by the proximity to
radon sources, which favors its accumulation in ground floors
and basements (Field, 2015). Even though only 0.5 % of the
houses registered in Bogotá have a basement, measuring IRC

in these areas was important since one-third of the basements
measured were used as bedrooms for domestic workers. This
could significantly increase 222Rn exposure on this popula-
tion group. Besides, most of the basements surveyed in the
present studied were not registered in Bogotá’s cadaster; thus
the cadaster’s information could provide an underestimation
of potential 222Rn exposure in the city.

3.3 Potential hazard posed by residential 222Rn in
Bogotá

The high IRC measured in the current study suggests that
this gas could pose a health risk in the city. Likewise, events
such as the COVID-19 pandemic could significantly increase
222Rn exposure in Bogotá’s dwellings due to the implemen-
tation of measures like lockdowns, where residents are com-
pelled to stay indoors. Given the size of Bogotá’s population,
it is paramount to conduct more sampling campaigns to un-
derstand the dimensions of the problem.

3.3.1 Prediction map

Considering the absence of monitoring programs in the coun-
try and that our study had a limited sample set, the mod-
eling dashboard developed in this study was used to cre-
ate a prediction map of the potential distribution of IRC.
This map represents an alternative to assess the magnitude
of 222Rn hazard in the city and establish target areas for fu-
ture studies (Fig. 8). The map predicted IRC ranging from
21 to 220 Bq m−3. Moreover, considering the smoothing ten-
dency of the models used and that prediction uncertainty
was not accounted for in the statistical analysis, the model
suggests that a minimum of 32 % of the 551 570 houses
(177 008 residences) could have IRC above the WHO’s rec-
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Figure 8. Application of log-linear regression model to houses registered on Bogotá’s cadaster. (a) 222Rn concentrations predicted using
a fitted linear regression model. Orange and red pixels exceed the WHO’s recommended level, while green and blue values are below
this level. Markers in cyan represent the houses where measurements were taken. (b) Predicted IRC in each locality of Bogotá. Basemap
source: Departamento Administrativo Nacional de Estadística (2018b).

ommended level (Fig. 8a; WHO, 2009). Considering that
the mean household density in Bogotá is 2.9 inhabitants per
household, a total of 513 323 people could be exposed to
IRC above recommended levels. Notably, the average IRC
in the localities of Los Mártires, Fontibón, Teusaquillo, Bar-
rios Unidos and Puente Aranda was estimated to be above
100 Bq m−3 (Fig. 8b). All of these localities are found near
downtown Bogotá, which is the oldest area of the city. Even
though the map created in our study shows the highest pre-
dicted IRC in zones built before 1980, it is necessary to ex-
tend the direct measurements to other areas to confirm our
predictions.

3.4 Dashboard performance

The dashboard built in this study was able to detect place-
specific variables associated with the distribution of residen-
tial IRC in the city of Bogotá. In this case, a significant
association between the house age and the residential IRC
was found. This variable should be considered for the plan-
ning of further studies in the city. Moreover, the dashboard

successfully provided summarized information of the in situ
measurements, the effect of the variables on residential IRC
modeled and the spatial distribution of IRC in Bogotá. These
results show the great potential of the dashboard to assess
this public health issue and guide national entities in the im-
plementation of policies and monitoring programs to address
this issue.

3.5 Study limitations

Even though the present study provides insight into what
the situation of 222Rn hazard could be in the city of Bo-
gotá, the findings must be evaluated with some limitations
in mind. Firstly, the prediction map is built to have a better
understanding of a potential distribution of IRC in Bogotá’s
dwellings; however, these estimations cannot be used to re-
place in situ IRC measurements. Secondly, to have a more
accurate public health perspective in the analysis of indoor
222Rn, exposure to the gas should be quantified. Thirdly, in
the statistical analysis most of the variables did not have a
significant association with IRC, and this could be due to the
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small sample set and not representative distribution. More-
over, to corroborate the high values measured using the pas-
sive methods, the use of active measurements are recom-
mended to check measurement correctness. Finally, varia-
tions in IRC caused by meteorological factors should be de-
termined considering the temporal variability and not only
the spatial distribution; to do so, the inclusion of active mea-
surements is also suggested. These limitations were the result
of budgetary and time constraints. This preliminary study
provides baseline information about IRC and indicates that
more geological substrates as well as a temporally wider cli-
matic range should be taken into account to improve the un-
derstanding of Rn distribution in the city.

4 Conclusions

High IRC values were found in the Bogotá region, with 57 %
exceeding the WHO’s recommended level and a geometric
mean (91 Bq m−3) that surpassed the mean values found in
58 % of the previous studies done in Latin America and the
Caribbean. Furthermore, the high IRC measured points to the
importance of updating the action levels of residential Rn in
Colombia to address a potential public health hazard posed
by Rn. These public policies should be accompanied by rig-
orous monitoring of the exposure to the gas by people inside
residences.

The house age and the presence of clays, rather than allu-
vial and colluvial deposits, showed a significant and marginal
association with high IRC. The log-linear model fitted sug-
gests that IRC in houses built before 1980 could be 72 %
higher than in those built after 1980. This could be due to the
increase of cracks in the dwelling, a phenomenon that could
be exacerbated by the occurrence of land subsidence in the
city. The presence of alluvial and colluvial deposits rather
than clays could decrease IRC as a consequence of the size
of the soil particles and the different uranium content in these
lithologies.

A prediction map was built in the dashboard using a log-
linear regression model to establish areas of high Rn in the
city. The map suggests that the oldest areas in Bogotá could
present high radon concentrations. According to the estima-
tions of this map, at least 513 323 citizens in Bogotá could be
exposed to concentrations above the WHO’s recommended
level. While it is a first approach, our prediction map cannot
replace IRC measurements.

The use of the dashboard built in this study along with
inferential statistics was demonstrated to be an efficient al-
ternative for bridging the baseline information gap that is
present in countries like Colombia, where IRC measurements
are scarce. The performance of the dashboard was evaluated
with the results of an exploratory study in Bogotá, Colombia.

While this is an important study to bridge the baseline
222Rn information gap in the city, considering that this study
used only 30 measurements of IRC, it is important to ex-
pand the coverage of monitoring campaigns of residential Rn
in Bogotá, focusing particularly on the localities with older
houses that according to the dashboard results could present
a higher potential of having high IRC.
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Appendix A: Data acquisition
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Appendix B: Spatial distribution of independent
variables

B1 Geologic variables

Figure B1. Lithology in the Bogotá region. Information retrieved from Gómez Tapias et al. (2015).
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B2 Meteorologic variables

Figure B2. Mean temperature over the time window in the Bogotá region. Information retrieved from the Instituto de Hidrología, Meteo-
rología y Estudios Ambientales (IDEAM) and Red de Monitoreo de Calidad del Aire de Bogotá (RMCAB) and interpolated using inverse
distance weight.
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Figure B3. Accumulated monthly precipitation over the time window in the Bogotá region. Information retrieved from the Instituto de
Hidrología, Meteorología y Estudios Ambientales (IDEAM) and Red de Monitoreo de Calidad del Aire de Bogotá (RMCAB) and interpolated
using inverse distance weight.
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Appendix C: Correlation coefficients

Figure C1. rpearson correlations with RC for the independent variables studied (Table 2).
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Appendix D: Spatial cross-validation

Figure D1. Implementation of a 15-fold spatial cross-validation performance assessment using the Python package spacv (Comber, 2024).
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Beigaitė, R., Mechenich, M., and Žliobaitė, I.: Spatial Cross-
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