Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-733-2023
https://doi.org/10.5194/nhess-23-733-2023
Research article
 | 
21 Feb 2023
Research article |  | 21 Feb 2023

An interdisciplinary agent-based evacuation model: integrating the natural environment, built environment, and social system for community preparedness and resilience

Chen Chen, Charles Koll, Haizhong Wang, and Michael K. Lindell

Related subject area

Sea, Ocean and Coastal Hazards
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023,https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023,https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023,https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023,https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Observations of extreme wave runup events on the US Pacific Northwest coast
Chuan Li, H. Tuba Özkan-Haller, Gabriel García Medina, Robert A. Holman, Peter Ruggiero, Treena M. Jensen, David B. Elson, and William R. Schneider
Nat. Hazards Earth Syst. Sci., 23, 107–126, https://doi.org/10.5194/nhess-23-107-2023,https://doi.org/10.5194/nhess-23-107-2023, 2023
Short summary

Cited articles

Bezanson, J., Karpinski, S., Shah, V. B., and Edelman, A.: Julia: A Fast Dynamic Language for Technical Computing, arXiv [preprint], arXiv:1209.5145, 24 September 2012. a
Buehler, R., Peetz, J., and Griffin, D.: Finishing on time: When do predictions influence completion times?, Organ. Behav. Hum. Dec., 111, 23–32, https://doi.org/10.1016/j.obhdp.2009.08.001, 2010. a
Burns, W. J., Mickelson, K. A., and Madin, I. P.: Landslide Susceptibility Overview Map of Oregon, Oregon Department of Geology and Mineral Industries, Tech. Rep. REPORT O-16-02, https://www.oregongeology.org/pubs/ofr/p-O-16-02.htm (last access: 4 May 2021), 2016. a
Cal OES: How to Survive a Tsunami, California Governor's Office of Emergency Services, https://www.conservation.ca.gov/cgs/Documents/Tsunami/How-to-Survive-a-Tsunami.pdf, last access: 13 May 2021. a, b
Chen, C., Buylova, A., Chand, C., Wang, H., Cramer, L. A., and Cox, D. T.: Households’ intended evacuation transportation behavior in response to earthquake and tsunami hazard in a Cascadia Subduction Zone city, Transp. Res. Record, 2674, 99–114, https://doi.org/10.1177/0361198120920873, 2020. a, b
Download
Short summary
This paper uses empirical-data-based simulation to analyze how to evacuate efficiently from disasters. We find that departure delay time and evacuation decision have significant impacts on evacuation results. Evacuation results are more sensitive to walking speed, departure delay time, evacuation participation, and destinations than to other variables. This model can help authorities to prioritize resources for hazard education, community disaster preparedness, and resilience plans.
Altmetrics
Final-revised paper
Preprint