Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-507-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-507-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tsunami scenario triggered by a submarine landslide offshore of northern Sumatra Island and its hazard assessment
Haekal A. Haridhi
Department of Marine Sciences, Faculty of Marine and Fisheries,
Universitas Syiah Kuala, Banda Aceh, Indonesia
Research Center for Marine Sciences and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
Tsunami and Disaster Mitigation Research Center, Universitas Syiah
Kuala, Banda Aceh, Indonesia
Institute of Earth Science, Academia Sinica, Taipei, Taiwan
Kuo Liang Wen
Department of Earth Sciences, National Central University, Taoyuan,
Taiwan
Arif Mirza
Ocean Center, National Taiwan University, Taipei, Taiwan
Syamsul Rizal
Department of Marine Sciences, Faculty of Marine and Fisheries,
Universitas Syiah Kuala, Banda Aceh, Indonesia
Research Center for Marine Sciences and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
Syahrul Purnawan
Department of Marine Sciences, Faculty of Marine and Fisheries,
Universitas Syiah Kuala, Banda Aceh, Indonesia
Research Center for Marine Sciences and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
Ilham Fajri
Department of Capture Fisheries, Marine and Fisheries Polytechnic
Aceh, Great Aceh, Indonesia
Frauke Klingelhoefer
Ifremer, Department of Marine Geosciences, Plouzané, France
Char Shine Liu
Ocean Center, National Taiwan University, Taipei, Taiwan
Chao Shing Lee
Institute of Geosciences, National Taiwan Ocean University, Keelung, Taiwan
Crispen R. Wilson
ENC, Washington, D.C., USA
Tso-Ren Wu
Graduate Institute of Hydrological and Oceanic Sciences, National
Central University, Taoyuan, Taiwan
Ichsan Setiawan
Department of Marine Sciences, Faculty of Marine and Fisheries,
Universitas Syiah Kuala, Banda Aceh, Indonesia
Research Center for Marine Sciences and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
Graduate School of Mathematics and Applied Sciences, Universitas
Syiah Kuala, Banda Aceh, Indonesia
Van Bang Phung
Institute of Earth Science, Academia Sinica, Taipei, Taiwan
Related authors
No articles found.
Tien-Chi Liu, Tso-Ren Wu, and Shu-Kun Hsu
Nat. Hazards Earth Syst. Sci., 22, 2517–2530, https://doi.org/10.5194/nhess-22-2517-2022, https://doi.org/10.5194/nhess-22-2517-2022, 2022
Short summary
Short summary
The findings from historical reports and numerical studies suggest the 1781 Jiateng Harbor flooding and the 1782 tsunami should be two independent incidents. Local tsunamis generated in southwest Taiwan could be responsible for the 1781 flooding, while the existence of the 1782 tsunami remains doubtful. With the documents of a storm event on 22 May 1782, the possibility that the significant water level of the 1782 tsunami was caused by storm surges or multiple hazards could not be ignored.
Cited articles
Abrahamson, N. A., Silva, W. J., and Kamai, R.: Summary of the ASK14 ground
motion relation for active crustal regions, Earthq. Spectra, 30,
1025–1055, https://doi.org/10.1193/070913EQS198M, 2014.
Araki, E., Shinohara, M., Obana, K., Yamada, T., Kaneda, Y., Kanazawa, T.,
and Suyehiro, K.: Aftershock distribution of the 26 December 2004
Sumatra-Andaman earthquake from ocean bottom seismographic observation,
Earth, Planets Sp., 58, 113–119, https://doi.org/10.1186/bf03353367, 2006.
Badan Metereologi Klimatologi dan Geofisika: Pedoman Pelayanan Peringatan Dini Tsunami InaTEWS Edisi kedua, BMKG, Jakarta, 158 pp., 2012.
Barber, A. J. and Milsom, J. S. (Eds): Sumatra: geology, resources and
tectonic evolution, Geological Society of London, Oxford, 1–304, https://doi.org/10.1144/GSL.MEM.2005.031, 2005.
Berglar, K., Gaedicke, C., Ladage, S., and Thöle, H.: The Mentawai
forearc sliver off Sumatra: A model for a strike-slip duplex at a regional
scale, Tectonophysics, 710–711, 225–231, https://doi.org/10.1016/j.tecto.2016.09.014,
2017.
BIG: DEMNAS – Seamless Digital Elevation Model (DEM) dan Batimetri Nasional, Badan Inf. Geospasial, https://tanahair.indonesia.go.id/demnas/#/ (last access: 26 July 2022), 2018.
Bishop, A. W.: The use of the slip circle in the stability analysis of slopes, Geotechnique, 5, 7–17, https://doi.org/10.1680/geot.1955.5.1.7, 1955.
Boore, D. M., Stewart, J. P., Seyhan, E., and Atkinson, G. M.: NGA-West2
equations for predicting PGA, PGV, and 5 % damped PSA for shallow crustal
earthquakes, Earthq. Spectra, 30, 1057–1085, https://doi.org/10.1193/070113EQS184M,
2014.
Campbell, K. W. and Bozorgnia, Y.: NGA-West2 ground motion model for the
average horizontal components of PGA, PGV, and 5 % damped linear
acceleration response spectra, Earthq. Spectra, 30, 1087–1114,
https://doi.org/10.1193/062913EQS175M, 2014.
Chiou, B. S. J. and Youngs, R. R.: Update of the Chiou and Youngs NGA model
for the average horizontal component of peak ground motion and response
spectra, Earthq. Spectra, 30, 1117–1153, https://doi.org/10.1193/072813EQS219M,
2014.
Dugan, B. and Flemings, P. B.: Fluid flow and stability of the US
continental slope offshore New Jersey from the Pleistocene to the present,
Geofluids, 2, 137–146, https://doi.org/10.1046/j.1468-8123.2002.00032.x, 2002.
Duncan, J. M.: State of the art: limit equilibrium and finite-element
analysis of slopes, J. Geotech. Eng., 122, 577–596,
https://doi.org/10.1061/(asce)0733-9410(1996)122:7(577), 1996.
Dziewonski, A. M., Chou, T.-A., and Woodhouse, J. H.: Determination of
earthquake source parameters from waveform data for studies of global and
regional seismicity, J. Geophys. Res., 86, 2825–2852, 1981.
Ekström, G., Nettles, M., and Dziewonski, A. M.: The global CMT project
2004–2010: Centroid-moment tensors, Phys. Earth Planet. Inter.,
200–201, 1–9, https://doi.org/10.1016/j.pepi.2012.04.002, 2012.
Fernández-Blanco, D., Philippon, M., and von Hagke, C.: Structure and
kinematics of the Sumatran Fault System in North Sumatra (Indonesia),
Tectonophysics, 693, 453–464, https://doi.org/10.1016/j.tecto.2016.04.050, 2016.
Gasperini, L., Zaniboni, F., Armigliato, A., Tinti, S., Pagnoni, G., Sinan,
M., Marco, Ö., and Francesca, L.: Tsunami potential source in the eastern
Sea of Marmara (NW Turkey), along the North Anatolian Fault system,
Landslides, (June), https://doi.org/10.1007/s10346-022-01929-0, 2022.
Genrich, J. F., Bock, Y., McCaffrey, R., Prawirodirdjo, L., Stevens, C. W.,
Puntodewo, S. S. O., Subarya, C., and Wdowinski, S.: Distribution of slip at
the northern Sumatra fault system, J. Geophys. Res., 105, 28327–28341,
https://doi.org/10.1029/2000JB900158, 2000.
Ghosal, D., Singh, S. C., Chauhan, A. P. S., and Hananto, N. D.: New insights
on the offshore extension of the Great Sumatran fault, NW Sumatra, from
marine geophysical studies, Geochemistry, Geophys. Geosystems, 13, Q0AF06,
https://doi.org/10.1029/2012GC004122, 2012.
Gusman, A. R., Supendi, P., Nugraha, A. D., Power, W., Latief, H., Sunendar,
H., Widiyantoro, S., Daryono, Wiyono, S. H., Hakim, A., Muhari, A., Wang,
X., Burbidge, D., Palgunadi, K., Hamling, I., and Daryono, M. R.: Source
model for the tsunami inside Palu Bay following the 2018 Palu earthquake,
Indonesia, Geophys. Res. Lett., 46, 8721–8730,
https://doi.org/10.1029/2019gl082717, 2019.
Hampton, M. A., Lee, H. J., and Locat, J.: Submarine landslides, Rev.
Geophys., 34, 33–59, https://doi.org/10.1029/95RG03287, 1996.
Hanks, T. C. and Kanamori, H.: A moment magnitude scale, J. Geophys. Res.,
84, 2348–2350, https://doi.org/10.1029/JB084iB05p02348, 1979.
Harbitz, C. B., Løvholt, F., and Bungum, H.: Submarine landslide tsunamis:
How extreme and how likely?, Nat. Hazards, 72, 1341–1374,
https://doi.org/10.1007/s11069-013-0681-3, 2014.
Haridhi, H. A., Nanda, M., Wilson, C. R., and Rizal, S.: Preliminary study of
the sea surface temperature (SST) at fishing ground locations based on the
net deployment of traditional purse-seine boats in the northern waters of
Aceh – A community-based data collection approach, Reg. Stud. Mar. Sci.,
8, 114–121, https://doi.org/10.1016/j.rsma.2016.10.002, 2016.
Heidarzadeh, M. and Satake, K.: Source properties of the 1998 July 17 Papua
New Guinea tsunami based on tide gauge records, Geophys. J. Int., 202,
361–369, https://doi.org/10.1093/gji/ggv145, 2015.
Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T., and Takagawa, T.:
Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian
Ocean: March 2016 Mw7.8 event and its relationship with the April 2012 Mw
8.6 event, Geophys. J. Int., 211, 1601–1612, https://doi.org/10.1093/gji/ggx395,
2017.
Heidarzadeh, M., Muhari, A., and Wijanarto, A. B.: Insights on the Source of
the 28 September 2018 Sulawesi Tsunami, Indonesia Based on Spectral Analyses
and Numerical Simulations, Pure Appl. Geophys., 176, 25–43,
https://doi.org/10.1007/s00024-018-2065-9, 2019.
Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., and Wijanarto, A.
B.: Numerical modeling of the subaerial landslide source of the 22 December
2018 Anak Krakatoa volcanic tsunami, Indonesia, Ocean Eng., 195, 106733,
https://doi.org/10.1016/j.oceaneng.2019.106733, 2020.
Heinrich, P. H., Piatanesi, A., and Hébert, H.: Numerical modelling of
tsunami generation and propagation from submarine slumps: The 1998 Papua New
Guinea event, Geophys. J. Int., 145, 97–111,
https://doi.org/10.1111/j.1365-246X.2001.00336.x, 2001.
Hornbach, M. J., Braudy, N., Briggs, R. W., Cormier, M. H., Davis, M. B.,
Diebold, J. B., Dieudonne, N., Douilly, R., Frohlich, C., Gulick, S. P. S.,
Johnson, H. E., Mann, P., McHugh, C., Ryan-Mishkin, K., Prentice, C. S.,
Seeber, L., Sorlien, C. C., Steckler, M. S., Symithe, S. J., Taylor, F. W.,
and Templeton, J.: High tsunami frequency as a result of combined
strike-slip faulting and coastal landslides, Nat. Geosci., 3, 783–788,
https://doi.org/10.1038/ngeo975, 2010.
Kawata, Y., Benson, B. C., Borrero, J. C., Borrero, J. L., Daoies, H. L.,
Lange, W. P., Imamura, F., Letz, H., Nott, J., and Synolakis, C. E.: Tsunami
in papua New Guinea was as intense as first thought, Eos (Washington DC),
80, 101–105, https://doi.org/10.1029/99EO00065, 1999.
Lee, J. H. and Edwards, D.: Regional method to assess offshore slope stability,
J. Geothechnical Eng., 112, 489–509,
doi:doi.org/10.1061/(ASCE)0733-9410(1986)112:5(489), 1986.
Liu, P. L.-F., Cho, Y.-S., Briggs, M. J., Kanoglu, U., and Synolakis, C. E.:
Runup of solitary waves on a circular island, J. Fluid Mech., 302, 259–285,
https://doi.org/10.1017/S0022112095004095, 1995.
Liu, X. and Zhao, D.: Upper and lower plate controls on the great 2011
Tohoku-oki earthquake, Sci. Adv., 4, eaat4396, https://doi.org/10.1126/sciadv.aat4396, 2018.
Malod, J. A. and Kemal, B. M.: The Sumatra margin: oblique subduction and
lateral displacement of the accretionary prism, Geol. Soc. London, Spec.
Publ., 106, 19–28, https://doi.org/10.1144/GSL.SP.1996.106.01.03, 1996.
Massart, D. L., Smeyers-Verbeke, J., Capron, X., and Schlesier, K.: Visual presentation of data by means of box plots, LC-GC Eur., 18, 215–218, 2005.
Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., and Løvholt, F.:
Submarine landslides: processes, triggers and hazard prediction, Philos.
Trans. R. Soc. A, 364, 2009–2039, https://doi.org/10.1098/rsta.2006.1810, 2006.
McCaffrey, R.: Oblique plate convergence, slip vectors, and forearc
deformation, J. Geophys. Res., 97, 8905–8915, https://doi.org/10.1029/92JB00483,
1992.
McCloskey, J., Nalbant, S. S., and Steacy, S.: Earthquake risk from
co-seismic stress, Nature, 434, 291, https://doi.org/10.1038/434291a, 2005.
Moore, G. F., Curray, J. R., Moore, D. G., and Karig, D. E.: Variations in
geologic structure along the Sunda fore arc, Northeastern Indian Ocean, in:
In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, edited by:
Hayes, D. E., 23, 145–160, 1980.
Muhari, A., Heidarzadeh, M., Susmoro, H., Nugroho, H. D., Kriswati, E.,
Supartoyo, S., Wijanarto, A. B., Imamura, F., and Arikawa, T.: The December
2018 Anak Krakatau volcano tsunami as inferred from post-tsunami field
surveys and spectral analysis, Pure Appl. Geophys.,
176, 1–15,
https://doi.org/10.1007/s00024-019-02358-2, 2019.
Nalbant, S. S., Steacy, S., Sieh, K., Natawidjaja, D., and McCloskey, J.:
Earthquake risk on the Sunda trench, Nature, 435, 756–757,
https://doi.org/10.1038/nature435755a, 2005.
Newcomb, K. R. and McCann, W. R.: Seismic history and seismotectonics of the
Sunda Arc, J. Geophys. Res., 92, 421–439, https://doi.org/10.1029/JB092iB01p00421,
1987.
NCEI: The National Center for Environmental Information tsunami run-up database, NOAA, doi:doi:10.7289/V5PN93H7, 2019.
Patton, J. R., Stein, R., and Sevilgen, V.: Sunda Strait tsunami launched by
sudden collapse of Krakatau volcano into the sea Cause: Earthquake,
Landslide, or Volcanic Eruption?, Temblor,
https://doi.org/10.32858/temblor.001, 2018.
Phung, V. B., Loh, C. H., Chao, S. H., Chiou, B. S. J., and Huang, B. S.: Ground motion prediction equation for crustal earthquakes in Taiwan, Earthq. Spectra, 36, 2129–2164, https://doi.org/10.1177/8755293020919415, 2020.
Poupardin, A., Calais, E., Heinrich, P., Hébert, H., Rodriguez, M., Leroy, S., Aochi, H., and Douilly, R.: Deep submarine landslide contribution to the 2010 Haiti earthquake tsunami, Nat. Hazards Earth Syst. Sci., 20, 2055–2065, https://doi.org/10.5194/nhess-20-2055-2020, 2020.
Reid, M. E., Christian, S. B., Brien, D. L., and Henderson, S. T.: Scoops3D
– Software to analyze three-dimensional slope stability throughout a
digital landscape: U.S. Geological Survey techniques and methods, in: Book
14, Chapter. A1, p. 218., 2015.
Rizal, S., Haridhi, H. A., Wilson, C. R., Hasan, A., and Setiawan, I.:
Community collection of ocean current data: An example from Northern Aceh
Province, Indonesia, SPC Tradit. Mar. Resour. Manag. Knowl. Inf. Bull., 31,
3–11, 2013.
Romano, F., Trasatti, E., Lorito, S., Piromallo, C., Piatanesi, A., Ito, Y.,
Zhao, D., Hirata, K., Lanucara, P., and Cocco, M.: Structural control on the
Tohoku earthquake rupture process investigated by 3D FEM, tsunami and
geodetic data, Sci. Rep., 4, 5631, https://doi.org/10.1038/srep05631, 2014.
Sibuet, J. C., Rangin, C., Le Pichon, X., Singh, S., Cattaneo, A.,
Graindorge, D., Klingelhoefer, F., Lin, J.-Y., Malod, J., Maury, T.,
Schneider, J.-L., Sultan, N., Umber, M., and Yamaguchi, H.: 26th December
2004 great Sumatra-Andaman earthquake: Co-seismic and post-seismic motions
in northern Sumatra, Earth Planet. Sci. Lett., 263, 88–103,
https://doi.org/10.1016/j.epsl.2007.09.005, 2007.
Sieh, K. and Natawidjaja, D.: Neotectonics of the Sumatran fault, Indonesia,
J. Geophys. Res., 105, 28295–28326, https://doi.org/10.1029/2000JB900120, 2000.
Socquet, A., Hollingsworth, J., Pathier, E., and Bouchon, M.: Evidence of
supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy,
Nat. Geosci., 12, 192–199, https://doi.org/10.1038/s41561-018-0296-0, 2019.
Song, Y. T., Ji, C., Fu, L. L., Zlotnicki, V., Shum, C. K., Yi, Y., and
Hjorleifsdottir, V.: The 26 December 2004 tsunami source estimated from
satellite radar altimetry and seismic waves, Geophys. Res. Lett., 32,
1–5, https://doi.org/10.1029/2005GL023683, 2005.
Syamsidik, Benazir, Luthfi, M., Suppasri, A., and Comfort, L. K.: The 22 December 2018 Mount Anak Krakatau volcanogenic tsunami on Sunda Strait coasts, Indonesia: tsunami and damage characteristics, Nat. Hazards Earth Syst. Sci., 20, 549–565, https://doi.org/10.5194/nhess-20-549-2020, 2020.
Syamsidik, Oktari, R. S., Nugroho, A., Fahmi, M., Suppasri, A., Munadi, K.,
and Amra, R.: Fifteen years of the 2004 Indian Ocean Tsunami in
Aceh-Indonesia: Mitigation, preparedness and challenges for a long-term
disaster recovery process, Int. J. Disaster Risk Reduct., 54,
102052, https://doi.org/10.1016/j.ijdrr.2021.102052, 2021.
Tappin, D. R., Matsumoto, T., Watts, P., Satake, K., McMurtry, G. M.,
Matsuyama, M., Lafoy, Y., Tsuji, Y., Kanamatsu, T., Lus, W., Iwabuchi, Y.,
Yeh, H., Matsumotu, Y., Nakamura, M., Mahoi, M., Hill, P., Crook, K., Anton,
L., and Walsh, J. P.: Sediment slump likely caused 1998 Papua New Guinea
tsunami, Eos, Trans. Am. Geophys. Union, 80, 329–344,
https://doi.org/10.1029/99EO00241, 1999.
Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T.,
Kirby, J. T., Shi, F., Ma, G., Thingbaijam, K. K. S., and Mai, P. M.: Did a
submarine landslide contribute to the 2011 Tohoku tsunami?, Mar. Geol., 357,
344–361, https://doi.org/10.1016/j.margeo.2014.09.043, 2014.
Tsuji, Y., Satake, K., Ishibe, T., Kusumoto, S., Harada, T., Nishiyama, A.,
Kim, H. Y., Ueno, T., Murotani, S., Oki, S., Sugimoto, M., Tomari, J.,
Heidarzadeh, M., Watada, S., Imai, K., Choi, B. H., Yoon, S. B., Bae, J. S.,
Kim, K. O., and Kim, H. W.: Field Surveys of Tsunami Heights from the 2011
off the Pacific Coast of Tohoku, Japan Earthquake, Bull. Earthq. Res. Institute, Univ. Tokyo, 86, 29–279,
http://www.eri.u-tokyo.ac.jp/BERI/pdf/IHO86301.pdf (last access: 26 July 2022), 2011 [in Japanese with English
abstract].
Wang, X.: User manual for COMCOT version 1.7,
https://pdfs.semanticscholar.org/401d/e93588d6c28d0c3984044ad1f95b75dadab0.pdf (last access: 26 July 2022),
2009.
Wang, X. and Liu, P. L.-F.: An analysis of 2004 Sumatra earthquake fault
plane mechanisms and Indian Ocean tsunami, J. Hydraul. Res., 44,
147–154, https://doi.org/10.1080/00221686.2006.9521671, 2006.
Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., and Tappin, D. R.: Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model, Nat. Hazards Earth Syst. Sci., 3, 391–402, https://doi.org/10.5194/nhess-3-391-2003, 2003.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among
magnitude, rupture length, rupture width, rupture area, and surface
displacement, Bull. Seismol. Soc. Am., 84, 974–1002, 1994.
Wessel, P. and Smith, W. H. F.: Free software helps map and display data,
Eos, Trans. Am. Geophys. Union, 72, 441–448, https://doi.org/10.1029/90EO00319,
1991.
Wilson, C. and Linkie, M.: The Panglima Laot of Aceh: a case study in
large-scale community-based marine management after the 2004 Indian Ocean
tsunami, Oryx, 46, 495–500, https://doi.org/10.1017/S0030605312000191, 2012.
Ye, L., Kanamori, H., Rivera, L., Lay, T., Zhou, Y., Sianipar, D., and
Satake, K.: The 22 December 2018 tsunami from flank collapse of Anak
Krakatau volcano during eruption, Sci. Adv., 6, 0–8,
https://doi.org/10.1126/sciadv.aaz1377, 2020.
Zitter, T. A. C., Grall, C., Henry, P., Özeren, M. S., Çagatay, M.
N., Şengör, A. M. C., Gasperini, L., de Lépinay, B. M., and
Géli, L.: Distribution, morphology and triggers of submarine mass
wasting in the Sea of Marmara, Mar. Geol., 329–331, 58–74,
https://doi.org/10.1016/j.margeo.2012.09.002, 2012.
Short summary
Near the northern end of Sumatra, the horizontal movement Sumatran fault zone extended to its northern offshore. The movement of offshore fault segments trigger submarine landslides and induce tsunamis. Scenarios of a significant tsunami caused by the combined effect of an earthquake and its triggered submarine landslide at the coast were proposed in this study. Based on our finding, the landslide tsunami hazard assessment and early warning systems in this region should be urgently considered.
Near the northern end of Sumatra, the horizontal movement Sumatran fault zone extended to its...
Altmetrics
Final-revised paper
Preprint