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Abstract. Previous tsunami evacuation simulations have
mostly been based on arbitrary assumptions or inputs adapted
from non-emergency situations, but a few studies have used
empirical behavior data. This study bridges this gap by inte-
grating empirical decision data from surveys on local evacu-
ation expectations and evacuation drills into an agent-based
model of evacuation behavior for two Cascadia subduction
zone (CSZ) communities that would be inundated within 20—
40 min after a CSZ earthquake. The model also considers the
impacts of liquefaction and landslides from the earthquake
on tsunami evacuation. Furthermore, we integrate the slope-
speed component from least-cost distance to build the sim-
ulation model that better represents the complex nature of
evacuations. The simulation results indicate that milling time
and the evacuation participation rate have significant non-
linear impacts on tsunami mortality estimates. When people
walk faster than 1 ms™!, evacuation by foot is more effec-
tive because it avoids traffic congestion when driving. We
also find that evacuation results are more sensitive to walk-
ing speed, milling time, evacuation participation, and choos-
ing the closest safe location than to other behavioral vari-
ables. Minimum tsunami mortality results from maximizing
the evacuation participation rate, minimizing milling time,
and choosing the closest safe destination outside of the in-
undation zone. This study’s comparison of the agent-based
model and the beat-the-wave (BtW) model finds consistency
between the two models’ results. By integrating the natu-
ral system, built environment, and social system, this in-

terdisciplinary model incorporates substantial aspects of the
real world into the multi-hazard agent-based platform. This
model provides a unique opportunity for local authorities to
prioritize their resources for hazard education, community
disaster preparedness, and resilience plans.

1 Introduction

Recent devastating earthquakes and tsunamis have placed
immense burdens on their affected communities, such as the
2011 Tohoku tsunami (Mori et al., 2011), the 2009 Ameri-
can Samoa tsunami (Lindell et al., 2015), and the 2018 In-
donesia Sulawesi tsunami (Sassa and Takagawa, 2019). Due
to a small evacuation time window between the end of earth-
quake shaking and the arrival of the first tsunami wave, a high
level of evacuation efficiency is essential for minimizing the
loss of life in low-lying coastal communities subject to lo-
cal tsunamis (Wang et al., 2016; Raskin and Wang, 2017). To
reduce evacuation clearance time (the sum of authorities’ de-
cision time, warning dissemination time, households’ prepa-
ration time, and evacuation travel time) and thus maximize
survival rates during tsunamis, researchers and practitioners
have developed evacuation simulations to support decision-
making, public education, and community emergency plan-
ning and management.
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1.1 Previous ABMSs for earthquake and tsunami
evacuation

Agent-based modeling and simulation (ABMS)), as a type of
a highly effective computational simulation model, has been
applied to many research fields (Mas et al., 2013; Mostafizi
et al., 2019a). The unique characteristics of ABMS include a
bottom-up structure and the ability to model heterogeneous
agents and their interactions with other agents. These unique
characteristics meet the needs of a disaster evacuation sim-
ulation (Gilbert, 2007). The bottom-up structure provides an
opportunity to analyze how changes in evacuation behavior
affect the overall evacuation result. One concern about using
ABMS is the computational expense, but this is less of an
issue as computing costs continue to decrease (Lindell et al.,
2019).

This increase in computational power has allowed disas-
ter researchers to apply ABMS to (1) simulate evacuation
in large-scale communities and (2) integrate different lay-
ers of data to comprehensively analyze evacuation with con-
sideration of interactions between the natural environment,
built environment, and social system. Table 1 identifies re-
cent tsunami evacuation ABMS studies and their content.

In the absence of empirical behavior data, early-stage
evacuation ABMSs were based on arbitrary assumptions, as
had been the case for large-scale evacuation models (Lin-
dell and Perry, 1992; Lindell and Prater, 2007). Chen and
Zhan (2008) investigated the effectiveness of simultaneous
and staged evacuation strategies using an ABMS for San
Marcos, Texas. Although this study considered evacuees’
car-following and dynamic-routing behaviors, it was based
on many arbitrary assumptions about evacuation behavior,
such as homogeneous milling time within a zone, a single
evacuation mode, and evacuees selecting quickest evacua-
tion route and destination. To reduce reliance on assump-
tions, Mas et al. (2012) built an evacuation ABMS that in-
cluded more empirical data from the natural system, built
environment, and social system. In this model, agents are
characterized by probabilistic distributions of milling time,
evacuation mode choice, evacuation destination, and travel
speed. By comparing the simulation with data from the 2011
Japanese earthquake and tsunami, the authors concluded that
the results from this simulation are consistent with the real
event and can be used to analyze evacuation and shelter de-
mand for future events. In 2013, Mas et al. (2013) expanded
this ABMS to the city of La Punta, Peru, to conduct a vertical
and horizontal shelter analysis.

Practitioners and researchers have relied on similarities be-
tween the 2011 Japanese earthquake event and the geologi-
cally similar Cascadia subduction zone (CSZ) to encourage
Oregon coastal residents to prepare for local tsunamis. Karon
and Yeh (2011) used GIS (geographic information system)
to build an evacuation ABMS by integrating tsunami inunda-
tion, warning transmission, and travel speed to examine the
impact of failures of critical infrastructure in Cannon Beach,
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Oregon. To model heterogeneous agent behaviors, Wang et
al. (2016) established a scenario-based tsunami evacuation
ABMS for Seaside, Oregon. This study examined the impact
of variance in agent behaviors such as milling time, evacu-
ation mode choice, and travel speed. In addition, it also in-
cluded the impact of a tsunami, but not an earthquake, on
the built environment such as damage to streets, bridges,
and buildings. A later version of this study, Mostafizi et al.
(2019a), used a similar ABMS platform to identify optimum
shelter locations considering the population distribution, het-
erogeneous agent milling time, and walking speed. However,
as with previous studies, agents were assumed to evacuate to
the closest shelter, which may not accurately represent peo-
ple’s destination choices when threatened by a tsunami.

One common limitation of those evacuation models is that
they have evacuation assumptions about the four evacuation
time components — authorities’ decision delay time, house-
holds’ warning receipt and decision time, households’ evac-
uation preparation time, and households’ evacuation travel
time. Warning receipt time, for example, can vary across
communities and households. Nagarajan et al. (2012) used
an ABMS to test the warning dissemination speed through
formal channels transmitted by officials and informal chan-
nels transmitted by neighbors. They found that even a small
proportion of people who were willing to warn their neigh-
bors have a considerable impact on reducing warning dis-
semination time. Several previous ABMS studies have also
assumed arbitrary probability functions for milling time to
represent the variance in evacuation departure times (Mas et
al., 2012; Wang et al., 2016; Mostafizi et al., 2019a).

In addition, some recent evacuation simulations have
also employed assumptions about the distribution of evac-
uees’ walking speeds. For instance, Wang et al. (2016)
and Mostafizi et al. (2019a) assumed a normal distribution
of evacuee walking speeds for which the mean was built
based on a study of pedestrians walking on streets in non-
emergency situations (Knoblauch et al., 1996). This assump-
tion is likely to underestimate travel speeds in a tsunami
evacuation and thus overestimate tsunami mortality rates.
However, mortality rates might not be overestimated if travel
speed is actually reduced by additional barriers such as land-
slides, liquefaction, and other earthquake disturbances to the
evacuation route system.

Failure to consider “shadow evacuation” by residents of ar-
eas outside the tsunami inundation zone can lead to unneces-
sary evacuation that overwhelms the evacuation route system
and impedes travel by people in the inundation zone (Lindell
et al., 2019). Instead of assigning a probabilistic distribution
to walking speed, Wood and Schmidtlein (2012) used a deter-
ministic hiking function (Tobler, 1993) to define a least-cost
distance (LCD) model for tsunami evacuation. This hiking
function not only captured the impact of slope on walking
speed but also assumed daily walking conditions rather than
emergency conditions. Overall, existing evacuation models
have assumed that pedestrians’ travel behavior in daily situ-
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Table 1. Recent earthquake and tsunami ABMS studies.

Reference Study area Mode Model components Tested variables
Natural Built Social system
environment  environment
Chen and Zhan (2008)  San Marcos, Car NA Road network;  Hypothetical population Evacuation strategy
Texas, USA artificial density; dynamic routing;
safe zone car-following model
Dawson et al. (2011) Towyn, Car Flood Road network;  Population distribution; Warning time;
United Kingdom inundation destination; warning time; driving water depth
building speed; re-route
Karon and Yeh (2011) Cannon Beach, ‘Walk Tsunami Road network;  Warning dissemination; Infrastructure-
Oregon, USA inundation destinations shortest distance; retrofitting
travel speed strategy
Mas et al. (2012) Village of Arahama, Car/walk  Tsunami Road network;  Population distribution; Evacuation result
Japan inundation destinations evacuation mode; compared with real
milling time; speed event; milling time;
destination
Mas et al. (2013) La Punta, Car/walk  Tsunami Road network;  Population distribution; Evacuation result;
Peru inundation destinations social status; evacuation shelter capacity
mode; milling time; speed
Wang et al. (2016) Seaside, Car/walk  Tsunami Road network;  Population distribution; Water depth;
Oregon, USA inundation destinations milling time; evacuation milling time;
mode; speed; route choice  evacuation mode;
destination location
Mostafizi et al. (2019a)  Seaside, Walk Tsunami Road network;  Population distribution; Shelter location
Oregon, USA inundation destinations milling time; speed

NA: not available.

ations represents the corresponding behavior in evacuations,
but field or experimental data to confirm this assumption are
needed.

Most of the aforementioned studies used census data to
identify agents’ evacuation departure locations, so the sce-
narios assumed people were at home. However, a disaster
may happen at any time of the day. To account for the vari-
ance in evacuees’ locations, Dawson et al. (2011) devel-
oped a flood management ABMS to support flood emergency
planning and evaluate flood incident management measures.
The authors used empirical survey data to integrate warning
time and used the National Travel Survey to determine peo-
ple’s locations and travel states (e.g., work, home, or school).

1.2 Other models for earthquake and tsunami
evacuation

Although scenario-based ABMSs have been employed to
support evacuation decision-making for entire communities
(or large areas), jurisdictions are also interested in the ques-
tion of how quickly people should evacuate from differ-
ent sub-areas in a community. Geographers used the LCD
method to build the beat-the-wave (BtW) model to estimate
the maximum travel time that people need to walk out of
a tsunami inundation zone (Wood and Schmidtlein, 2012).
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This model defined the distance cost by two variables — the
evacuation route’s slope and its land cover. To determine the
walking speed, they employed Tobler’s hiking function (To-
bler, 1993) and the energy cost of the terrain category (Soule
and Goldman, 1972). The output of this model provides the
spatial distributions of maximum evacuation times to “beat
the wave” and can be used for preparedness planning and
education. The Oregon Department of Geology and Mineral
Industries (DOGAMI) has implemented this model to iden-
tify Oregon coastal communities’ evacuation route maps and
to estimate evacuation travel times (DOGAMI, 2020; Gabel
etal., 2019).

Although DOGAMI has used the LCD method because it
is relatively easy to calculate and provides reasonable evacu-
ation time estimates (ETESs), it does have some limitations.
First, it cannot examine social-system variables that influ-
ence tsunami evacuation outcomes (such as population distri-
bution; milling time; and the choice of transportation mode,
evacuation route, and evacuation destination). Second, it can-
not incorporate dynamic travel costs due to crowding or con-
gestion. Agent-based models can overcome those limitations
but are sometimes criticized as difficult to implement due to
the magnitude of data required. As noted earlier, those data
include the distribution of population locations, evacuees’
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behaviors, and wave arrival time. However, the ABMS and
LCD approaches are not incompatible, so a mixed-method
approach could be used to better model the complex nature
of evacuation (Wood and Schmidtlein, 2012).

1.3 Research objectives and questions

The preceding literature review has revealed the need for an
evacuation ABMS that can simultaneously consider the nat-
ural environment, built environment, and social system to an-
alyze complex evacuation scenarios. Although some studies
have incorporated layers from those three systems, most of
the data inputs were arbitrary assumptions — a problem that
has plagued large-scale evacuation modeling (Lindell et al.,
2019). To more completely integrate the three systems, this
study established an ABMS for tsunami evacuation that inte-
grates (1) the natural environment and its disruptions; (2) the
built environment and its disruptions; and (3) the social sys-
tem, as defined by people’s protective actions — especially
their evacuation behavior.

Specifically, this ABMS integrates human decisions and
evacuation logistics into an ABMS platform using empiri-
cal behavior data that were collected through survey ques-
tionnaires and evacuation drills from coastal residents fac-
ing tsunami threats. This integration operationalizes the Pro-
tective Action Decision Model (PADM) (Lindell and Perry,
2012) within an ABMS by incorporating agents’ heteroge-
neous behavior in emergencies, such as (1) evacuation par-
ticipation; (2) choices of transportation mode, evacuation
routes, and destinations; and (3) travel speeds. Furthermore,
to accurately model the complex nature of evacuation, this
ABMS also includes the impact of landslides and liquefac-
tion on the road network during evacuation. Incorporating
the essential components of the LCD model (slope and road
surface) combines the advantages of the ABMS and BtW
models (Wood and Schmidtlein, 2012). ABMS models are
implemented for Coos Bay, Oregon, and sensitivity analyses
are conducted in this study to answer the following questions:

1. How do the evacuation participation rate, milling time,
mode choice, destination choice, and travel speed affect
mortality rates?

2. Which of these variables have greater impact on mortal-
ity rates, and which of them can be addressed in tsunami
evacuation preparedness?

3. How do the results from the ABMS compare with the
results from the BtW model?

This interdisciplinary ABMS not only can serve as an evac-
uation planning tool for local agencies but also can be an ed-
ucational and assessment tool for coastal residents to better
prepare for the next threat.
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2 Interdisciplinary tsunami evacuation ABMS
2.1 Agent-based modeling environment

Simulating evacuation is a computationally intensive prob-
lem due to the large scale of the built and natural environ-
ments and the complexity of agent behaviors. Therefore, an
ABMS typically has a high computational cost when applied
to large-scale evacuation (Lindell et al., 2019). To overcome
this issue, the tsunami evacuation ABMS was built using the
Julia programming language, which is a just-in-time com-
piled language, allowing for high performance and compu-
tational speed (Bezanson et al., 2012). The high speed of
the Julia language allows researchers to model large com-
munities with detailed heterogeneous agent behaviors. This
study’s ABMS modeling environment allows users to mod-
ify parameters for natural, built, and social systems and also
allows for stochastic inputs. Figure 1 shows the ABMS vi-
sualization and real-time evacuation monitors. The details of
the evacuation model environment are discussed in Sect. 2.3.

2.2 Study area

A series of CSZ tsunami evacuation studies have used Sea-
side, Oregon, as a study community because of its high level
of vulnerability to local tsunamis (Connor, 2005; Wood et
al., 2015; Wang et al., 2016; Chen et al., 2020, 2021). How-
ever, other communities that differ from Seaside in their ge-
ographic and demographic characteristics should also be ex-
amined. This study chose the Coos Bay peninsula as a case
study due to four features. First, it has a distinctly vulnerable
geography. As Fig. 1 indicates, this peninsula is surrounded
by bay water on its north, east, and west sides. In addition,
its hilly spine in the middle provides ready access to higher
ground for evacuation destinations. The bay serves as the sec-
ond and the sixth largest estuary in Oregon and on the US
west coast, respectively (CLW, 2015). Second, this commu-
nity is located on the southern margin of the CSZ, where the
rupture probability is higher and tsunami wave arrival time
is shorter than communities farther north (Priest et al., 2014;
Chen et al., 2021). Third, the Coos Bay peninsula has a total
population of about 26 129, which is the largest population
among Oregon coastal communities (United State Census
Bureau, 2020). Moreover, a large proportion of the popula-
tion (about 25 %) resides within the inundation zone. Fourth,
this community has a high level of social vulnerability due
to its demographic characteristics. The local population has
a higher percentage of disabled residents and is poorer and
less educated than the overall US population (United State
Census Bureau, 2020; Chen et al., 2021).

2.3 Model components

To more accurately model tsunami evacuation, this study
proposes an ABMS that integrates components of the natural
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Figure 1. Simulation model visualization of Coos Bay, Oregon (1 ft=0.30 m).

environment, built environment, and social system. Specifi-
cally, this ABMS includes the components shown in Table 2.

2.3.1 Social system and agent behavior

According to the PADM, people make protective action de-
cisions based on environmental/social cues and warnings,
which are affected by personal characteristics such as pre-
existing beliefs about the hazard, protective actions, and
community stakeholders (Lindell and Perry, 2012; Lindell,
2018). The large number of these variables, the difficulty
in measuring them, and their heterogeneity among agents
makes it difficult to model this part of the evacuation pro-
cess (Mas et al., 2012). Previous evacuation simulation mod-
els (Mas et al., 2012; Wang et al., 2016; Mostafizi et al.,
2017, 2019b) assumed that residents evacuate in the most
efficient manner (such as selecting the closest shelter) but ig-
nored the heterogeneity in evacuation decisions and actions
(Gwynne et al., 1999). One main reason is that these models
lacked empirical data on evacuation decisions and actions.
To fill that gap, the evacuation model in this study integrates
data on people’s evacuation decisions and actions that were
collected from questionnaire surveys and evacuation drills.
This study employed the PADM as the framework for
a mail-based household questionnaire survey that collected
data on household evacuation intentions in the Coos Bay
area between May and September 2020. There were 258 re-
spondents who returned the questionnaire, which covers their
evacuation intentions, expected milling process, and choices
of transportation modes and destinations, as well as psycho-
logical variables and demographic characteristics. More in-
formation can be found in Chen et al. (2021). Probability dis-
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tributions on these variables are utilized to model the hetero-
geneous evacuation actions from the data shown in Table 2.

The analyses that follow are based on the ETE model in
which the time to clear the risk area is a function of author-
ities’ decision time, warning dissemination time, evacuation
preparation time, and evacuation travel time (Lindell et al.,
2019). Evacuation preparation time, which is often called
“milling” (Wood et al., 2018), has two components — (1) psy-
chological preparation, which involves information seeking
and processing to make evacuation decisions, and (2) logis-
tical preparation, which involves performing essential tasks
(e.g., packing bags and securing the home) before leaving
(Lindell and Perry, 2012). Evacuation travel time is a func-
tion of evacuees’ choices of transportation mode, evacuation
route, and evacuation destination.

Modeling evacuation from a distant tsunami requires data
on authorities’ decision time and warning receipt time. In the
absence of these data, the results of the following analyses
do not apply to distant tsunamis. Modeling evacuation from
a local tsunami is simpler because long and strong earth-
quake shaking is a reliable environmental cue to tsunami on-
set. Consequently, people who recognize this environmental
cue have authorities’ decision time and warning dissemina-
tion time equal to zero.

Moreover, the following analyses include sensitivity anal-
yses that examine the impact of a plausible range of varia-
tion in the input variables on the estimated tsunami mortality
rate. As discussed below, these sensitivity analyses can pro-
vide useful information for decision-making and emergency
planning.

Nat. Hazards Earth Syst. Sci., 23, 733-749, 2023
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Table 2. ABMS components.
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System Component Description Data sources
Tsunami inundation layer ~ Water depth per 30 s time frame (m) DOGAMI CSZ near-filed
M9 XXL scenario
Natural Elevation and slope Use elevation digital model Oregon 10 m Digital
environment to calculate slope Elevation Model (DEM)

Landslide and
liquefaction

Landslide and liquefaction
susceptibility to identify
disrupted roads

DOGAMI project O-13-06

Built environment

Road network

Links

OpenStreetMap and Google Earth

Non-retrofitted bridges

Manually identified by talking
with local authorities

DOGAMI project O-19-07

Social system

Population distribution 26 000 agents from US census by census US census
block group, then randomly generate
along transportation network
Evacuation participation By attributes or proportion
1: te; O: st
(1: evacuate; O: stay) Survey

Milling time

Gamma distributions and a fixed time

Mode choice

Proportion, controlled by a parameter

Destination choice

Probability distribution on the distance
to shelter and use of soft-max function to
calculate the discrete probability

Survey: distance from home to
destination separated by car/foot,
gamma distribution

Evacuation speed — car

Intelligent driver model (IDM) with

Parameter chosen by common scenarios

parameters and a speed limit

Evacuation speed — foot

Evacuation hiking function based on elevation

Evacuation drills

Route choice
that agents chose

Shortest distance to the destination

Route diversion

If next intersection is blocked, the agent

selects another leg of the intersection,
then chooses another destination

Evacuation participation (0: stay; 1: leave) is the protec-
tive action that an individual agent selects in response to
earthquake shaking or a tsunami warning in this model. Ac-
cording to the Coos Bay community survey, 81 % of the re-
spondents intend to evacuate, regardless of their location in-
side (“‘compliant evacuees”) or outside (“shadow evacuees”)
of the tsunami inundation zone. Thus, 81 % is used as the
evacuation participation rate in this model, with a sensitivity
analysis on how a change in this rate would impact tsunami
mortalities. Evacuees’ origins are determined by their loca-
tions when an earthquake occurs or a tsunami warning is re-
ceived. Thus, there is spatial and temporal variability in the
distribution of population locations based on factors such as
time of day, season, and weather (Wang et al., 2016). This
study utilized 2020 US census (United State Census Bureau,
2020) data to define the origins of 26 363 agents. The sce-
nario examined in this study assumes that all residents are at
home, as on a weekend or at night.

Nat. Hazards Earth Syst. Sci., 23, 733-749, 2023

The tsunami evacuation intentions questionnaire asked re-
spondents to report how much time they expected it would
take them to prepare to evacuate. As shown in Eq. (1),

'Botxa—le—ﬂx

fa,B)= r@

for x>0 o,8>0, (1)

where x means the milling time and f(x) means the prob-
ability of having that milling time for an individual. Ap-
plying a maximum likelihood estimation to the survey data
produced o = 1.659 and B = 6.494 as the estimated parame-
ters of the gamma function for the milling time distribution.
As Fig. 2 indicates, both the Weibull and lognormal distri-
butions provided poorer fits (Akaike information criterion,
AIC; Bayesian information criterion, BIC) to the data.
Transportation mode choice is a critical factor that affects
evacuation success. Agents can choose to evacuate either by
foot or by personal vehicle in this model (0: car; 1: foot). In
Coos Bay, 70 % of the survey respondents reported that they

https://doi.org/10.5194/nhess-23-733-2023
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Figure 2. Expected preparation time from survey data and fitted models: (a) data histogram and probability density function, (b) quantile—
quantile plot, (¢) cumulative density function, and (d) probability—probability plot.

would evacuate by car, and only 27 % expected to evacuate
by foot (Chen et al., 2021).

Destination choice is also obtained from the survey, and a
probability of choosing a specific destination is assigned to
each evacuee based on their distance from the available des-
tinations. A gamma function yields the best goodness-of-fit
statistics among the three candidate functions for the des-
tination selection probability, shown in Fig. 3. Probability
functions were developed separately for evacuation by foot
and by car, with maximum likelihood estimation yielding
o = 1.920 and g = 500 for evacuation by foot and o« = 1.646
and B = 1.745 for evacuation by car.

After agents choose their expected evacuation destina-
tions, the model assigns them to the shortest route that is
calculated by the A* algorithm (Hart et al., 1968) on the road
network. To simulate the behavior of people who encounter
an evacuation impediment such as flood on the road while
evacuating, agents divert to an alternate route. Specifically,
when agents observe that the next intersection is inundated
by water or damaged by hazards (i.e., see Sect. 2.3.3), they
select a different leg of the intersection. The model assumes
an equal probability of choosing each of the unblocked legs.

The mechanism for assigning a travel speed varies, de-
pending on which transportation mode an agent chooses
(foot or car). Driving speed is determined by the IDM car-
following model (Treiber et al., 2000) and the vehicle speed
limit on that roadway. Pedestrian walking speed is deter-

https://doi.org/10.5194/nhess-23-733-2023

mined by the slope of the ground on which the pedestri-
ans are walking, through an advanced hiking function (To-
bler, 1993; Wood and Schmidtlein, 2012). To adjust for dif-
ferences in walking speeds between daily walking and a
tsunami evacuation, we modified the hiking function based
on tsunami evacuation drill data that were collected from
2016-2018 (Cramer et al., 2018). In these evacuation drills,
136 evacuees’ trajectory data (source: author) were recorded
by GNSS-embedded (global navigation satellite system) mo-
bile devices. Data on walking speed and slope were used to
modify the hiking function; the modified function is shown
in Eq. (2).

Speed —1.65 x 6(72.30><abs(Slopefo.OO4)) (2)

To reduce computational cost and optimize simulation
speed, the model assigns an average slope to the road seg-
ment between each pair of intersections, and agents who
walk on that segment will have the walking speed that is
determined by Eq. (2). When conducting sensitivity analy-
ses for different values of walking speed, the modified hik-
ing function is disabled when a fixed walking speed is used.
Moreover, pedestrian walking speed is reduced based on the
conservative value when liquefaction and landslide block a
road surface (Schmidtlein and Wood, 2015; Gabel et al.,
2019). More details are discussed in Sect. 2.3.3.

Nat. Hazards Earth Syst. Sci., 23, 733-749, 2023
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and (d) are cumulative distribution functions.

2.3.2 Built environment

The model’s built-environment components include the road
network and non-retrofitted bridges. The transportation net-
work was obtained from OpenStreetMap (OSM, 2021) and
updated manually by the authors based on the 2020 Google
Earth satellite image (Google, 2021). All roads are consid-
ered to be two-way one-lane streets, as a conservative as-
sumption (Wang et al., 2016). This model also assumes that
all agents, whether as pedestrians or in cars, follow the road
network to their destinations. Alternative evacuation routes
are not included in this simulation, such as swimming across
streams or cutting through open fields or parking lots.

Non-retrofitted bridges were located using a study by
Gabel et al. (2019). These bridges are not expected to survive
after an M9 CSZ earthquake (Gabel et al., 2019), so they are
assumed to be undrivable and unwalkable in this analysis.
These bridges are the following:

— Virginia Ave. on Pony Creek, (1) in Fig. 4
— Vermont Ave. on Pony Creek, (2) in Fig. 4
— Broadway Ave. on Pony Creek, (3) in Fig. 4.

2.3.3 Natural environment

Natural-environment components that are integrated in this
model include tsunami inundation, terrain elevation and

Nat. Hazards Earth Syst. Sci., 23, 733-749, 2023

slope, liquefaction susceptibility, and landslide susceptibil-
1ty.

Tsunami inundation layer. This model simulates an M9
CSZ earthquake and tsunami using the XXL tsunami inun-
dation model (Witter et al., 2011; Priest et al., 2013). The
tsunami inundation layer includes variation in the flow depth
and velocity every 30 s for each 15 m grid cell from the time
the tsunami is generated to 8 h after it reaches the Coos Bay
peninsula. The inundation model assumes “bare earth”, so
the impact of large buildings on water flow was not included.

Topographical elevation and slope. A 10 m digital eleva-
tion model created by the U.S. Geological Survey (USGS)
(Oregon Geospatial Enterprise Office, 2017) is included as
the surface topographical elevation data. In this simulation,
elevation data are utilized to calculate the surface slope to in-
form agents’ walking speed using the modified hiking func-
tion shown in Eq. (2). The slope is calculated by using ele-
vation change (Ay) divided by the Euclidean distance (Ax)
change between two points, expressed as (slope = Ay/Ax).

Landslides and liquefaction. Evacuation routes can be-
come undrivable and even unwalkable due to liquefaction,
rockfalls, and lateral spreading (Gabel et al., 2019). Sus-
ceptibility to both landslide and liquefaction for Coos Bay
(Franczyk et al., 2019) is included in this model to estimate
which road segments will be disrupted.

Landslide susceptibility is calculated based on proximity
to landslide deposits, susceptible geologic units, slope an-
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Figure 4. Coos Bay landslide and liquefaction susceptibility.

gles, and existing landslide inventory. Areas are classified
into four susceptibility levels — low, moderate, high, and very
high (Burns et al., 2016; Franczyk et al., 2019). Liquefaction
susceptibility is calculated from the cohesionless sediments,
based on Youd and Perkins (1978) and Madin and Burns
(2013). Areas are classified into five susceptibility levels —
very low, low, moderate, high, and very high. This produces
conservative liquefaction levels because it assumes relatively
shallow groundwater (Madin and Burns, 2013).

Table 3 shows the landslide and liquefaction susceptibility
levels that are used in this simulation. The spatial areas hav-
ing a moderate or higher susceptibility level of either land-
slide or liquefaction are assumed to be disrupted after an M9
CSZ earthquake. We consider the moderate level as a thresh-
old to be conservative and realistic. This threshold also has
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been used by local authorities (Gabel et al., 2019) to build
the Coos Bay BtW model. As shown in Fig. 4, 54 % of the
transportation network is exposed to at least a moderate level
of liquefaction-landslide susceptibility and 21 % is exposed
to at least a high level. Thus, the transportation network is
likely to be significantly disrupted after an M9 earthquake.

In this simulation, a street that is predicted to be disrupted
by landslide or liquefaction is assigned a rocky or muddy
road surface that prevents evacuees from driving through the
impediment and makes walking the only feasible transporta-
tion mode from that point. Wood and Schmidtlein (2012)
adapted a speed conservation value from Soule and Goldman
(1972), which is applied to the travel speed of people walking
on muddy or rocky terrain surfaces. These values are shown
in Table 4.
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Table 3. Landslide and liquefaction susceptibility for network disruption in ABMS.

Landslide susceptibility

Low (0) Moderate (1) High (1) Very high (1)
Very low (0) 0 12 1b 1b
Low (0) 0 12 1b 1°
Liquefaction susceptibility =~ Moderate (1) 12 12 1b 1b
High (1) 1b 1b 1b 1b
Very high (1) 1° 1b 1b 1b

Using a disjunctive decision rule, a spatial area with an index value of at least a moderate (54 %) or high (21 %) level is assumed to

be disrupted after an M9 earthquake.
@ Combined susceptibility level — moderate.
b Combined susceptibility level — high.

Table 4. Speed conservation values used in modeling pedestrian
walking speed (Wood and Schmidtlein, 2012). Speed conservation
values adapted from Soule and Goldman (1972).

Feature type Speed conservation value

Road (paved) 1
Unpaved trails 0.9091
Dune trails (packed sand) 0.5556
Muddy bog 0.5556
Beach (loose sand) 0.476

3 Results and discussion

Figure 5 shows the overall visualization of one run of the
model from 0 to 60 min after the M9 earthquake. The model
assumes that (1) the deformation of the subduction zone
completes and tsunami is triggered at the source when ¢t =
Omin, (2) people start the milling process and evacuate ei-
ther by foot or by car, and (3) the first tsunami wave (the
highest in a CSZ M9 scenario) arrives in the Barview area
(due to being the most westward) at t = 15-20 min and starts
to inundate to the west shoreline of the peninsula. The first
wave arrives at the north side around # = 30 min and the east
side of Coos Bay around ¢ = 40 min. Most mortalities are ob-
served on roads located in the west shoreline area, followed
by the north and east sides.

Two scenarios are examined in this study. Scenario 1 as-
sumes that the tsunami is the only cause of disaster impacts
in the community. Consequently, the road network functions
at full capacity until it is inundated by the tsunami waves.
Thus, Scenario 1 provides a baseline for assessing the sensi-
tivity of the modeling results to a plausible range of vari-
ation in the values of the input variables. Scenario 2 as-
sumes that an M9 earthquake damages the road network
and impedes the evacuation process. According to this sce-
nario, driving may not be possible due to the heavy dis-
ruption of roads in large-scale landslides, liquefaction, lat-
eral spreading, dropped power lines, debris, and traffic con-
gestion. This assumption has also been applied to previous
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studies of earthquake and tsunami preparedness in Washing-
ton (WGS, 2021), Oregon (DOGAMI, 2020), and California
(Cal OES, 2021).

3.1 Scenario 1: variable testing with no network
disruption

Sensitivity analysis is applied to examine the impact of vari-
ation in each model variable on the expected tsunami mortal-
ity rate. A Monte Carlo method is employed to capture the
probabilistic nature of the inputs and to create an interpretive
mean.

3.1.1 Evacuation decision and milling time

Figure 6 shows the sensitivity analysis for the impact of the
evacuation participation rate and milling time on the mortal-
ity rate among the inundation zone population (100 % mea-
sures only the population living in the inundation zone). Con-
sistent with previous studies (Mas et al., 2013; Wang et al.,
2016), these two variables have a significant impact on the
estimated mortality rate. The larger the percentage of people
who decide to evacuate and the less time people delay be-
fore departure, the lower the mortality rate will be. However,
the impact of milling time on the mortality rate is complex,
which yields two conclusions.

First, the change in the evacuation participation rate shows
a smaller impact when milling time increases. For example,
there is no decrease in mortality rate when evacuation partici-
pation changes from 10 % to 100 % at 50 min of milling time,
whereas there is an 88 % mortality rate decrease when evac-
uation participation changes from 10 % to 100 % at 5 min of
milling time. That is, the effect of decreasing milling time
depends on the evacuation participation rate.

Second, the curves that represent high evacuation partici-
pation rates in Fig. 6 show an “S” shape that indicates the rate
of change in mortality is much larger in the middle range of
the x axis from 15 to 25 min. Given that the first tsunami
wave will arrive on the west side of the Coos Bay penin-
sula around 15 min after the earthquake, the mortality rate
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Figure 6. Estimated mortality rate of the inundation zone population as a function of milling time and evacuation participation.

will increase substantially as milling time increases past that
threshold. Conversely, when milling time is less than 5 min
and 100 % of people decide to evacuate, the curve shows that
the mortality rate is extremely low (less than 2 %). Thus, the
results indicate that reducing the milling time is an important
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objective for tsunami preparedness programs, but it will be
most effective when the evacuation participation rate is high.

This result confirms the policy of public authorities on
the US west coast (WGS, 2021; DOGAMI, 2020; Cal OES,
2021) of emphasizing “Do Not Wait” in their tsunami edu-
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cational brochures and other outreach products to encourage
people to depart as soon as possible after earthquake shaking
subsides. Although our simulation findings support this rec-
ommendation, gaps remain in the response from local resi-
dents. Comparing the survey results of the two variables from
Coos Bay (gray areas) with the sensitivity analysis curves
shows that the mortality rate is fairly low if based on resi-
dents’ intended milling time, but it can still be improved by
further decreasing milling time and encouraging more people
to evacuate. The same holds true for Crescent City, Califor-
nia (Chen et al., 2021).

3.1.2 Mode choice and walking speed

Coastal authorities in the CSZ advise evacuating by foot if
possible, not only because of potential traffic congestion but
also because the road network is likely to be so disrupted that
driving may not be feasible to evacuate from a local tsunami.
Of course, roads could be flooded by a distant tsunami for
which no earthquake shaking could be felt. However, dis-
tant tsunamis such as those from the 1964 Alaska and 2011
Japanese tsunamis will take hours to reach the Oregon coast.
Consequently, people will have the option of driving when
distant tsunamis threaten. Thus, research is needed to exam-
ine authorities’ recommendation to evacuate by foot and help
emergency managers decide when to advise pedestrian evac-
uation instead of vehicular evacuation. This section analyzes
the impact of mode choice and walking speed during evacua-
tion from a local tsunami and answers the following question.
Can walking beat driving? If so, in what situations?

Figure 7 shows how the choice of walking speed and mode
influence tsunami mortality estimates. As walking speed in-
creases beyond 1ms~!, the estimated mortality rate de-
creases as the walking percentage increases. Conversely, as
walking speed decreases below 1 ms~!, the estimated mor-
tality rate decreases as fewer people choose to walk. This
result indicates that if everyone can walk faster than 1 m s
it is beneficial for more people to evacuate on foot. Given
that 0.91 ms~' is a slow walking speed and 1.22ms~! is
the threshold for a moderate walking speed for unimpaired
adults (Knoblauch et al., 1996; Langlois et al., 1997; Wood
and Schmidtlein, 2012; Fraser et al., 2014), it follows that
evacuating on foot is better than evacuating by car if peo-
ple can walk faster than the threshold for a slow walking
speed. This finding also implies that if people who can walk
faster than 1 ms~! choose to walk, road network capacity
can be saved for mobility-impaired people so they can avoid
traffic congestion during their evacuation. This is consistent
with the finding that 30 % evacuation by car and 70 % evac-
uation by foot is the critical threshold for tsunami evacua-
tion in Seaside (Mostafizi et al., 2019b). Similarly, vehicular
traffic capacity can be saved for those 30 % of the risk area
population so they can reach safety in time. However, the
following question remains. Who should evacuate by car?
Even though our finding suggests that most unimpaired peo-
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ple should walk to save traffic capacity for the vulnerable
population, risk area residents may behave differently. The
survey results show that only 21 % of the respondents (95 %
confidence interval (C.L.): 16 %—27 %) expect to evacuate by
foot in Coos Bay (Chen et al., 2021), even though Oregon
authorities encourage everyone to do so (DOGAMI, 2020).
It is unclear whether this disparity is due to people not hav-
ing received this recommendation or if they have received it
and have chosen not to comply with it.

It should be noted that the results shown in Fig. 7 describe
the overall picture of evacuation in Coos Bay, but the situa-
tion may be different for people living in unique areas that are
a long distance from safety, so smaller-scale ABMS or BtW
analyses are needed. However, given that the high-ground
spine in the middle of the Coos Bay peninsula provides a
nearby evacuation destination, few people are likely to be in
that situation.

3.1.3 Other variables and combinations of variables

Many variables may vary during the evacuation, and local au-
thorities need to prioritize resources by deciding which vari-
ables or combinations of variables have the greatest impact
on expected mortalities. Figure 8 shows the impact on the
mortality rate of variation in the plausible range of single
and multiple variables. The estimated mortality rate for the
Coos Bay inundation zone is just over 57 % if all of the vari-
ables are at their most probable values (the vertical line in the
center of the figure) and the bottom bar shows that there is al-
most no variation in mortality rate as car speed varies from
its plausible lower bound (15 mph; 1 mph=1.61kmh™") to
its plausible upper bound (35 mph), whereas it ranges from
45 %-85 % if milling time ranges from 0-20 min. However,
the results show that variation in milling time and evacua-
tion decision have the greatest impact on expected mortality
when these variables are analyzed individually. This result
is consistent with the discussion for Figs. 6 and 7 and pre-
vious simulation research (Mas et al., 2013; Mostafizi et al.,
2019b). Variation in distance to destination also has a rel-
atively large impact range. Specifically, the lowest mortal-
ity occurs when evacuees choose the closest destination and
increases when they choose farther destinations. This is be-
cause agents tend to spend more time traveling on the roads
within the inundation area when they choose farther destina-
tions. This is especially true for residents living on the west
coastal shoreline where the Cape Arago Highway stretches
along the shoreline in the inundation zone as the only major
road to connect this area to other regions in Coos Bay. When
a tsunami strikes, some people who lack knowledge about
the inundation area and first-wave arrival time may travel on
this highway to seek safety farther inland. We observed this
“overshooting” behavior in the survey data from both Coos
Bay and Crescent City (Chen et al., 2021). The maximum car
speed has the lowest impact (2 % on the mortality rate) of all
variables, which is consistent with findings from Mostafizi
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Figure 7. Mortality rate changes by mode choice and walking speed.

et al. (2019b) showing the impact range of max car speed
is about 2.5 percentage points from 15-35 mph. This finding
confirms that driving travel speed is not determined by the
maximum speed one can drive at any moment but, rather, by
overall road capacity and traffic conditions, which are well-
described in traffic flow theory.

The upper panel in Fig. 8 shows the impact range of si-
multaneously changing two or more variables to their lowest
plausible levels. Although decision + distance and walking
speed + decision have the largest ranges of impact for any
pair of variables, there is a similar impact range for other
pairs. However, the results show even greater reductions in
mortality estimates when more than two variables are at their
lowest plausible levels. For example, when optimizing evac-
uation participation and milling time and removing desti-
nations in the inundation zone, the estimated mortality rate
shrinks to less than 20 %. When optimizing evacuation par-
ticipation and milling time and choosing the closest destina-
tions outside of the inundation zone (the bar second to the
top), the results show that almost all residents can be saved.
Moreover, increasing walking speed from 1.3 to 5Sms~! in
addition to four other factors (the top bar) produces a simi-
lar result. This result indicates that even evacuees who walk
slowly are very likely to reach safety in time if they leave
immediately for a destination outside of the inundation zone
by the shortest route. Local authorities should emphasize this
finding when deciding what information to communicate in
their tsunami preparedness programs.

3.2 Scenario 2: considering network disruption when
only walking is available

This section analyzes how network disruptions impact
tsunami mortalities when walking is the only option due to
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road network disruption of the type described in Sect. 2.3.3.
Three scenarios are included in this analysis: (1) when ar-
eas with at least moderate landslide-liquefaction suscep-
tibility are disrupted, (2) when only areas with at least
high landslide-liquefaction susceptibility are disrupted, and
(3) when there is no network disruption.

As Fig. 9 indicates, there is a nonlinear decrease in esti-
mated mortality as walking speed increases for all three sce-
narios. That the slopes of the lines decrease as walking speed
increases indicates that the marginal effect of changing walk-
ing speed on estimated mortality is larger in the lower part
of the range. For example, an increase from 0.5ms ™! (slow
walk) to 1 ms~! (normal walk) would yield a 24 percent-
age point decrease in estimated mortality. However, when ar-
eas of the road network with at least moderate susceptibility
are disrupted, the model shows an increase of 9 percentage
points in estimated mortality for all walking speeds in the
0.25-1.5ms~! range, compared with the results for no dis-
ruption. When only areas with a high level of susceptibil-
ity are disrupted, there is only a slight decrease in estimated
mortality, compared with the results for moderate disruption.
When walking speed increases to 1.5ms™! (fast walk), the
impact of network disruption is minimal and almost all peo-
ple can successfully evacuate. Previous research on Seaside
(Wang et al., 2016) found a similar decrease to the one shown
in Fig. 9. In their study, estimated mortality decreased to zero
when walking speed increased to 2ms~! when there was no
disruption. This similarity suggests that similar results would
be found in communities whose inundation zones have simi-
larly ready access to high ground.

The results from the ABMS is consistent with the results
from the BtW model established for Coos Bay (Gabel et al.,
2019) with slight differences shown in Fig. 9. The similar-
ity between the two models is likely due to the similar in-
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put parameters. For example, the survey data from Coos Bay
suggest a gamma distribution (o = 1.66, 8 = 6.49) to model
milling time with mean of 10.77 min; this distribution is used
in the ABMS to define agents’ milling time, whereas the
BtW model assumes a 10min fixed milling time (Gabel et
al., 2019). The slight differences between the two results are
also due to the inputs of the two models: the parameters are
stochastic in the ABMS but fixed in the BtW model, even
though they have similar means. The resulting similarities
provide convergent validation of the two models so that ju-
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risdictions can choose either one depending on the purpose
of study. The two models should not be considered mutually
exclusive; a mixed-method model could be applied to more
accurately assess evacuation results (Wood and Schmidtlein,
2012). However, the convergence is based on the assumption
that the survey respondents have accurate estimates of the
time it takes them to prepare to leave. This is probably the
case for those who have “grab and go” kits but is less likely
for those who do not. In particular, research on the planning
fallacy suggests that the survey data are underestimates for
some respondents (Buehler et al., 2010).

4 Conclusion

Although previous tsunami evacuation simulations have con-
sidered the natural environment, built environment, and so-
cial system in their models, many data inputs were arbitrary
assumptions or adapted from studies of non-emergency situ-
ations, so the simulation results may not accurately reflect
what would happen in a tsunami evacuation. The present
study addressed this limitation by integrating behavior data
from community surveys into an ABMS for a CSZ com-
munity. Four distinct contributions of this study are the fol-
lowing: (1) using the PADM as a guide for collecting data
on people’s expected evacuation behavior and the integra-
tion of these data into the ABMS, (2) using empirical data
from evacuation drills to refine people’s evacuation walk-
ing speeds, (3) considering the impact of earthquake-caused

https://doi.org/10.5194/nhess-23-733-2023



C. Chen et al.: An interdisciplinary agent-based evacuation model 747

landslides and liquefaction on tsunami evacuation as a sub-
stantial aspect of the multi-hazard situation, and (4) integrat-
ing the LCD component from the Wood and Schmidtlein
(2012) BtW model — conservation of walking speed by sur-
face terrain and slope. By integrating the natural environ-
ment, built environment, and social system, this model in-
corporates substantial aspects of the real world into a multi-
hazard ABMS. The simulation results indicate that milling
time and evacuation participation have significant nonlinear
impacts on tsunami mortality estimates, which is consistent
with Wang et al. (2016). The impact of milling time on the
mortality rate shows an “S” curve, so the impact of milling
time on estimated mortality varies the most when evacuation
participation is highest. When comparing which transporta-
tion mode people should take, the model result shows that
more people can reach safety in time when they choose to
walk and are able to walk faster than 1 ms~! (slow walk).
These findings support an important point for tsunami edu-
cation programs in CSZ communities. Since the majority of
Coos Bay respondents expected to evacuate by car instead
of on foot, local authorities need to emphasize the need for
pedestrian evacuation in their tsunami education programs.

This study also makes a significant contribution to under-
standing the impact of different variables on tsunami mortal-
ity estimates. Evacuation success is more sensitive to walk-
ing speed, milling time, evacuation participation, and choice
of the closest safe location than to other variables. Consistent
with previous research, car speed has little impact on evacua-
tion results. Further, this study also compared the sensitivities
of different combinations of variables. Tsunami mortality es-
timates are minimized when maximizing evacuation partic-
ipation, minimizing milling time, and choosing the closest
safe destination outside of the inundation zone. Furthermore,
to validate this model, this study compared the ABMS re-
sults with the BtW model results from Gabel et al. (2019) for
Coos Bay. Even though the BtW model relies on a geograph-
ical information system rather than an ABMS, this study’s
preliminary comparison indicates a good match between re-
sults from the two models.

Finally, every study has limitations, as does this one. The
agent decision and behavior is based on survey data and
drill data, rather than data from an actual tsunami evac-
uation, so the results might not accurately predict the re-
sponse to an actual tsunami. Future research should inves-
tigate (1) the impact of more complex agent—agent interac-
tions, such as leader—follower behaviors and grouping behav-
iors (Chen et al., 2020), as well as car abandonment (Wang
et al., 2016); (2) the impact of building damage from earth-
quake before tsunami (Gomez-Zapata et al., 2021); (3) au-
thorities’ decision and warning dissemination processes for
distant tsunamis; and (4) validation of the model using data
from actual tsunami evacuations.
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