Articles | Volume 22, issue 11
https://doi.org/10.5194/nhess-22-3607-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3607-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geologic and geodetic constraints on the magnitude and frequency of earthquakes along Malawi's active faults: the Malawi Seismogenic Source Model (MSSM)
Jack N. Williams
CORRESPONDING AUTHOR
School of Earth Sciences, University of Bristol, Bristol, UK
School of Environmental Sciences, Cardiff University, Cardiff, UK
now at: Department of Geology, University of Otago, Dunedin, New Zealand
Luke N. J. Wedmore
School of Earth Sciences, University of Bristol, Bristol, UK
Åke Fagereng
School of Environmental Sciences, Cardiff University, Cardiff, UK
Maximilian J. Werner
School of Earth Sciences, University of Bristol, Bristol, UK
Hassan Mdala
Geological Survey Department, Mzuzu Regional Office, Mzuzu, Malawi
Donna J. Shillington
School of Earth and Sustainability, Northern Arizona University,
Flagstaff, Arizona, USA
Christopher A. Scholz
Department of Earth and Environmental Sciences, Syracuse University, Syracuse, New York, USA
Folarin Kolawole
Department of Earth and Environmental Sciences, Lamont–Doherty Earth Observatory at Columbia University, Palisades, New York, USA
Lachlan J. M. Wright
Department of Earth and Environmental Sciences, Syracuse University, Syracuse, New York, USA
Juliet Biggs
School of Earth Sciences, University of Bristol, Bristol, UK
Zuze Dulanya
Geography and Earth Sciences Department, University of Malawi, Zomba, Malawi
Felix Mphepo
Geological Survey Department, Mzuzu Regional Office, Mzuzu, Malawi
Patrick Chindandali
Geological Survey Department, Zomba, Malawi
Related authors
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021, https://doi.org/10.5194/se-12-187-2021, 2021
Short summary
Short summary
Earthquake hazard is often specified using instrumental records. However, this record may not accurately forecast the location and magnitude of future earthquakes as it is short (100s of years) relative to their frequency along geologic faults (1000s of years). Here, we describe an approach to assess this hazard using fault maps and GPS data. By applying this to southern Malawi, we find that its faults may host rare (1 in 10 000 years) M 7 earthquakes that pose a risk to its growing population.
Jack N. Williams, Virginia G. Toy, Cécile Massiot, David D. McNamara, Steven A. F. Smith, and Steven Mills
Solid Earth, 9, 469–489, https://doi.org/10.5194/se-9-469-2018, https://doi.org/10.5194/se-9-469-2018, 2018
Short summary
Short summary
We present new data on the orientation of fractures, their fill, and their density around the Alpine Fault, a plate boundary fault on the South Island of New Zealand. Fractures < 160 m of the fault are filled and show a range of orientations, whilst fractures at greater distances (< 500 m) are open and parallel to the rock's mechanical weakness. We interpret the latter fracture set to reflect near-surface processes, whilst the latter are potentially linked to deep-seated Alpine Fault seismicity.
Jack N. Williams, Joseph J. Bevitt, and Virginia G. Toy
Sci. Dril., 22, 35–42, https://doi.org/10.5194/sd-22-35-2017, https://doi.org/10.5194/sd-22-35-2017, 2017
Short summary
Short summary
We compare images of drillcore from the Alpine Fault in New Zealand that were collected using X-ray computed tomography (CT) and neutron tomography (NT). Both techniques provide 3-D images of the core's internal structure, which would not be possible through visual analysis alone. We find that CT scans are more beneficial, as they can image a wider range of rock types, and this scanning technique is more practical. Nevertheless, NT provides complementary scans over limited intervals of core.
Folarin Kolawole and Rasheed Ajala
Solid Earth, 15, 747–762, https://doi.org/10.5194/se-15-747-2024, https://doi.org/10.5194/se-15-747-2024, 2024
Short summary
Short summary
We investigate the upper-crustal structure of the Rukwa–Tanganyika rift zone in East Africa, where the Tanganyika rift interacts with the Rukwa and Mweru-Wantipa rifts, coinciding with abundant seismicity at the rift tips. Seismic velocity structure and patterns of seismicity clustering reveal zones around 10 km deep with anomalously high Vp / Vs ratios at the rift tips, indicative of a localized mechanically weakened crust caused by mantle volatiles and damage associated with bending strain.
Catherine C. Beck, Melissa Berke, Craig S. Feibel, Verena Foerster, Lydia Olaka, Helen M. Roberts, Christopher A. Scholz, Kat Cantner, Anders Noren, Geoffery Mibei Kiptoo, James Muirhead, and the Deep Drilling in the Turkana Basin (DDTB) project team
Sci. Dril., 33, 93–108, https://doi.org/10.5194/sd-33-93-2024, https://doi.org/10.5194/sd-33-93-2024, 2024
Short summary
Short summary
The Deep Drilling in the Turkana Basin project seeks to determine the relative impacts of tectonics and climate on eastern African ecosystems. To organize goals for coring, we hosted a workshop in Nairobi, Kenya, which focused on how a 4 Myr sedimentary core from Turkana will uniquely address research objectives related to basin evolution, past climates and environments, and modern resources. We concluded that a Pliocene to modern record is best accomplished through a two-phase drilling project.
Hugh Daigle, João C. Duarte, Ake Fagereng, Raphaël Paris, Patricia Persaud, Ángela María Gómez-García, and the Lisbon MagellanPlus Workshop Participants
Sci. Dril., 32, 101–111, https://doi.org/10.5194/sd-32-101-2023, https://doi.org/10.5194/sd-32-101-2023, 2023
Short summary
Short summary
Natural hazards associated with the ocean can have a direct impact on coastal populations and even affect populations located far away from the coast. These hazards may interact, and they include tsunamis that result in major damage and catastrophic loss of life and submarine landslides, which themselves can produce tsunamis and damage subsea infrastructure. We present ideas for investigating these hazards with scientific ocean drilling.
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, Juliet Biggs, Fabien Albino, Sarah K. Brown, Helen Burns, Andrew Hooper, Milan Lazecky, Yasser Maghsoudi, Richard Rigby, and Tim J. Wright
Geosci. Commun., 6, 75–96, https://doi.org/10.5194/gc-6-75-2023, https://doi.org/10.5194/gc-6-75-2023, 2023
Short summary
Short summary
We evaluate the communication and open data processing of satellite Interferometric Synthetic Aperture Radar (InSAR) data, which measures ground deformation. We discuss the unique interpretation challenges and the use of automatic data processing and web tools to broaden accessibility. We link these tools with an analysis of InSAR communication through Twitter in which applications to earthquakes and volcanoes prevailed. We discuss future integration with disaster risk-reduction strategies.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Ario Muhammad, Katsuichiro Goda, and Maximilian J. Werner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-59, https://doi.org/10.5194/nhess-2022-59, 2022
Publication in NHESS not foreseen
Short summary
Short summary
This study develops a novel framework of time-dependent (TD) probabilistic tsunami hazard analysis (PTHA) combining a total of ≥ 100,000 spatiotemporal earthquakes (EQ) rupture models and 6,300 probabilistic tsunami simulations to evaluate the tsunami hazards and compare them with the time-independent (TI) PTHA results. The proposed model can capture the uncertainty of future TD tsunami hazards and produces slightly higher hazard estimates than the TI model for short-term periods (< 30 years).
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021, https://doi.org/10.5194/se-12-187-2021, 2021
Short summary
Short summary
Earthquake hazard is often specified using instrumental records. However, this record may not accurately forecast the location and magnitude of future earthquakes as it is short (100s of years) relative to their frequency along geologic faults (1000s of years). Here, we describe an approach to assess this hazard using fault maps and GPS data. By applying this to southern Malawi, we find that its faults may host rare (1 in 10 000 years) M 7 earthquakes that pose a risk to its growing population.
Joel C. Gill, Faith E. Taylor, Melanie J. Duncan, Solmaz Mohadjer, Mirianna Budimir, Hassan Mdala, and Vera Bukachi
Nat. Hazards Earth Syst. Sci., 21, 187–202, https://doi.org/10.5194/nhess-21-187-2021, https://doi.org/10.5194/nhess-21-187-2021, 2021
Short summary
Short summary
This paper draws on the experiences of seven early career scientists, in different sectors and contexts, to explore the improved integration of natural hazard science into broader efforts to reduce the likelihood and impacts of disasters. We include recommendations for natural hazard scientists, to improve education, training, and research design and to strengthen institutional, financial, and policy actions. We hope to provoke discussion and catalyse changes that will help reduce disaster risk.
Gemma Cremen and Maximilian J. Werner
Nat. Hazards Earth Syst. Sci., 20, 2701–2719, https://doi.org/10.5194/nhess-20-2701-2020, https://doi.org/10.5194/nhess-20-2701-2020, 2020
Short summary
Short summary
We develop a framework that links the volume of hydraulic fracturing fluid injected during shale gas exploration with the likelihood that resulting seismicity causes a nuisance to nearby populations. We apply the framework to a shale gas site in England and find that the potential of a given injected volume to produce nuisance ground motions is especially sensitive to assumptions about the amount of seismic energy released during operations. The work can inform policy on shale gas exploration.
James M. Russell, Philip Barker, Andrew Cohen, Sarah Ivory, Ishmael Kimirei, Christine Lane, Melanie Leng, Neema Maganza, Michael McGlue, Emma Msaky, Anders Noren, Lisa Park Boush, Walter Salzburger, Christopher Scholz, Ralph Tiedemann, Shaidu Nuru, and the Lake Tanganyika Scientific Drilling Project (TSDP) Consortium
Sci. Dril., 27, 53–60, https://doi.org/10.5194/sd-27-53-2020, https://doi.org/10.5194/sd-27-53-2020, 2020
Short summary
Short summary
Our planet experienced enormous environmental changes in the last 10 million years. Lake Tanganyika is the oldest lake in Africa and its sediments comprise the most continuous terrestrial environmental record for this time period in the tropics. This workshop report identifies key research objectives in rift processes, evolutionary biology, geomicrobiology, paleoclimatology, paleoecology, paleoanthropology, and geochronology that could be addressed by drilling this globally important site.
Michael Hodge, Juliet Biggs, Åke Fagereng, Austin Elliott, Hassan Mdala, and Felix Mphepo
Solid Earth, 10, 27–57, https://doi.org/10.5194/se-10-27-2019, https://doi.org/10.5194/se-10-27-2019, 2019
Short summary
Short summary
This work attempts to create a semi-automated algorithm (called SPARTA) to calculate height, width and slope of surface breaks produced by earthquakes on faults. We developed the Python algorithm using synthetic catalogues, which can include noise features such as vegetation, hills and ditches, which mimic natural environments. We then apply the algorithm to four fault scarps in southern Malawi, at the southern end of the East African Rift system, to understand their earthquake potential.
Jack N. Williams, Virginia G. Toy, Cécile Massiot, David D. McNamara, Steven A. F. Smith, and Steven Mills
Solid Earth, 9, 469–489, https://doi.org/10.5194/se-9-469-2018, https://doi.org/10.5194/se-9-469-2018, 2018
Short summary
Short summary
We present new data on the orientation of fractures, their fill, and their density around the Alpine Fault, a plate boundary fault on the South Island of New Zealand. Fractures < 160 m of the fault are filled and show a range of orientations, whilst fractures at greater distances (< 500 m) are open and parallel to the rock's mechanical weakness. We interpret the latter fracture set to reflect near-surface processes, whilst the latter are potentially linked to deep-seated Alpine Fault seismicity.
Jack N. Williams, Joseph J. Bevitt, and Virginia G. Toy
Sci. Dril., 22, 35–42, https://doi.org/10.5194/sd-22-35-2017, https://doi.org/10.5194/sd-22-35-2017, 2017
Short summary
Short summary
We compare images of drillcore from the Alpine Fault in New Zealand that were collected using X-ray computed tomography (CT) and neutron tomography (NT). Both techniques provide 3-D images of the core's internal structure, which would not be possible through visual analysis alone. We find that CT scans are more beneficial, as they can image a wider range of rock types, and this scanning technique is more practical. Nevertheless, NT provides complementary scans over limited intervals of core.
Johann F. A. Diener, Åke Fagereng, and Sukey A. J. Thomas
Solid Earth, 7, 1331–1347, https://doi.org/10.5194/se-7-1331-2016, https://doi.org/10.5194/se-7-1331-2016, 2016
Related subject area
Earthquake Hazards
Risk-informed representative earthquake scenarios for Valparaíso and Viña del Mar, Chile
Harmonizing seismicity information in Central Asian countries: earthquake catalogue and active faults
Comparing components for seismic risk modelling using data from the 2019 Le Teil (France) earthquake
Modelling seismic ground motion and its uncertainty in different tectonic contexts: challenges and application to the 2020 European Seismic Hazard Model (ESHM20)
Scoring and ranking probabilistic seismic hazard models: an application based on macroseismic intensity data
A dense micro-electromechanical system (MEMS)-based seismic network in populated areas: rapid estimation of exposure maps in Trentino (NE Italy)
Exploring inferred geomorphological sediment thickness as a new site proxy to predict ground-shaking amplification at regional scale: application to Europe and eastern Türkiye
Surface rupture kinematics of the 2020 Mw 6.6 Masbate (Philippines) earthquake determined from optical and radar data
The influence of aftershocks on seismic hazard analysis: a case study from Xichang and the surrounding areas
Characteristics and mechanisms of near-surface negative atmospheric electric field anomalies preceding the 5 September 2022, Ms 6.8 Luding earthquake in China
Seismogenic depth and seismic coupling estimation in the transition zone between Alps, Dinarides and Pannonian Basin for the new Slovenian seismic hazard model
Co- and postseismic subaquatic evidence for prehistoric fault activity near Coyhaique, Aysén Region, Chile
Towards a dynamic earthquake risk framework for Switzerland
Understanding flow characteristics from tsunami deposits at Odaka, Joban Coast, using a deep neural network (DNN) inverse model
Spring water anomalies before two consecutive earthquakes (Mw 7.7 and Mw 7.6) in Kahramanmaraş (Türkiye) on 6 February 2023
Update on the seismogenic potential of the Upper Rhine Graben southern region
Forearc crustal faulting and estimated worst-case tsunami scenario in the upper plate of subduction zones. Case study of the Morne Piton Fault system (Lesser Antilles, Guadeloupe Archipelago)
Earthquake forecasting model for Albania: the area source model and the smoothing model
Estimating Ground Motion Intensities Using Simulation-Based Estimates of Local Crustal Seismic Response
The 2020 European Seismic Hazard Model: Overview and Results
Probabilistic Seismic Hazard Assessment of Sweden
The footprint of a historical paleoearthquake: the sixth-century-CE event in the European western Southern Alps
Strategies for Comparison of Modern Probabilistic Seismic Hazard Models and Insights from the Germany and France Border Region
Seismic background noise levels in the Italian strong-motion network
Testing machine learning models for heuristic building damage assessment applied to the Italian Database of Observed Damage (DaDO)
The seismic hazard from the Lembang Fault, Indonesia, derived from InSAR and GNSS data
The European Fault-Source Model 2020 (EFSM20): geologic input data for the European Seismic Hazard Model 2020
Rapid estimation of seismic intensities by analyzing early aftershock sequences using the robust locally weighted regression program (LOWESS)
A 2700-yr record of Cascadia megathrust and crustal/slab earthquakes from Upper and Lower Squaw Lakes, Oregon
Towards improving the spatial testability of aftershock forecast models
The Earthquake Risk Model of Switzerland ERM-CH23
Accounting for path and site effects in spatial ground-motion correlation models using Bayesian inference
Seismogenic potential and tsunami threat of the strike-slip Carboneras fault in the western Mediterranean from physics-based earthquake simulations
Earthquake hazard characterization by using entropy: application to northern Chilean earthquakes
Seismic risk scenarios for the residential buildings in the Sabana Centro province in Colombia
Looking for undocumented earthquake effects: a probabilistic analysis of Italian macroseismic data
Spatiotemporal seismicity pattern of the Taiwan orogen
A web-based GIS (web-GIS) database of the scientific articles on earthquake-triggered landslides
Evaluation of liquefaction triggering potential in Italy: a seismic-hazard-based approach
Earthquake vulnerability assessment of the built environment in the city of Srinagar, Kashmir Himalaya, using a geographic information system
Earthquake-induced landslides in Norway
PERL: a dataset of geotechnical, geophysical, and hydrogeological parameters for earthquake-induced hazards assessment in Terre del Reno (Emilia-Romagna, Italy)
Development of a seismic loss prediction model for residential buildings using machine learning – Ōtautahi / Christchurch, New Zealand
A non-extensive approach to probabilistic seismic hazard analysis
Inferring the depth and magnitude of pre-instrumental earthquakes from intensity attenuation curves
Tsunami scenario triggered by a submarine landslide offshore of northern Sumatra Island and its hazard assessment
Scrutinizing and rooting the multiple anomalies of Nepal earthquake sequence in 2015 with the deviation–time–space criterion and homologous lithosphere–coversphere–atmosphere–ionosphere coupling physics
On the calculation of smoothing kernels for seismic parameter spatial mapping: methodology and examples
Mass flows, turbidity currents and other hydrodynamic consequences of small and moderate earthquakes in the Sea of Marmara
Brief communication: The crucial assessment of possible significant vertical movements preceding the 28 December 1908, Mw = 7.1, Messina Straits earthquake
Hugo Rosero-Velásquez, Mauricio Monsalve, Juan Camilo Gómez Zapata, Elisa Ferrario, Alan Poulos, Juan Carlos de la Llera, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 24, 2667–2687, https://doi.org/10.5194/nhess-24-2667-2024, https://doi.org/10.5194/nhess-24-2667-2024, 2024
Short summary
Short summary
Seismic risk management uses reference earthquake scenarios, but the criteria for selecting them do not always consider consequences for exposed assets. Hence, we adopt a definition of representative scenarios associated with a return period and loss level to select such scenarios among a large set of possible earthquakes. We identify the scenarios for the residential-building stock and power supply in Valparaíso and Viña del Mar, Chile. The selected scenarios depend on the exposed assets.
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 24, 2597–2613, https://doi.org/10.5194/nhess-24-2597-2024, https://doi.org/10.5194/nhess-24-2597-2024, 2024
Short summary
Short summary
As part of the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) programme, funded by the European Union in collaboration with the World Bank and GFDRR, a regionally consistent probabilistic multi-hazard and multi-asset risk assessment has been developed. This paper describes the preparation of the input datasets (earthquake catalogue and active-fault database) required for the implementation of the probabilistic seismic hazard model.
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024, https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Short summary
The models used to estimate the probability of exceeding a level of earthquake damage are essential to the reduction of disasters. These models consist of components that may be tested individually; however testing these types of models as a whole is challenging. Here, we use observations of damage caused by the 2019 Le Teil earthquake and estimations from other models to test components of seismic risk models.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024, https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
Short summary
We propose a scoring strategy to rank multiple models/branches of a probabilistic seismic hazard analysis (PSHA) model that could be useful to consider specific requests from stakeholders responsible for seismic risk reduction actions. In fact, applications of PSHA often require sampling a few hazard curves from the model. The procedure is introduced through an application aimed to score and rank the branches of a recent Italian PSHA model according to their fit with macroseismic intensity data.
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024, https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Short summary
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated areas to achieve rapid and reliable estimation of exposure maps in Trentino (northeast Italy). These additional data, in conjunction with the automatic monitoring procedure, allow us to obtain dense measurements which only rely on actual recorded data, avoiding the use of ground motion prediction equations. This leads to a more reliable picture of the actual ground shaking.
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024, https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Short summary
Earthquake ground shaking can be strongly affected by local geology and is often amplified by soft sediments. In this study, we introduce a global geomorphological model for sediment thickness as a protentional parameter for predicting this site amplification. The results show that including geology and geomorphology in site-amplification predictions adds important value and that global or regional models for sediment thickness from fields beyond engineering seismology are worth considering.
Khelly Shan Sta. Rita, Sotiris Valkaniotis, and Alfredo Mahar Francisco Lagmay
Nat. Hazards Earth Syst. Sci., 24, 1135–1161, https://doi.org/10.5194/nhess-24-1135-2024, https://doi.org/10.5194/nhess-24-1135-2024, 2024
Short summary
Short summary
The ground movement and rupture produced by the 2020 Masbate earthquake in the Philippines were studied using satellite data. We highlight the importance of the complementary use of optical and radar datasets. The slip measurements and field observations helped improve our understanding of the seismotectonics of the region, which is critical for seismic hazard studies.
Qing Wu, Guijuan Lai, Jian Wu, and Jinmeng Bi
Nat. Hazards Earth Syst. Sci., 24, 1017–1033, https://doi.org/10.5194/nhess-24-1017-2024, https://doi.org/10.5194/nhess-24-1017-2024, 2024
Short summary
Short summary
Aftershocks are typically ignored for traditional probabilistic seismic hazard analyses, which underestimate the seismic hazard to some extent and may cause potential risks. A probabilistic seismic hazard analysis based on the Monte Carlo method was combined with the Omi–Reasenberg–Jones model to systematically study how aftershocks impact seismic hazard analyses. The influence of aftershocks on probabilistic seismic hazard analysis can exceed 50 %.
Lixin Wu, Xiao Wang, Yuan Qi, Jingchen Lu, and Wenfei Mao
Nat. Hazards Earth Syst. Sci., 24, 773–789, https://doi.org/10.5194/nhess-24-773-2024, https://doi.org/10.5194/nhess-24-773-2024, 2024
Short summary
Short summary
The atmospheric electric field (AEF) is the bridge connecting the surface charges and atmospheric particle changes before an earthquake, which is essential for the study of the coupling process between the coversphere and atmosphere caused by earthquakes. This study discovers AEF anomalies before the Luding earthquake in 2022 and clarifies the relationship between the surface changes and atmosphere changes possibly caused by the earthquake.
Polona Zupančič, Barbara Šket Motnikar, Michele M. C. Carafa, Petra Jamšek Rupnik, Mladen Živčić, Vanja Kastelic, Gregor Rajh, Martina Čarman, Jure Atanackov, and Andrej Gosar
Nat. Hazards Earth Syst. Sci., 24, 651–672, https://doi.org/10.5194/nhess-24-651-2024, https://doi.org/10.5194/nhess-24-651-2024, 2024
Short summary
Short summary
We considered two parameters that affect seismic hazard assessment in Slovenia. The first parameter we determined is the thickness of the lithosphere's section where earthquakes are generated. The second parameter is the activity of each fault, which is expressed by its average displacement per year (slip rate). Since the slip rate can be either seismic or aseismic, we estimated both components. This analysis was based on geological and seismological data and was validated through comparisons.
Morgan Vervoort, Katleen Wils, Kris Vanneste, Roberto Urrutia, Mario Pino, Catherine Kissel, Marc De Batist, and Maarten Van Daele
EGUsphere, https://doi.org/10.5194/egusphere-2024-8, https://doi.org/10.5194/egusphere-2024-8, 2024
Short summary
Short summary
This study identified a prehistoric earthquake around 4400 years ago near the city of Coyhaique (Aysén Region, Chilean Patagonia) and illustrates the potential seismic hazard in the region. We found deposits in lakes and a fjord that can be related to subaquatic and onshore landslides, all with a similar age, indicating that they were most likely caused by an earthquake. Through modelling we found that this was a magnitude 5.6 to 6.8 earthquake on a fault near the city of Coyhaique.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Rimali Mitra, Hajime Naruse, and Tomoya Abe
Nat. Hazards Earth Syst. Sci., 24, 429–444, https://doi.org/10.5194/nhess-24-429-2024, https://doi.org/10.5194/nhess-24-429-2024, 2024
Short summary
Short summary
This study estimates the behavior of the 2011 Tohoku-oki tsunami from its deposit distributed in the Joban coastal area. In this study, the flow characteristics of the tsunami were reconstructed using the DNN (deep neural network) inverse model, suggesting that the tsunami inundation occurred in the very high-velocity condition.
Sedat İnan, Hasan Çetin, and Nurettin Yakupoğlu
Nat. Hazards Earth Syst. Sci., 24, 397–409, https://doi.org/10.5194/nhess-24-397-2024, https://doi.org/10.5194/nhess-24-397-2024, 2024
Short summary
Short summary
Two devastating earthquakes, Mw 7.7 and Mw 7.6, occurred in Türkiye on 6 February 2023. We obtained commercially bottled waters from two springs, 100 km from the epicenter of Mw 7.7. Samples of the first spring emanating from fault zone in hard rocks showed positive anomalies in major ions lasting for 6 months before the earthquake. Samples from the second spring accumulated in an alluvium deposit showed no anomalies. We show that pre-earthquake anomalies are geologically site-dependent.
Sylvain Michel, Clara Duverger, Laurent Bollinger, Jorge Jara, and Romain Jolivet
Nat. Hazards Earth Syst. Sci., 24, 163–177, https://doi.org/10.5194/nhess-24-163-2024, https://doi.org/10.5194/nhess-24-163-2024, 2024
Short summary
Short summary
The Upper Rhine Graben, located in France and Germany, is bordered by north–south-trending faults, posing a potential threat to dense population and infrastructures on the Alsace plain. We build upon previous seismic hazard studies of the graben by exploring uncertainties in greater detail, revisiting a number of assumptions. There is a 99 % probability that a maximum-magnitude earthquake would be below 7.3 if assuming a purely dip-slip mechanism or below 7.6 if assuming a strike-slip one.
Melody Philippon, Jean Roger, Jean Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-222, https://doi.org/10.5194/nhess-2023-222, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Using novel geophysical datasets we reassess the slip rate of the Morne Piton Fault (Lesser Antilles) at 0.2 mm.yr-1, dividing by five previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative for the worst-case scenario gives an overview of tsunami generation if the whole Fault segments would ruptured together.
Edlira Xhafaj, Chung-Han Chan, and Kuo-Fong Ma
Nat. Hazards Earth Syst. Sci., 24, 109–119, https://doi.org/10.5194/nhess-24-109-2024, https://doi.org/10.5194/nhess-24-109-2024, 2024
Short summary
Short summary
Our study introduces new earthquake forecasting models for Albania, aiming to map out future seismic hazards. By analysing earthquakes from 1960 to 2006, we have developed models that predict where activity is most likely to occur, highlighting the western coast and southern regions as high-hazard zones. Our validation process confirms these models are effective tools for anticipating seismic events, offering valuable insights for earthquake preparedness and hazard assessment efforts.
Himanshu Agrawal and John McCloskey
EGUsphere, https://doi.org/10.22541/essoar.169504548.82107207/v1, https://doi.org/10.22541/essoar.169504548.82107207/v1, 2024
Short summary
Short summary
Rapidly growing cities in earthquake-prone Global South regions lack seismic event records, hindering accurate ground motion predictions for hazard assessment. Our study shows that even with these limitations, it is possible to generate reasonable predictions of the spatial variability in expected ground motions using high-resolution local geological information and simulation-based methods. We emphasize that substantial investments in the measurement of subsurface properties can prove valuable.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso Guillermo Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-3062, https://doi.org/10.5194/egusphere-2023-3062, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative reference in the next update of the European Seismic Design Codes (CEN EC8) and it also provides a key input to the first earthquake risk model for Europe (Crowley et al., 2021).
Niranjan Joshi, Björn Lund, and Roland Roberts
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-213, https://doi.org/10.5194/nhess-2023-213, 2023
Revised manuscript under review for NHESS
Short summary
Short summary
Few large earthquakes and low occurrence rates makes seismic hazard assessment of Sweden a challenging task. Since 2000, expansion of the seismic network has improved the quality and quantity of the data recorded. We use this new data to estimate the Swedish seismic hazard using probabilistic methods. We find that hazard was previously underestimated in the north, which we find to have the highest hazard in Sweden with mean peak ground acceleration of up to 0.05 g for a 475 year return period.
Franz Livio, Maria Francesca Ferrario, Elisa Martinelli, Sahra Talamo, Silvia Cercatillo, and Alessandro Maria Michetti
Nat. Hazards Earth Syst. Sci., 23, 3407–3424, https://doi.org/10.5194/nhess-23-3407-2023, https://doi.org/10.5194/nhess-23-3407-2023, 2023
Short summary
Short summary
Here we document the occurrence of an historical earthquake that occurred in the European western Southern Alps in the sixth century CE. Analysis of the effects due to earthquake shaking in the city of Como (N Italy) and a comparison with dated offshore landslides in the Alpine lakes allowed us to make an inference about the possible magnitude and the location of the seismic source for this event.
Graeme Weatherill, Fabrice Cotton, Guillaume Daniel, Irmela Zentner, Pablo Iturrieta, and Christian Bosse
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-98, https://doi.org/10.5194/nhess-2023-98, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
New generations of seismic hazard models are developed with sophisticated approaches to quantify uncertainties in our knowledge of earthquake process. To understand why and how recent state-of-the-art seismic hazard models for France, Germany and Europe differ despite similar underlying assumptions, we present a systematic approach to investigate model-to-model differences and to quantify and visualise them while accounting for their respective uncertainties.
Simone Francesco Fornasari, Deniz Ertuncay, and Giovanni Costa
Nat. Hazards Earth Syst. Sci., 23, 3219–3234, https://doi.org/10.5194/nhess-23-3219-2023, https://doi.org/10.5194/nhess-23-3219-2023, 2023
Short summary
Short summary
We analysed the background seismic noise for the Italian strong motion network by developing the Italian accelerometric low- and high-noise models. Spatial and temporal variations of the noise levels have been analysed. Several stations located near urban areas are affected by human activities, with high noise levels in the low periods. Our results provide an overview of the background noise of the strong motion network and can be used as a station selection criterion for future research.
Subash Ghimire, Philippe Guéguen, Adrien Pothon, and Danijel Schorlemmer
Nat. Hazards Earth Syst. Sci., 23, 3199–3218, https://doi.org/10.5194/nhess-23-3199-2023, https://doi.org/10.5194/nhess-23-3199-2023, 2023
Short summary
Short summary
This study explores the efficacy of several machine learning models for damage characterization, trained and tested on the Database of Observed Damage (DaDO) for Italian earthquakes. Reasonable damage prediction effectiveness (68 % accuracy) is observed, particularly when considering basic structural features and grouping the damage according to the traffic-light-based system used during the post-disaster period (green, yellow, and red), showing higher relevancy for rapid damage prediction.
Ekbal Hussain, Endra Gunawan, Nuraini Rahma Hanifa, and Qori'atu Zahro
Nat. Hazards Earth Syst. Sci., 23, 3185–3197, https://doi.org/10.5194/nhess-23-3185-2023, https://doi.org/10.5194/nhess-23-3185-2023, 2023
Short summary
Short summary
The earthquake potential of the Lembang Fault, located near the city of Bandung in West Java, Indonesia, is poorly understood. Bandung has a population of over 8 million people. We used satellite data to estimate the energy storage on the fault and calculate the likely size of potential future earthquakes. We use simulations to show that 1.9–2.7 million people would be exposed to high levels of ground shaking in the event of a major earthquake on the fault.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stephane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-118, https://doi.org/10.5194/nhess-2023-118, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1,248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Huaiqun Zhao, Wenkai Chen, Can Zhang, and Dengjie Kang
Nat. Hazards Earth Syst. Sci., 23, 3031–3050, https://doi.org/10.5194/nhess-23-3031-2023, https://doi.org/10.5194/nhess-23-3031-2023, 2023
Short summary
Short summary
Early emergency response requires improving the utilization value of the data available in the early post-earthquake period. We proposed a method for assessing seismic intensities by analyzing early aftershock sequences using the robust locally weighted regression program. The seismic intensity map evaluated by the method can reflect the range of the hardest-hit areas and the spatial distribution of the possible property damage and casualties caused by the earthquake.
Ann Elizabeth Morey and Chris Goldfinger
EGUsphere, https://doi.org/10.21203/rs.3.rs-2277419/v2, https://doi.org/10.21203/rs.3.rs-2277419/v2, 2023
Short summary
Short summary
This study uses the characteristics from a deposit attributed to the 1700 CE Cascadia earthquake to identify other subduction earthquake deposits in sediments from two lakes located near the California/Oregon border. Seven deposits were identified in these records and an age-depth model suggests that these correlate in time to the largest Cascadia earthquakes preserved in the offshore record suggesting that inland lakes can be good recorders of Cascadia earthquakes.
Asim M. Khawaja, Behnam Maleki Asayesh, Sebastian Hainzl, and Danijel Schorlemmer
Nat. Hazards Earth Syst. Sci., 23, 2683–2696, https://doi.org/10.5194/nhess-23-2683-2023, https://doi.org/10.5194/nhess-23-2683-2023, 2023
Short summary
Short summary
Testing of earthquake forecasts is important for model verification. Forecasts are usually spatially discretized with many equal-sized grid cells, but often few earthquakes are available for evaluation, leading to meaningless tests. Here, we propose solutions to improve the testability of earthquake forecasts and give a minimum ratio between the number of earthquakes and spatial cells for significant tests. We show applications of the proposed technique for synthetic and real case studies.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-1504, https://doi.org/10.5194/egusphere-2023-1504, 2023
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents, to human losses, such as deaths, injuries and displaced population.
Lukas Bodenmann, Jack W. Baker, and Božidar Stojadinović
Nat. Hazards Earth Syst. Sci., 23, 2387–2402, https://doi.org/10.5194/nhess-23-2387-2023, https://doi.org/10.5194/nhess-23-2387-2023, 2023
Short summary
Short summary
Understanding spatial patterns in earthquake-induced ground motions is key for assessing the seismic risk of distributed infrastructure systems. To study such patterns, we propose a novel model that accounts for spatial proximity, as well as site and path effects, and estimate its parameters from past earthquake data by explicitly quantifying the inherent uncertainties.
José A. Álvarez-Gómez, Paula Herrero-Barbero, and José J. Martínez-Díaz
Nat. Hazards Earth Syst. Sci., 23, 2031–2052, https://doi.org/10.5194/nhess-23-2031-2023, https://doi.org/10.5194/nhess-23-2031-2023, 2023
Short summary
Short summary
The strike-slip Carboneras fault is one of the largest sources in the Alboran Sea, with it being one of the faster faults in the eastern Betics. The dimensions and location of the Carboneras fault imply a high seismic and tsunami threat. In this work, we present tsunami simulations from sources generated with physics-based earthquake simulators. We show that the Carboneras fault has the capacity to generate locally damaging tsunamis with inter-event times between 2000 and 6000 years.
Antonio Posadas, Denisse Pasten, Eugenio E. Vogel, and Gonzalo Saravia
Nat. Hazards Earth Syst. Sci., 23, 1911–1920, https://doi.org/10.5194/nhess-23-1911-2023, https://doi.org/10.5194/nhess-23-1911-2023, 2023
Short summary
Short summary
In this paper we understand an earthquake from a thermodynamics point of view as an irreversible transition; then it must suppose an increase in entropy. We use > 100 000 earthquakes in northern Chile to test the theory that Shannon entropy, H, is an indicator of the equilibrium state. Using variation in H, we were able to detect major earthquakes and their foreshocks and aftershocks, including the 2007 Mw 7.8 Tocopilla earthquake and 2014 Mw 8.1 Iquique earthquake.
Dirsa Feliciano, Orlando Arroyo, Tamara Cabrera, Diana Contreras, Jairo Andrés Valcárcel Torres, and Juan Camilo Gómez Zapata
Nat. Hazards Earth Syst. Sci., 23, 1863–1890, https://doi.org/10.5194/nhess-23-1863-2023, https://doi.org/10.5194/nhess-23-1863-2023, 2023
Short summary
Short summary
This article presents the number of damaged buildings and estimates the economic losses from a set of earthquakes in Sabana Centro, a region of 11 towns in Colombia.
Andrea Antonucci, Andrea Rovida, Vera D'Amico, and Dario Albarello
Nat. Hazards Earth Syst. Sci., 23, 1805–1816, https://doi.org/10.5194/nhess-23-1805-2023, https://doi.org/10.5194/nhess-23-1805-2023, 2023
Short summary
Short summary
The earthquake effects undocumented at 228 Italian localities were calculated through a probabilistic approach starting from the values obtained through the use of an intensity prediction equation, taking into account the intensity data documented at close localities for a given earthquake. The results showed some geographical dependencies and correlations with the intensity levels investigated.
Yi-Ying Wen, Chien-Chih Chen, Strong Wen, and Wei-Tsen Lu
Nat. Hazards Earth Syst. Sci., 23, 1835–1846, https://doi.org/10.5194/nhess-23-1835-2023, https://doi.org/10.5194/nhess-23-1835-2023, 2023
Short summary
Short summary
Knowing the spatiotemporal seismicity patterns prior to impending large earthquakes might help earthquake hazard assessment. Several recent moderate earthquakes occurred in the various regions of Taiwan, which help to further investigate the spatiotemporal seismic pattern related to the regional tectonic stress. We should pay attention when a seismicity decrease of 2.5 < M < 4.5 events around the southern Central Range or an accelerating seismicity of 3 < M < 5 events appears in central Taiwan.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Simone Barani, Gabriele Ferretti, and Davide Scafidi
Nat. Hazards Earth Syst. Sci., 23, 1685–1698, https://doi.org/10.5194/nhess-23-1685-2023, https://doi.org/10.5194/nhess-23-1685-2023, 2023
Short summary
Short summary
In the present study, we analyze ground-motion hazard maps and hazard disaggregation in order to define areas in Italy where liquefaction triggering due to seismic activity can not be excluded. The final result is a screening map for all of Italy that classifies sites in terms of liquefaction triggering potential according to their seismic hazard level. The map and the associated data are freely accessible at the following web address: www.distav.unige.it/rsni/milq.php.
Midhat Fayaz, Shakil A. Romshoo, Irfan Rashid, and Rakesh Chandra
Nat. Hazards Earth Syst. Sci., 23, 1593–1611, https://doi.org/10.5194/nhess-23-1593-2023, https://doi.org/10.5194/nhess-23-1593-2023, 2023
Short summary
Short summary
Earthquakes cause immense loss of lives and damage to properties, particularly in major urban centres. The city of Srinagar, which houses around 1.5 million people, is susceptible to high seismic hazards due to its peculiar geological setting, urban setting, demographic profile, and tectonic setting. Keeping in view all of these factors, the present study investigates the earthquake vulnerability of buildings in Srinagar, an urban city in the northwestern Himalayas, India.
Mathilde B. Sørensen, Torbjørn Haga, and Atle Nesje
Nat. Hazards Earth Syst. Sci., 23, 1577–1592, https://doi.org/10.5194/nhess-23-1577-2023, https://doi.org/10.5194/nhess-23-1577-2023, 2023
Short summary
Short summary
Most Norwegian landslides are triggered by rain or snowmelt, and earthquakes have not been considered a relevant trigger mechanism even though some cases have been reported. Here we systematically search historical documents and databases and find 22 landslides induced by eight large Norwegian earthquakes. The Norwegian earthquakes induce landslides at distances and over areas that are much larger than those found for global datasets.
Chiara Varone, Gianluca Carbone, Anna Baris, Maria Chiara Caciolli, Stefania Fabozzi, Carolina Fortunato, Iolanda Gaudiosi, Silvia Giallini, Marco Mancini, Luca Paolella, Maurizio Simionato, Pietro Sirianni, Rose Line Spacagna, Francesco Stigliano, Daniel Tentori, Luca Martelli, Giuseppe Modoni, and Massimiliano Moscatelli
Nat. Hazards Earth Syst. Sci., 23, 1371–1382, https://doi.org/10.5194/nhess-23-1371-2023, https://doi.org/10.5194/nhess-23-1371-2023, 2023
Short summary
Short summary
In 2012, Italy was struck by a seismic crisis characterized by two main shocks and relevant liquefaction events. Terre del Reno is one of the municipalities that experienced the most extensive liquefaction effects; thus it was chosen as case study for a project devoted to defining a new methodology to assess the liquefaction susceptibility. In this framework, about 1800 geotechnical, geophysical, and hydrogeological investigations were collected and stored in the publicly available PERL dataset.
Samuel Roeslin, Quincy Ma, Pavan Chigullapally, Joerg Wicker, and Liam Wotherspoon
Nat. Hazards Earth Syst. Sci., 23, 1207–1226, https://doi.org/10.5194/nhess-23-1207-2023, https://doi.org/10.5194/nhess-23-1207-2023, 2023
Short summary
Short summary
This paper presents a new framework for the rapid seismic loss prediction for residential buildings in Christchurch, New Zealand. The initial model was trained on insurance claims from the Canterbury earthquake sequence. Data science techniques, geospatial tools, and machine learning were used to develop the prediction model, which also delivered useful insights. The model can rapidly be updated with data from new earthquakes. It can then be applied to predict building loss in Christchurch.
Sasan Motaghed, Mozhgan Khazaee, Nasrollah Eftekhari, and Mohammad Mohammadi
Nat. Hazards Earth Syst. Sci., 23, 1117–1124, https://doi.org/10.5194/nhess-23-1117-2023, https://doi.org/10.5194/nhess-23-1117-2023, 2023
Short summary
Short summary
We modify the probabilistic seismic hazard analysis (PSHA) formulation by replacing the Gutenberg–Richter power law with the SCP (Sotolongo-Costa and Posadas) non-extensive model for earthquake size distribution and call it NEPSHA. The proposed method (NEPSHA) is implemented in the Tehran region, and the results are compared with the classic PSHA method. The hazard curves show that NEPSHA gives a higher hazard, especially in the range of practical return periods.
Paola Sbarra, Pierfrancesco Burrato, Valerio De Rubeis, Patrizia Tosi, Gianluca Valensise, Roberto Vallone, and Paola Vannoli
Nat. Hazards Earth Syst. Sci., 23, 1007–1028, https://doi.org/10.5194/nhess-23-1007-2023, https://doi.org/10.5194/nhess-23-1007-2023, 2023
Short summary
Short summary
Earthquakes are fundamental for understanding how the earth works and for assessing seismic risk. We can easily measure the magnitude and depth of today's earthquakes, but can we also do it for pre-instrumental ones? We did it by analyzing the decay of earthquake effects (on buildings, people, and objects) with epicentral distance. Our results may help derive data that would be impossible to obtain otherwise, for any country where the earthquake history extends for centuries, such as Italy.
Haekal A. Haridhi, Bor Shouh Huang, Kuo Liang Wen, Arif Mirza, Syamsul Rizal, Syahrul Purnawan, Ilham Fajri, Frauke Klingelhoefer, Char Shine Liu, Chao Shing Lee, Crispen R. Wilson, Tso-Ren Wu, Ichsan Setiawan, and Van Bang Phung
Nat. Hazards Earth Syst. Sci., 23, 507–523, https://doi.org/10.5194/nhess-23-507-2023, https://doi.org/10.5194/nhess-23-507-2023, 2023
Short summary
Short summary
Near the northern end of Sumatra, the horizontal movement Sumatran fault zone extended to its northern offshore. The movement of offshore fault segments trigger submarine landslides and induce tsunamis. Scenarios of a significant tsunami caused by the combined effect of an earthquake and its triggered submarine landslide at the coast were proposed in this study. Based on our finding, the landslide tsunami hazard assessment and early warning systems in this region should be urgently considered.
Lixin Wu, Yuan Qi, Wenfei Mao, Jingchen Lu, Yifan Ding, Boqi Peng, and Busheng Xie
Nat. Hazards Earth Syst. Sci., 23, 231–249, https://doi.org/10.5194/nhess-23-231-2023, https://doi.org/10.5194/nhess-23-231-2023, 2023
Short summary
Short summary
Multiple seismic anomalies were reported to be related to the 2015 Nepal earthquake. By sufficiently investigating both the space–time features and the physical models of the seismic anomalies, the coupling mechanisms of these anomalies in 3D space were revealed and an integrated framework to strictly root the sources of various anomalies was proposed. This study provides a practical solution for scrutinizing reliable seismic anomalies from diversified earthquake observations.
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, and Igor Gómez
Nat. Hazards Earth Syst. Sci., 23, 91–106, https://doi.org/10.5194/nhess-23-91-2023, https://doi.org/10.5194/nhess-23-91-2023, 2023
Short summary
Short summary
One of the most effective ways to describe the seismicity of a region is to map the b-value parameter of the Gutenberg-Richter law. This research proposes the study of the spatial cell-event distance distribution to define the smoothing kernel that controls the influence of the data. The results of this methodology depict tectonic stress changes before and after intense earthquakes happen, so it could enable operational earthquake forecasting (OEF) and tectonic source profiling.
Pierre Henry, M. Sinan Özeren, Nurettin Yakupoğlu, Ziyadin Çakir, Emmanuel de Saint-Léger, Olivier Desprez de Gésincourt, Anders Tengberg, Cristele Chevalier, Christos Papoutsellis, Nazmi Postacıoğlu, Uğur Dogan, Hayrullah Karabulut, Gülsen Uçarkuş, and M. Namık Çağatay
Nat. Hazards Earth Syst. Sci., 22, 3939–3956, https://doi.org/10.5194/nhess-22-3939-2022, https://doi.org/10.5194/nhess-22-3939-2022, 2022
Short summary
Short summary
Seafloor instruments at the bottom of the Sea of Marmara recorded disturbances caused by earthquakes, addressing the minimum magnitude that may be recorded in the sediment. A magnitude 4.7 earthquake caused turbidity but little current. A magnitude 5.8 earthquake caused a mudflow and strong currents that spread sediment on the seafloor over several kilometers. However, most known earthquake deposits in the Sea of Marmara spread over larger zones and should correspond to larger earthquakes.
Nicola Alessandro Pino
Nat. Hazards Earth Syst. Sci., 22, 3787–3792, https://doi.org/10.5194/nhess-22-3787-2022, https://doi.org/10.5194/nhess-22-3787-2022, 2022
Short summary
Short summary
The 1908 Messina Straits earthquake is one of the most severe seismic catastrophes in human history and is periodically back in the public discussion because of a project of building a bridge across the Straits. Some models proposed for the fault assume precursory subsidence preceding the quake, resulting in a structure significantly different from the previously debated ones and important hazard implications. The analysis of the historical sea level data allows the rejection of this hypothesis.
Cited articles
Accardo, N. J., Shillington, D. J., Gaherty, J. B., Scholz, C. A., Nyblade,
A. A., Chindandali, P. R. N., Kamihanda, G., McCartney, T., Wood, D., and
Wambura Ferdinand, R.: Constraints on Rift Basin Structure and Border Fault
Growth in the Northern Malawi Rift From 3-D Seismic Refraction Imaging, J.
Geophys. Res.-Sol. Ea., 123, 10003–10025, https://doi.org/10.1029/2018JB016504,
2018.
Accardo, N. J., Gaherty, J. B., Shillington, D. J., Hopper, E., Nyblade, A.
A., Ebinger, C. J., Scholz, C. A., Chindandali, P. R. N., Wambura-Ferdinand,
R., Mbogoni, G., Russell, J. B., Holtzman, B. K., Havlin, C., and Class, C.:
Thermochemical Modification of the Upper Mantle Beneath the Northern Malawi
Rift Constrained From Shear Velocity Imaging, Geochem. Geophy.
Geosy., 21, 1–19, https://doi.org/10.1029/2019GC008843, 2020.
Acocella, V., Faccenna, C., Funiciello, R., and Rossetti, F.: Sand-box
modelling of basement-controlled transfer zones in extensional domains,
Terra Nov., 11, 149–156, https://doi.org/10.1046/j.1365-3121.1999.00238.x, 1999.
Agostini, A., Bonini, M., Corti, G., Sani, F., and Mazzarini, F.: Fault
architecture in the Main Ethiopian Rift and comparison with experimental
models: Implications for rift evolution and Nubia-Somalia kinematics, Earth
Planet. Sci. Lett., 301, 479–492, https://doi.org/10.1016/j.epsl.2010.11.024,
2011.
Ambraseys, N. N.: The Rukuwa Earthquake of 13 December 1910 in East-Africa,
Terra Nov., 3, 202–211, https://doi.org/10.1111/j.1365-3121.1991.tb00873.x, 1991.
Ambraseys, N. N. and Adams, R. D.: Reappraisal of major African earthquakes,
south of 20∘ N, 1900–1930, Nat. Hazards, 4, 389–419,
https://doi.org/10.1016/0040-1951(92)90036-6, 1991.
Ayele, A. and Kulhanek, O.: Reassessment of source parameters for three
major earthquakes in the East African rift system from historical
seismograms and bulletins, Ann. Geophys., 43, 81–94,
https://doi.org/10.4401/ag-3627, 2000.
Baize, S., Nurminen, F., Sarmiento, A., Dawson, T., Takao, M., Scotti, O.,
Azuma, T., Boncio, P., Champenois, J., Cinti, F. R., Civico, R., Costa, C.,
Guerrieri, L., Marti, E., McCalpin, J., Okumura, K., and Villamor, P.: A
worldwide and unified database of surface ruptures (SURE) for fault
displacement hazard analyses, Seismol. Res. Lett., 91, 499–520,
https://doi.org/10.1785/0220190144, 2019.
Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano,
S., Tiberti, M. M., and Boschi, E.: The Database of Individual Seismogenic
Sources (DISS), version 3: Summarizing 20 years of research on Italy's
earthquake geology, Tectonophysics, 453, 20–43,
https://doi.org/10.1016/j.tecto.2007.04.014, 2008.
Beauval, C., Marinière, J., Yepes, H., Audin, L., Nocquet, J. M.,
Alvarado, A., Baize, S., Aguilar, J., Singaucho, J. C., and Jomard, H.: A new
seismic hazard model for ecuador, B. Seismol. Soc. Am., 108,
1443–1464, https://doi.org/10.1785/0120170259, 2018.
Bello, S., Andrenacci, C., Cirillo, D., Scott, C. P., Brozzetti, F., Arrowsmith, J. R., and Lavecchia, G.: High-Detail Fault Segmentation:
Deep Insight into the Anatomy of the 1983 Borah Peak Earthquake Rupture Zone
(Mw6.9, Idaho, USA), Lithosphere, 1, 8100224, https://doi.org/10.2113/2022/8100224, 2022a.
Bello, S., Lavecchia, G., Andrenacci, C., Ercoli, M., Cirillo, D., Carboni, F., Barchi, M. R., and Brozzetti, F.: Complex trans-ridge normal faults
controlling large earthquakes, Sci. Rep.-UK, 12, 1–20, 2022b.
Bendick, R., Bilham, R., Freymueller, J., Larson, K., and Yin, G.: Geodetic
evidence for a low slip rate in the Altyn Tagh fault system, Nature,
404, 69–72, https://doi.org/10.1038/35003555, 2000.
Bhat, H. S., Olives, M., Dmowska, R., and Rice, J. R.: Role of fault branches
in earthquake rupture dynamics, J. Geophys. Res.-Sol. Ea., 112,
1–16, https://doi.org/10.1029/2007JB005027, 2007.
Biasi, G. P. and Wesnousky, S. G.: Steps and gaps in ground ruptures:
Empirical bounds on rupture propagation, B. Seismol. Soc. Am., 106,
1110–1124, https://doi.org/10.1785/0120150175, 2016.
Biasi, G. P. and Wesnousky, S. G.: Bends and Ends of Surface Ruptures, B.
Seismol. Soc. Am., 107, 2543–2560, https://doi.org/10.1785/0120160292, 2017.
Biggs, J., Nissen, E., Craig, T., Jackson, J., and Robinson, D. P.: Breaking
up the hanging wall of a rift-border fault: The 2009 Karonga earthquakes,
Malawi, Geophys. Res. Lett., 37, L11305, https://doi.org/10.1029/2010GL043179, 2010.
Billings, S. E. and Kattenhorn, S. A.: The great thickness debate: Ice shell
thickness models for Europa and comparisons with estimates based on flexure
at ridges, Icarus, 177, 397–412, https://doi.org/10.1016/j.icarus.2005.03.013, 2005.
Bird, P. and Liu, Z.: Seismic hazard inferred from tectonics: California,
Seismol. Res. Lett., 78, 37–48, https://doi.org/10.1785/gssrl.78.1.37, 2007.
Bloomfield, K.: The Geology of the Zomba Area, Bull. Geol. Surv. Malawi, 16, 193 pp.,
1965.
Bloomfield, K. and Garson, M. S.: The Geology of the Kirk Range-Lisungwe
Valley Area, Bull. Geol. Surv. Malawi, 17, 234 pp., 1965.
Bommer, J. J. and Scherbaum, F.: The use and misuse of logic trees in
probabilistic seismic hazard analysis, Earthq. Spectra, 24, 997–1009,
https://doi.org/10.1193/1.2977755, 2008.
Bormann, J. M., Hammond, W. C., Kreemer, C., and Blewitt, G.: Accommodation
of missing shear strain in the Central Walker Lane, western North America:
Constraints from dense GPS measurements, Earth Planet. Sci. Lett., 440,
169–177, https://doi.org/10.1016/j.epsl.2016.01.015, 2016.
Borrego, D., Nyblade, A. A., Accardo, N. J., Gaherty, J. B., Ebinger, C. J., Shillington, D. J., Chindandali, P. R., Mbogoni, G., Ferdinand, R. W., Mulibo, G., O'Donnell, J. P., Kachingwe, M., and Tepp, G.: Crustal structure surrounding the
northern Malawi rift and beneath the Rungwe Volcanic Province, East Africa,
Geophys. J. Int., 215, 1410–1426, 2018.
Brown, A. R.: Structural Interpretation, in Interpretation of
Three-Dimensional Seismic Data, Seventh edition, 61–102, Society of
Exploration Geophysicists and American Association of Petroleum Geologists, https://doi.org/10.1190/1.9781560802884.ch3,
2011.
Cartwright, J. A., Mansfield, C., and Trudgill, B: The growth of normal
faults by segment linkage, Geol. Soc. Spec. Publ., 99, 163–177,
https://doi.org/10.1144/GSL.SP.1996.099.01.13, 1996.
Castaing, C.: Post-Pan-African tectonic evolution of South Malawi in
relation to the Karroo and recent East African rift systems, Tectonophysics,
191, 55–73, https://doi.org/10.1016/0040-1951(91)90232-H, 1991.
Chartier, T., Scotti, O., Lyon-Caen, H., and Boiselet, A.: Methodology for
earthquake rupture rate estimates of fault networks: Example for the western
Corinth rift, Greece, Nat. Hazards Earth Syst. Sci., 17, 1857–1869,
https://doi.org/10.5194/nhess-17-1857-2017, 2017.
Chisenga, C., Dulanya, Z., and Jianguo, Y.: The structural re-interpretation
of the Lower Shire Basin in the Southern Malawi rift using gravity data, J.
African Earth Sci., 149, 280–290,
https://doi.org/10.1016/j.jafrearsci.2018.08.013, 2019.
Christophersen, A., Litchfield, N., Berryman, K., Thomas, R., Basili, R.,
Wallace, L., Ries, W., Hayes, G. P., Haller, K. M., Yoshioka, T., Koehler,
R. D., Clark, D., Wolfson-Schwehr, M., Boettcher, M. S., Villamor, P.,
Horspool, N., Ornthammarath, T., Zuñiga, R., Langridge, R. M., Stirling,
M. W., Goded, T., Costa, C., and Yeats, R.: Development of the Global
Earthquake Model's neotectonic fault database, Nat. Hazards, 79,
111–135, https://doi.org/10.1007/s11069-015-1831-6, 2015.
Clemons, T. E. and Bradley, E. L.: Nonparametric measure of the overlapping
coefficient, Comput. Stat. Data Anal., 34, 51–61,
https://doi.org/10.1016/S0167-9473(99)00074-2, 2000.
Collettini, C. and Sibson, R. H.: Normal faults, normal friction?,
Geology, 29, 927–930, 2001.
Contreras, J., Anders, M. H., and Scholz, C. H.: Growth of a normal fault
system: Observations from the Lake Malawi basin of the east African rift, J.
Struct. Geol., 22, 159–168, https://doi.org/10.1016/S0191-8141(99)00157-1, 2000.
Cornell, C. A.: Engineering seismic risk analysis, B. Seismol. Soc. Am.,
58, 1583–1606, https://doi.org/10.1016/0167-6105(83)90143-5, 1968.
Cowie, P. A.: A healing–reloading feedback control on the growth rate of
seismogenic faults, J. Struct. Geol, 20, 1075–1087, 1998.
Cowie, P. A. and Roberts, G. P.: Constraining slip rates and spacings for
active normal faults, J. Struct. Geol., 23, 1901–1915,
https://doi.org/10.1016/S0191-8141(01)00036-0, 2001.
Cowie, P. A., Roberts, G. P., Bull, J. M., and Visini, F.: Relationships
between fault geometry, slip rate variability and earthquake recurrence in
extensional settings, Geophys. J. Int., 189, 143–160,
https://doi.org/10.1111/j.1365-246X.2012.05378.x, 2012.
Cox, S. C., Stirling, M. W., Herman, F., Gerstenberger, M., and Ristau, J.:
Potentially active faults in the rapidly eroding landscape adjacent to the
Alpine Fault, central Southern Alps, New Zealand, Tectonics, 31, TC2011,
https://doi.org/10.1029/2011TC003038, 2012.
Craig, T. J. and Jackson, J. A.: Variations in the Seismogenic Thickness of
East Africa, J. Geophys. Res.-Sol. Ea., 126, 1–15,
https://doi.org/10.1029/2020JB020754, 2021.
Cramer, C. H., Petersen, M. D., and Reichle, M. S.: A Monte Carlo approach in
estimating uncertainty for a seismic hazard assessment of Los Angeles,
Ventura, and Orange Counties, California, B. Seismol. Soc. Am., 86,
1681–1691, 1996.
Das, S. and Scholz, C. H.: Why large earthquakes do not nucleate at shallow
depths, Nature, 305, 621–623, 1983.
Dawson, S. M., Laó-Dávila, D. A., Atekwana, E. A., and Abdelsalam, M.
G.: The influence of the Precambrian Mughese Shear Zone structures on strain
accommodation in the northern Malawi Rift, Tectonophysics, 722, 53–68,
https://doi.org/10.1016/j.tecto.2017.10.010, 2018.
Delvaux, D. and Barth, A.: African stress pattern from formal inversion of
focal mechanism data, Tectonophysics, 482, 105–128,
https://doi.org/10.1016/j.tecto.2009.05.009, 2010.
Delvaux, D. and Sperner, B.: New aspects of tectonic stress inversion with
reference to the TENSOR program, Geol. Soc. Lond. Spec. Publ., 212, 75–100, https://doi.org/10.1144/gsl.Sp.2003.212.01.06, 2003.
Delvaux, D., Mulumba, J. L., Sebagenzi, M. N. S., Bondo, S. F., Kervyn, F., and Havenith, H. B.: Seismic hazard assessment of the Kivu rift segment
based on a new seismotectonic zonation model (western branch, East African
Rift system), J. African Earth Sci., 134, 831–855,
https://doi.org/10.1016/j.jafrearsci.2016.10.004, 2017.
DISS Working Group: Database of Individual Seismogenic Sources (DISS),
version 3.3.0: A compilation of potential sources for earthquakes larger
than M5.5 in Italy and surrounding areas (Version 3.3.0), Istituto
Nazionale di Geofisica e Vulcanologia (INGV),
https://doi.org/10.13127/DISS3.3.0, 2021.
Dolan, J. F. and Meade, B. J.: A Comparison of Geodetic and Geologic Rates
Prior to Large Strike-Slip Earthquakes: A Diversity of Earthquake-Cycle
Behaviors?, Geochem. Geophy. Geosy., 18, 4426–4436,
https://doi.org/10.1002/2017GC007014, 2017.
DuRoss, C. B., Personius, S. F., Crone, A. J., Olig, S. S., Hylland, M. D.,
Lund, W. R., and Schwartz, D. P.: Fault segmentation: New concepts from the
Wasatch Fault Zone, Utah, USA, J. Geophys. Res.-Sol. Ea., 121,
1131–1157, https://doi.org/10.1002/2015JB012519, 2016.
DuRoss, C. B., Gold, R. D., Briggs, R. W., Delano, J. E., Ostenaa, D. A.,
Zellman, M. S., Cholewinski, N., Wittke, S. J., and Mahan, S. A.: Holocene
earthquake history and slip rate of the southern Teton fault, Wyoming, USA,
Bull. Geol. Soc. Am., 132, 1566–1586, https://doi.org/10.1130/B35363.1, 2020.
Ebinger, C. J.: Tectonic development of the western branch of the East
African rift system, Geol. Soc. Am. Bull., 101, 885–903,
https://doi.org/10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2,
1989.
Ebinger, C. J., Karner, G. D., and Weissel, J. K.: Mechanical strength of
extended continental lithosphere: constraints from the western rift system,
East Africa, Tectonics, 10, 1239–1256, 1991.
Ebinger, C. J., Oliva, S. J., Pham, T. Q., Peterson, K., Chindandali, P.,
Illsley-Kemp, F., Drooff, C., Shillington, D. J., Accardo, N. J., Gallacher,
R. J., Gaherty, J., Nyblade, A. A., and Mulibo, G.: Kinematics of Active
Deformation in the Malawi Rift and Rungwe Volcanic Province, Africa,
Geochem. Geophy. Geosy., 20, 3928–3951,
https://doi.org/10.1029/2019GC008354, 2019.
Fagereng, Å.: Fault segmentation, deep rift earthquakes and crustal
rheology: Insights from the 2009 Karonga sequence and seismicity in the
Rukwa-Malawi rift zone, Tectonophysics, 601, 216–225,
https://doi.org/10.1016/j.tecto.2013.05.012, 2013.
Fagereng, Å. and Biggs, J.: New perspectives on “geological strain
rates” calculated from both naturally deformed and actively deforming
rocks, J. Struct. Geol., 125, 100–110, https://doi.org/10.1016/j.jsg.2018.10.004,
2019.
Faleide, T. S., Braathen, A., Lecomte, I., Mulrooney, M. J., Midtkandal, I.,
Bugge, A. J., and Planke, S.: Impacts of seismic resolution on fault
interpretation: Insights from seismic modelling, Tectonophysics, 816,
229008, https://doi.org/10.1016/j.tecto.2021.229008, 2021.
Faure Walker, J., Boncio, P., Pace, B., Roberts, G., Benedetti, L., Scotti,
O., Visini, F., and Peruzza, L.: Fault2SHA Central Apennines database and
structuring active fault data for seismic hazard assessment, Sci. Data,
8, 1–20, https://doi.org/10.1038/s41597-021-00868-0, 2021.
Fenton, C. H. and Bommer, J. J.: The Mw7 Machaze, Mozambique, earthquake of
23 February 2006, Seismol. Res. Lett., 77, 426–439,
https://doi.org/10.1785/gssrl.77.4.426, 2006.
Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E.,
Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C.,
Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M.,
Shaw, B. E., Thatcher, W. R., Weldon, R. J., and Zeng, Y.: Uniform California
Earthquake Rupture Forecast, version 3 (UCERF3) – The time-independent model,
B. Seismol. Soc. Am., 104, 1122–1180, https://doi.org/10.1785/0120130164, 2014.
Flannery, J. W. and Rosendahl, B. R.: The seismic stratigraphy of Lake
Malawi, Africa: implications for interpreting geological processes in
lacustrine rifts, J. African Earth Sci., 10, 519–548,
https://doi.org/10.1016/0899-5362(90)90104-M, 1990.
Fletcher, J. M., Teran, O. J., Rockwell, T. K., Oskin, M. E., Hudnut, K. W.,
Mueller, K. J., Spelz, R. M., Akciz, S. O., Masana, E., Faneros, G.,
Fielding, E. J., Leprince, S., Morelan, A. E., Stock, J., Lynch, D. K.,
Elliott, A. J., Gold, P., Liu-Zeng, J., González-Ortega, A.,
Hinojosa-Corona, A., and González-García, J.: Assembly of a large
earthquake from a complex fault system: Surface rupture kinematics of the 4
April 2010 El Mayor-Cucapah (Mexico) Mw7.2 earthquake, Geosphere, 10,
797–827, https://doi.org/10.1130/GES00933.1, 2014.
Gaherty, J. B., Zheng, W., Shillington, D. J., Pritchard, M. E., Henderson,
S. T., Chindandali, P. R. N., Mdala, H., Shuler, A., Lindsey, N., Oliva, S.
J., Nooner, S., Scholz, C. A., Schaff, D., Ekström, G., and Nettles, M.:
Faulting processes during early-stage rifting: Seismic and geodetic analysis
of the 2009–2010 Northern Malawi earthquake sequence, Geophys. J. Int.,
217, 1767–1782, https://doi.org/10.1093/gji/ggz119, 2019.
Geist, E. L. and Parsons, T.: Distribution of Earthquakes on a Branching
Fault System Using Integer Programming and Greedy-Sequential Methods,
Geochem. Geophy. Geosy., 21, 1–22, https://doi.org/10.1029/2020GC008964,
2020.
Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J.,
Danciu, L., Field, E. H., Fujiwara, H., Luco, N., Ma, K. F., Meletti, C., and
Petersen, M. D.: Probabilistic Seismic Hazard Analysis at Regional and
National Scales: State of the Art and Future Challenges, Rev. Geophys.,
58, e2019RG000653, https://doi.org/10.1029/2019RG000653, 2020.
Giordano, N., De Risi, R., Voyagaki, E., Kloukinas, P., Novelli, V.,
Kafodya, I., Ngoma, I., Goda, K., and Macdonald, J.: Seismic fragility models
for typical non-engineered URM residential buildings in Malawi, in:
Structures, 32, 2266–2278, Elsevier, https://doi.org/10.1016/j.istruc.2021.03.118, 2021.
Goda, K., Gibson, E. D., Smith, H. R., Biggs, J., and Hodge, M.: Seismic risk
assessment of urban and rural settlements around lake malawi, Front. Built
Environ., 2, 1–17, https://doi.org/10.3389/fbuil.2016.00030, 2016.
Goda, K., Novelli, V., De Risi, R., Kloukinas, P., Giordano, N., Macdonald,
J., Kafodya, I., Ngoma, I., and Voyagaki, E.: Scenario-based earthquake risk
assessment for central-southern Malawi: The case of the Bilila-Mtakataka
Fault, Int. J. Disaster Risk Reduct., 67, 102655,
https://doi.org/10.1016/j.ijdrr.2021.102655, 2021.
Goitom, B., Werner, M. J., Goda, K., Kendall, J. M., Hammond, J. O. S.,
Ogubazghi, G., Oppenheimer, C., Helmstetter, A., Keir, D., and Illsley-Kemp,
F.: Probabilistic seismic-hazard assessment for Eritrea, B. Seismol. Soc.
Am., 107, 1478–1494, https://doi.org/10.1785/0120160210, 2017.
Gómez-Novell, O., García-Mayordomo, J., Ortuño, M., Masana, E., and Chartier, T.: Fault System-Based Probabilistic Seismic Hazard Assessment
of a Moderate Seismicity Region: The Eastern Betics Shear Zone (SE Spain),
Front. Earth Sci., 8, 579398, https://doi.org/10.3389/feart.2020.579398, 2020.
Gupta, H. K. and Malomo, S.: The Malawi earthquake of March 10, 1989: A
report of the macroseismic survey, Seismol. Res. Lett., 66, 20–27,
https://doi.org/10.1016/0040-1951(92)90018-2, 1995.
Griffin, J. D., Stirling, M. W., Wilcken, K. M., and Barrell, D. J.: Late
Quaternary slip rates for the Hyde and Dunstan faults, southern New Zealand:
Implications for strain migration in a slowly deforming continental plate
margin, Tectonics, 41, e2022TC007250, https://doi.org/10.1029/2022TC007250, 2022.
Gupta, S., Cowie, P. A., Dawers, N. H., and Underhill, J. R.: A mechanism to
explain rift-basin subsidence and stratigraphic patterns through fault-array
evolution, Geology, 26, 595–598, https://doi.org/10.1130/0091-7613(1998)026<0595:AMTERB>2.3.CO;2, 1998.
Habgood, F.: The geology of the country west of the Shire River between
Chikwawa and Chiromo, Bull. Geol. Surv. Malawi, 14, 60 pp., 1963.
Habgood, F., Holt, D. N., and Walshaw, R. D.: The geology of the Thyolo Area,
Bull. Geol. Surv. Malawi, 22, 24 pp., 1973.
Hamiel, Y., Baer, G., Kalindekafe, L., Dombola, K., and Chindandali, P.:
Seismic and aseismic slip evolution and deformation associated with the
2009–2010 northern Malawi earthquake swarm, East African Rift, Geophys. J.
Int., 191, 898–908, https://doi.org/10.1111/j.1365-246X.2012.05673.x, 2012.
Hanks, T. C. and Bakun, W. H.: A bilinear source-scaling model for M-log a
observations of continental earthquakes, B. Seismol. Soc. Am., 92,
1841–1846, https://doi.org/10.1785/0120010148, 2002.
Hatem, A. E., Collett, C. M., Briggs, R. W., Gold, R. D., Angster, S. J., Field,
E. H., and Powers, P. M.: Simplifying complex fault data for systems-level
analysis: Earthquake geology inputs for US NSHM 2023, Scientific Data, 9,
1–18, 2022.
Hellebrekers, N., Niemeijer, A. R., Fagereng, Å., Manda, B., and Mvula,
R. L. S.: Lower crustal earthquakes in the East African Rift System:
Insights from frictional properties of rock samples from the Malawi rift,
Tectonophysics, 767, 228167, https://doi.org/10.1016/j.tecto.2019.228167, 2019.
Helmstetter, A. and Werner, M. J.: Adaptive spatiotemporal smoothing of
seismicity for long-term earthquake forecasts in California, B. Seismol.
Soc. Am., 102, 2518–2529, https://doi.org/10.1785/0120120062, 2012.
Henry, C. and Das, S.: Aftershock zones of large shallow earthquakes: Fault
dimensions, aftershock area expansion and scaling relations, Geophys. J.
Int., 147, 272–293, https://doi.org/10.1046/j.1365-246X.2001.00522.x, 2001.
Hetland, E. A. and Hager, B. H.: Interseismic strain accumulation: Spin-up,
cycle invariance, and irregular rupture sequences, Geochem. Geophy. Geosy., 7, Q05004, https://doi.org/10.1029/2005GC001087, 2006.
Hodge, M., Biggs, J., Goda, K., and Aspinall, W.: Assessing infrequent large
earthquakes using geomorphology and geodesy: the Malawi Rift, Nat. Hazards,
76, 1781–1806, https://doi.org/10.1007/s11069-014-1572-y, 2015.
Hodge, M., Fagereng, A., Biggs, J., and Mdala, H.: Controls on Early-Rift
Geometry: New Perspectives From the Bilila-Mtakataka Fault, Malawi, Geophys.
Res. Lett., 45, 3896–3905, https://doi.org/10.1029/2018GL077343, 2018a.
Hodge, M., Fagereng, A., and Biggs, J.: The Role of Coseismic Coulomb Stress
Changes in Shaping the Hard Link Between Normal Fault Segments, J. Geophys. Res.-Sol. Ea., 123, 797–814, https://doi.org/10.1002/2017JB014927, 2018b.
Hodge, M., Biggs, J., Fagereng, A., Elliott, A., Mdala, H., and Mphepo, F.: A
semi-automated algorithm to quantify scarp morphology (SPARTA): Application
to normal faults in southern Malawi, Solid Earth, 10, 27–57,
https://doi.org/10.5194/se-10-27-2019, 2019.
Hodge, M., Biggs, J., Fagereng, Å., Mdala, H., Wedmore, L. N., and
Williams, J. N.: Evidence From High-Resolution Topography for Multiple
Earthquakes on High Slip-to-Length Fault Scarps: The Bilila-Mtakataka Fault,
Malawi, Tectonics, 39, e2019TC005933, https://doi.org/10.1029/2019TC005933, 2020.
Hollingsworth, J., Ye, L., and Avouac, J. P.: Dynamically triggered slip on
a splay fault in the Mw7.8, 2016 Kaikoura (New Zealand) earthquake,
Geophys. Res. Lett., 44, 3517–3525, https://doi.org/10.1002/2016GL072228,
2017.
Hopper, E., Gaherty, J. B., Shillington, D. J., Accardo, N. J., Nyblade, A.
A., Holtzman, B. K., Havlin, C., Scholz, C. A., Chindandali, P. R. N.,
Ferdinand, R. W., Mulibo, G. D., and Mbogoni, G.: Preferential localized
thinning of lithospheric mantle in the melt-poor Malawi Rift, Nat. Geosci.,
13, 584–589, https://doi.org/10.1038/s41561-020-0609-y, 2020.
Inman, H. F. and Bradley Jr., E. L.: The overlapping coefficient as a measure
of agreement between probability distributions and point estimation of the
overlap of two normal densities, Commun. Stat. Methods, 18, 3851–3874,
1989.
Jackson, J. and Blenkinsop, T.: The Malaŵi Earthquake of March 10, 1989:
Deep faulting within the East African Rift System, Tectonics, 12,
1131–1139, https://doi.org/10.1029/93TC01064, 1993.
Jackson, J. and Blenkinsop, T.: The Bilila-Mtakataka fault in Malawi: an
active, 100 km long, normal fault segment in thick seismogenic crust,
Tectonics, 16, 137–150, https://doi.org/10.1029/96TC02494, 1997.
Kagan, Y. Y., Jackson, D. D., and Geller, R. J.: Characteristic earthquake
model, 1884–2011, R.I.P., Seismol. Res. Lett., 83, 951–953,
https://doi.org/10.1785/0220120107, 2012.
Kanamori, H. and Anderson, D. L.: Theoretical basis of some empirical
relations in seismology, B. Seismol. Soc. Am., 65, 1073–1095, 1975.
Kervyn, F., Ayub, S., Kajara, R., Kanza, E., and Temu, B.: Evidence of recent
faulting in the Rukwa rift (West Tanzania) based on radar interferometric
DEMs, J. African Earth Sci., 44, 151–168,
https://doi.org/10.1016/j.jafrearsci.2005.10.008, 2006.
King, G. C. P.: Speculations on the geometry of the initiation and
termination processes of earthquake rupture and its relation to morphology
and geological structure, Pure Appl. Geophys., 124, 567–585,
https://doi.org/10.1007/BF00877216, 1986.
Kolawole, F., Atekwana, E. A., Laó-Dávila, D. A., Abdelsalam, M. G.,
Chindandali, P. R., Salima, J., and Kalindekafe, L.: Active Deformation of
Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of
Preexisting Precambrian Shear Zone Fabric, Tectonics, 37, 683–704,
https://doi.org/10.1002/2017TC004628, 2018a.
Kolawole, F., Atekwana, E. A., Laó-Dávila, D. A., Abdelsalam, M. G.,
Chindandali, P. R., Salima, J., and Kalindekafe, L.: High-resolution
electrical resistivity and aeromagnetic imaging reveal the causative fault
of the 2009 Mw6.0 Karonga, Malawi earthquake, Geophys. J. Int., 213,
1412–1425, https://doi.org/10.1093/gji/ggy066, 2018b.
Kolawole, F., Firkins, M. C., Al Wahaibi, T. S., Atekwana, E. A., and
Soreghan, M. J.: Rift interaction zones and the stages of rift linkage in
active segmented continental rift systems, Basin Res., 33, 2984–3020,
https://doi.org/10.1111/bre.12592, 2021a.
Kolawole, F., Phillips, T. B., Atekwana, E. A., and Jackson, C. A. L.:
Structural Inheritance Controls Strain Distribution During Early Continental
Rifting, Rukwa Rift, Front. Earth Sci., 9, 1–14,
https://doi.org/10.3389/feart.2021.707869, 2021b.
Kolawole, F., Vick, T., Atekwana, E. A., Laó-Dávila, D. A., Costa,
A. G., and Carpenter, B. M.: Strain localization and migration during the
pulsed lateral propagation of the Shire Rift Zone, East Africa,
Tectonophysics, 839, 229499, https://doi.org/10.1016/j.tecto.2022.229499,
2022.
Laõ-Dávila, D. A., Al-Salmi, H. S., Abdelsalam, M. G., and Atekwana,
E. A.: Hierarchical segmentation of the Malawi Rift: The influence of
inherited lithospheric heterogeneity and kinematics in the evolution of
continental rifts, Tectonics, 34, 2399–2417, https://doi.org/10.1002/2015TC003953,
2015.
Leonard, M.: Earthquake fault scaling: Self-consistent relating of rupture
length, width, average displacement, and moment release, B. Seismol. Soc.
Am., 100, 1971–1988, https://doi.org/10.1785/0120090189, 2010.
Litchfield, N. J., Van Dissen, R., Sutherland, R., Barnes, P. M., Cox, S.
C., Norris, R., Beavan, R. J., Langridge, R., Villamor, P., Berryman, K.,
Stirling, M., Nicol, A., Nodder, S., Lamarche, G., Barrell, D. J. A.,
Pettinga, J. R., Little, T., Pondard, N., Mountjoy, J. J., and Clark, K.: A
model of active faulting in New Zealand, New Zeal, J. Geol. Geophys., 57,
32–56, https://doi.org/10.1080/00288306.2013.854256, 2014.
Litchfield, N. J., Villamor, P., van Dissen, R. J., Nicol, A., Barnes, P.
M., Barrell, D. J. A., Pettinga, J. R., Langridge, R. M., Little, T. A.,
Mountjoy, J. J., Ries, W. F., Rowland, J., Fenton, C., Stirling, M. W.,
Kearse, J., Berryman, K. R., Cochran, U. A., Clark, K. J., Hemphill-Haley,
M., Khajavi, N., Jones, K. E., Archibald, G., Upton, P., Asher, C., Benson,
A., Cox, S. C., Gasston, C., Hale, D., Hall, B., Hatem, A. E., Heron, D. W.,
Howarth, J., Kane, T. J., Lamarche, G., Lawson, S., Lukovic, B., McColl, S.
T., Madugo, C., Manousakis, J., Noble, D., Pedley, K., Sauer, K., Stahl, T.,
Strong, D. T., Townsend, D. B., Toy, V., Williams, J., Woelz, S., and Zinke,
R.: Surface rupture of multiple crustal faults in the 2016 Mw7.8
Kaikōura, New Zealand, earthquake, B. Seismol. Soc. Am., 108,
1496–1520, https://doi.org/10.1785/0120170300, 2018.
Macheyeki, A. S., Mdala, H., Chapola, L. S., Manhiça, V. J., Chisambi,
J., Feitio, P., Ayele, A., Barongo, J., Ferdinand, R. W., Ogubazghi, G.,
Goitom, B., Hlatywayo, J. D., Kianji, G. K., Marobhe, I., Mulowezi, A.,
Mutamina, D., Mwano, J. M., Shumba, B., and Tumwikirize, I.: Active fault
mapping in Karonga-Malawi after the December 19, 2009 Ms6.2 seismic event,
J. African Earth Sci., 102, 233–246, https://doi.org/10.1016/j.jafrearsci.2014.10.010,
2015.
Manighetti, I., Campillo, M., Bouley, S., and Cotton, F.: Earthquake
scaling, fault segmentation, and structural maturity, Earth Planet. Sci.
Lett., 253, 429–438, https://doi.org/10.1016/j.epsl.2006.11.004, 2007.
Marzocchi, W., Taroni, M., and Selva, J.: Accounting for epistemic
uncertainty in PSHA: Logic tree and ensemble modeling, B. Seismol. Soc.
Am., 105, 2151–2159, https://doi.org/10.1785/0120140131, 2015.
McCalpin, J. P.: Paleoseismology, Academic press, ISBN 9780123735768, 2009.
McGuire, R. K.: Probabilistic seismic hazard analysis and design
earthquakes: closing the loop, B. Seismol. Soc. Am., 85, 1275–1284,
https://doi.org/10.1016/0148-9062(96)83355-9, 1995.
Middleton, T. A., Walker, R. T., Parsons, B., Lei, Q., Zhou, Y., and Ren, Z.:
A major, intraplate, normal-faulting earthquake: The 1739 Yinchuan event in
northern China, J. Geophys. Res.-Sol. Ea., 121, 293–320,
https://doi.org/10.1002/2015JB012355, 2016.
Mildon, Z. K., Toda, S., Faure Walker, J. P., and Roberts, G. P.: Evaluating
models of Coulomb stress transfer: Is variable fault geometry important?,
Geophys. Res. Lett., 43, 12407–12414, https://doi.org/10.1002/2016GL071128, 2016.
Molnar, P.: Earthquake recurrence intervals and plate tectonics, B.
Seismol. Soc. Am., 69, 115–133, 1979.
Morell, K. D., Styron, R., Stirling, M., Griffin, J., Archuleta, R., and
Onur, T.: Seismic Hazard Analyses From Geologic and Geomorphic Data: Current
and Future Challenges, Tectonics, 39, e2018TC005365,
https://doi.org/10.1029/2018TC005365, 2020.
Mortimer, E. J., Paton, D. A., Scholz, C. A., and Strecker, M. R.:
Implications of structural inheritance in oblique rift zones for basin
compartmentalization: Nkhata Basin, Malawi Rift (EARS), Mar. Pet. Geol., 72,
110–121, https://doi.org/10.1016/j.marpetgeo.2015.12.018, 2016.
Muirhead, J. D., Kattenhorn, S. A., Lee, H., Mana, S., Turrin, B. D.,
Fischer, T. P., Kianji, G., Dindi, E., and Stamps, D. S.: Evolution of upper
crustal faulting assisted by magmatic volatile release during early-stage
continental rift development in the East African Rift, Geosphere, 12,
1670–1700, https://doi.org/10.1130/GES01375.1, 2016.
Muirhead, J. D., Wright, L. J. M., and Scholz, C. A.: Rift evolution in
regions of low magma input in East Africa, Earth Planet. Sci. Lett., 506,
332–346, https://doi.org/10.1016/j.epsl.2018.11.004, 2019.
Neely, J. S. and Stein, S.: Why do continental normal fault earthquakes have
smaller maximum magnitudes?, Tectonophysics, 809, 228854,
https://doi.org/10.1016/j.tecto.2021.228854, 2021.
Ngoma, I., Kafodya, I., Kloukinas, P., Novelli, V., Macdonald, J., and Goda,
K.: Building classification and seismic vulnerability of current housing
construction in Malawi, Malawi J. Sci. Technol., 11, 57–72, 2019.
Nicol, A., Van Dissen, R. J., Stirling, M. W., and Gerstenberger, M. C.:
Completeness of the Paleoseismic Active-Fault Record in New Zealand,
Seismol. Res. Lett., 87, 1299–1310, https://doi.org/10.1785/0220160088, 2016.
Njinju, E. A., Kolawole, F., Atekwana, E. A. E. A., Stamps, D. S., Atekwana,
E. A. E. A., Abdelsalam, M. G., and Mickus, K. L.: Terrestrial heat flow in
the Malawi Rifted Zone, East Africa: Implications for tectono-thermal
inheritance in continental rift basins, J. Volcanol. Geotherm. Res., 387, 106656,
https://doi.org/10.1016/j.jvolgeores.2019.07.023, 2019.
Novelli, V., Kloukinas, P., De Risi, R., Kafodya, I., Ngoma, I., Macdonald,
J., and Goda, K.: Seismic Mitigation Framework for Non-engineered Masonry
Buildings in Developing Countries: Application to Malawi in the East African
Rift, in: Resilient Structures and Infrastructure, 195–223, Springer,
https://doi.org/10.1007/978-981-13-7446-3_8, 2019.
Nyblade, A. A. and Langston, C. A.: East African earthquakes below 20 km depth and their implications for crustal structure, Geophys. J. Int.,
121, 49–62, https://doi.org/10.1111/j.1365-246X.1995.tb03510.x, 1995.
Ojo, O., Thomson, S. N., and Lao-Davila, D.: Neogene - Quaternary Rifting of
the Southern Malawi Rift and Linkage To the Late Carboniferous – Early
Jurassic Shire Rift, Earth Sp. Sci. Open Arch. ESSOAr, May, 1–58,
https://doi.org/10.1002/essoar.10511357.1, 2022a.
Ojo, O. O., Ohenhen, L. O., Kolawole, F., Johnson, S. G., Chindandali, P.
R., Atekwana, E. A., and Laó-Dávila, D. A.: Under-Displaced Normal
Faults: Strain Accommodation Along an Early-Stage Rift-Bounding Fault in the
Southern Malawi Rift, Front. Earth Sci., 10, 1–19,
https://doi.org/10.3389/feart.2022.846389, 2022b.
Olive, J. A., Behn, M. D., and Malatesta, L. C.: Modes of extensional
faulting controlled by surface processes, Geophys. Res. Lett., 41,
6725–6733, https://doi.org/10.1002/2014GL061507, 2014.
Pace, B., Visini, F., and Peruzza, L.: FiSH: MATLAB Tools to Turn Fault Data
into Seismic-Hazard Models, Seismol. Res. Lett., 87, 374–386,
https://doi.org/10.1785/0220150189, 2016.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V.,
Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., and Vigano,
D.: Openquake engine: An open hazard (and risk) software for the global
earthquake model, Seismol. Res. Lett., 85, 692–702,
https://doi.org/10.1785/0220130087, 2014.
Pagani, M., Garcia-Pelaez, J., Gee, R., Johnson, K., Poggi, V., Silva, V.,
Simionato, M., Styron, R., Viganò, D., Danciu, L., Monelli, D., and
Weatherill, G.: The 2018 version of the Global Earthquake Model: Hazard
component, Earthq. Spectra, 36, 226–251, https://doi.org/10.1177/8755293020931866,
2020.
Peacock, D. C. P., Nixon, C. W., Rotevatn, A., Sanderson, D. J., and Zuluaga,
L. F.: Glossary of fault and other fracture networks, J. Struct. Geol., 92,
12–29, https://doi.org/10.1016/j.jsg.2016.09.008, 2016.
Pegler, G., and Das, S.: Analysis of the relationship between seismic moment
and fault length for large crustal strike-slip earthquakes between
1977–1992, Geophys. Res. Lett., 23, 905–908, 1996.
Perea, H., Masana, E., and Santanach, P.: A pragmatic approach to seismic
parameters in a region with low seismicity: The case of Eastern Iberia, Nat.
Hazards, 39, 451–477, https://doi.org/10.1007/s11069-006-0013-y, 2006.
Petersen, M. D., Zeng, Y., Haller, K. M., McCaffrey, R., Hammond, W. C.,
Bird, P., Moschetti, M., Shen, Z., Bormann, J., and Thatcher, W.: Geodesy-
and geology-based slip-rate models for the Western United States (excluding
California) national seismic hazard maps, U.S. Geol. Surv. Open-File Rep.
2013–1293, 86, https://doi.org/10.3133/ofr20131293, 2014.
Petit, C. and Ebinger, C.: Flexure and mechanical behavior of cratonic
lithosphere: Gravity models of the East African and Baikal rifts, J.
Geophys. Res.-Sol. Ea., 105, 19151–19162, https://doi.org/10.1029/2000JB900101, 2000.
Plesch, A., Shaw, J. H., Benson, C., Bryant, W. A., Carena, S., Cooke, M.,
Dolan, J., Fuis, G., Gath, E., Grant, L., Hauksson, E., Jordan, T.,
Kamerling, M., Legg, M., Lindvall, S., Magistrale, H., Nicholson, C., Niemi,
N., Oskin, M., Perry, S., Planansky, G., Rockwell, T., Shearer, P., Sorlien,
C., Süss, M. P., Suppe, J., Treiman, J., and Yeats, R.: Community Fault
Model (CFM) for southern California, B. Seismol. Soc. Am., 97,
1793–1802, https://doi.org/10.1785/0120050211, 2007.
Poggi, V., Durrheim, R., Tuluka, G. M., Weatherill, G., Gee, R., Pagani, M.,
Nyblade, A., and Delvaux, D.: Assessing seismic hazard of the East African
Rift: a pilot study from GEM and AfricaArray, Bull. Earthq. Eng., 15,
4499–4529, https://doi.org/10.1007/s10518-017-0152-4, 2017.
Polonia, A., Gasperini, L., Amorosi, A., Bonatti, E., Bortoluzzi, G.,
Çagatay, N., Capotondi, L., Cormier, M. H., Gorur, N., McHugh, C., and
Seeber, L.: Holocene slip rate of the North Anatolian Fault beneath the Sea
of Marmara, Earth Planet. Sci. Lett., 227, 411–426,
https://doi.org/10.1016/j.epsl.2004.07.042, 2004.
Reynolds, K. and Copley, A.: Seismological constraints on the down-dip
shape of normal faults, Geophys. J. Int., 213, 534–560, 2018.
Rhoades, D. A., Christophersen, A., Gerstenberger, M. C., Liukis, M., Silva,
F., Marzocchi, W., Werner, M. J., and Jordan, T. H.: Highlights from the
first ten years of the New Zealand earthquake forecast testing center,
Seismol. Res. Lett., 89, 1229–1237, 2018.
Robertson, E. A. M., Biggs, J., Cashman, K. V, Floyd, M. A., and Vye-Brown,
C.: Influence of regional tectonics and pre-existing structures on the
formation of elliptical calderas in the Kenyan Rift, in: Geological Society
Special Publication, 420, 43–67, 2016.
Romanowicz, B. and Ruff L. J.: On moment-length scaling of large strike
slip earthquakes and the strength of faults, Geophys. Res. Lett., 29, 45-1–45-4,
https://doi.org/10.1029/2001GL014479, 2002.
Sandwell, D., Mellors, R., Tong, X., Wei, M., and Wessel, P.: Open radar
interferometry software for mapping surface Deformation, Eos, Trans. Am.
Geophys. Union, 92, 234, https://doi.org/10.1029/2011EO280002, 2011.
Saria, E., Calais, E., Altamimi, Z., Willis, P., and Farah, H.: A new
velocity field for Africa from combined GPS and DORIS space geodetic
Solutions: Contribution to the definition of the African reference frame
(AFREF), J. Geophys. Res.-Sol. Ea., 118, 1677–1697,
https://doi.org/10.1002/jgrb.50137, 2013.
Scholz, C. H. and Contreras, J. C.: Mechanics of continental rift
architecture, Geology, 26, 967–970,
https://doi.org/10.1130/0091-7613(1998)026<0967:MOCRA>2.3.CO;2, 1998.
Scholz, C. A., Johnson, T. C., Cohen, A. S., King, J. W., Peck, J. A.,
Overpeck, J. T., Talbot, M. R., Brown, E. T., Kalindekafe, L., Amoako, P. Y.
O., Lyons, R. P., Shanahan, T. M., Castañeda, I. S., Heil, C. W.,
Forman, S. L., McHargue, L. R., Beuning, K. R., Gomez, J., and Pierson, J.:
East African megadroughts between 135 and 75 thousand years ago and bearing
on early-modern human origins, P. Natl. Acad. Sci. USA, 104,
16416–16421, https://doi.org/10.1073/pnas.0703874104, 2007.
Scholz, C. A., Shillington, D. J., Wright, L. J. M., Accardo, N., Gaherty,
J. B., and Chindandali, P.: Intrarift fault fabric, segmentation, and basin
evolution of the Lake Malawi (Nyasa) Rift, East Africa, Geosphere, 16,
1293–1311, https://doi.org/10.1130/GES02228.1, 2020.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Seebeck, H., Van Dissen, R. J., Litchfield, N. J., Barnes, P. M., Nicol, A.,
Langridge, R. M., Barrell, D. J. A., Villamor, P., Ellis, S. M., Rattenbury,
M. S., Bannister, S., Gerstenberger, M. C., Ghisetti, F., Sutherland, R.,
Fraser, J., Nodder, S. D., Stirling, M. W., Humphrey, J., Bland, K. J.,
Howell, A., Mountjoy, J. J., Moon, V., Stahl, T., Spinardi, F., Townsend, D.
B., Clark, K. J., Hamling, I. J., Cox, S. C., de Lange, W., Wopereis, P.,
Johnston, M., Morgenstern, R., Coffey, G. L., Eccles, J. D., Little, T. A.,
Fry, B., Griffin, J., Mortimer, N., Alcaraz, S. A., Massiot, C., Rowland,
J., Muirhead, J., Upton, P., Hirschberg, H., and Lee, J. M.: New Zealand
Community Fault Model – version 1.0., 97, https://doi.org/10.21420/GA7S-BS61,
2022.
Shaw, B. E.: Earthquake surface slip-length data is fit by constant stress
drop and is useful for seismic hazard analysis, B. Seismol. Soc. Am.,
103, 876–893, https://doi.org/10.1785/0120110258, 2013.
Shaw, B. E. and Scholz, C. H.: Slip-length scaling in large earthquakes:
Observations and theory and implications for earthquake physics, Geophys.
Res. Lett., 28, 2995–2998, https://doi.org/10.1029/2000GL012762, 2001.
Shillington, D. J., Gaherty, J. B., Ebinger, C. J., Scholz, C. A., Selway,
K., Nyblade, A. A., Bedrosian, P. A., Class, C., Nooner, S. L., Pritchard,
M. E., Elliott, J., Chindandali, P. R. N., Mbogoni, G., Ferdinand, R. W.,
Boniface, N., Manya, S., Kamihanda, G., Saria, E., Mulibo, G., Salima, J.,
Mruma, A., Kalindekafe, L., Accardo, N. J., Ntambila, D., Kachingwe, M.,
Mesko, G. T., McCartney, T., Maquay, M., O'Donnell, J. P., Tepp, G.,
Mtelela, K., Trinhammer, P., Wood, D., Aaron, E., Gibaud, M., Rapa, M.,
Pfeifer, C., Mphepo, F., Gondwe, D., Arroyo, G., Eddy, C., Kamoga, B., and
Moshi, M.: Acquisition of a unique onshore/offshore geophysical and
geochemical dataset in the northern Malawi (Nyasa) rift, Seismol. Res.
Lett., 87, 1406–1416, https://doi.org/10.1785/0220160112, 2016.
Shillington, D. J., Scholz, C. A., Chindandali, P. R. N., Gaherty, J. B.,
Accardo, N. J., Onyango, E., Ebinger, C. J., and Nyblade, A. A.: Controls on
Rift Faulting in the North Basin of the Malawi (Nyasa) Rift, East Africa,
Tectonics, 39, e2019TC005633, https://doi.org/10.1029/2019TC005633, 2020.
Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., and Cheng, C. T.: A
new on-land seismogenic structure source database from the Taiwan earthquake
model (TEM) project for seismic hazard analysis of Taiwan, Terr. Atmos.
Ocean. Sci., 27, 311–323, https://doi.org/10.3319/TAO.2015.11.27.02(TEM), 2016.
Stevens, V. L., Sloan, R. A., Chindandali, P. R., Wedmore, L. N. J.,
Salomon, G. W., and Muir, R. A.: The Entire Crust can be Seismogenic:
Evidence from Southern Malawi, Tectonics, 40, e2020TC006654,
https://doi.org/10.1029/2020tc006654, 2021.
Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen,
R., Berryman, K., Barnes, P., Wallace, L., Villamor, P., Langridge, R.,
Lamarche, G., Nodder, S., Reyners, M., Bradley, B., Rhoades, D., Smith, W.,
Nicol, A., Pettinga, J., Clark, K., and Jacobs, K.: National seismic hazard
model for New Zealand: 2010 update, B. Seismol. Soc. Am., 102,
1514–1542, https://doi.org/10.1785/0120110170, 2012.
Stirling, M., Goded, T., Berryman, K., and Litchfield, N.: Selection of
earthquake scaling relationships for seismic-hazard analysis, B. Seismol.
Soc. Am., 103, 2993–3011, https://doi.org/10.1785/0120130052, 2013.
Strader, A., Schneider, M., and Schorlemmer, D.: Prospective and
retrospective evaluation of five-year earthquake forecast models for
California, Geophys. J. Int., 211, 239–251, 2017.
Styron, R. and Pagani, M.: The GEM Global Active Faults Database, Earthq.
Spectra, 36, 160–180, https://doi.org/10.1177/8755293020944182,
2020.
Styron, R., García-Pelaez, J., and Pagani, M.: CCAF-DB: the Caribbean and Central American active fault database, Nat. Hazards Earth Syst. Sci., 20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, 2020.
Sun, M., Gao, S. S., Liu, K. H., Mickus, K., Fu, X., and Yu, Y.: Receiver
function investigation of crustal structure in the Malawi and Luangwa rift
zones and adjacent areas, Gondwana Res., 89, 168–176,
https://doi.org/10.1016/j.gr.2020.08.015, 2021.
Taroni, M., Marzocchi, W., Schorlemmer, D., Werner, M. J., Wiemer, S.,
Zechar, J. D., Heiniger, L., and Euchner, F.: Prospective CSEP evaluation of
1-day, 3-month, and 5-yr earthquake forecasts for Italy, Seismol. Res.
Lett., 89, 1251–1261, 2018.
Thingbaijam, K. K. S., Mai, P. M., and Goda, K.: New empirical earthquake
source-scaling laws, B. Seismol. Soc. Am., 107, 2225–2246,
https://doi.org/10.1785/0120170017, 2017.
Turcotte, D. L. and Schubert, G.: Geodynamics: Applications of continuum
physics to geological problems, 450 pp., ISBN 10 0471060186, 1982.
Valentini, A., DuRoss, C. B., Field, E. H., Gold, R. D., Briggs, R. W.,
Visini, F., and Pace, B.: Relaxing Segmentation on the Wasatch Fault Zone:
Impact on Seismic Hazard, B. Seismol. Soc. Am., 110, 83–109,
https://doi.org/10.1785/0120190088, 2020.
Vallage, A. and Bollinger, L.: Testing Fault Models in Intraplate Settings:
A Potential for Challenging the Seismic Hazard Assessment Inputs and
Hypothesis?, Pure Appl. Geophys., 177, 1879–1889,
https://doi.org/10.1007/s00024-019-02129-z, 2020.
Villamor, P., Barrell, D.A., Gorman, A., Davy, B., Fry, B., Hreinsdottir,
S., Hamling, I., Stirling, M., Cox, S., Litchfield, N., Holt, A., Todd, E.,
Denys, P., Pearson, C., Sangster, C., Garcia-Mayordomo, J., Goded, T.,
Abbott, E., Ohneiser, C., Lepine, P., and Caratori-Tontini, F.: Unknown faults
under cities, Lower Hutt (NZ), GNS Science, 71 pp., GNS Science miscellaneous
series 124, https://doi.org/10.21420/G2PW7X, 2018.
Visini, F., Valentini, A., Chartier, T., Scotti, O., and Pace, B.:
Computational Tools for Relaxing the Fault Segmentation in Probabilistic
Seismic Hazard Modelling in Complex Fault Systems, Pure Appl. Geophys.,
177, 1855–1877, https://doi.org/10.1007/s00024-019-02114-6, 2020.
Vittori, E., Delvaux, D., and Kervyn, F.: Kanda fault: A major seismogenic
element west of the Rukwa Rift (Tanzania, East Africa), J. Geodyn.,
24, 139–153, https://doi.org/10.1016/S0264-3707(96)00038-5, 1997.
Wallace, L. M., Barnes, P., Beavan, J., Van Dissen, R., Litchfield, N.,
Mountjoy, J., Langridge, R., Lamarche, G., and Pondard, N.: The kinematics of
a transition from subduction to strike-slip: An example from the central New
Zealand plate boundary, J. Geophys. Res.-Sol. Ea., 117, B02405,
https://doi.org/10.1029/2011JB008640, 2012.
Wallace, R. E.: Earthquake recurrence intervals on the San Andreas fault,
Bull. Geol. Soc. Am., 81, 2875–2890,
https://doi.org/10.1130/0016-7606(1970)81[2875:ERIOTS]2.0.CO;2, 1970.
Walshaw, R. D.: The Geology of the Nchue-Balaka Area, Bull. Geol. Surv.
Malawi, 19, 96 pp., 1965.
Walter, J.: The Geology of the Salima-Mvera Mission Area, Bull. Geol. Surv.
Malawi, 30, 30 pp., 1972.
Walters, R. J., Gregory, L. C., Wedmore, L. N. J., Craig, T. J., McCaffrey,
K., Wilkinson, M., Chen, J., Li, Z., Elliott, J. R., Goodall, H., Iezzi, F.,
Livio, F., Michetti, A. M., Roberts, G., and Vittori, E.: Dual control of
fault intersections on stop-start rupture in the 2016 Central Italy seismic
sequence, Earth Planet. Sci. Lett., 500, 1–14,
https://doi.org/10.1016/j.epsl.2018.07.043, 2018.
Wang, T., Feng, J., Liu, K. H., and Gao, S. S.: Crustal structure beneath the
Malawi and Luangwa Rift Zones and adjacent areas from ambient noise
tomography, Gondwana Res., 67, 187–198, https://doi.org/10.1016/j.gr.2018.10.018, 2019.
Wedmore, L. N. J., Faure Walker, J. P., Roberts, G. P., Sammonds, P. R.,
McCaffrey, K. J. W., and Cowie, P. A.: A 667 year record of coseismic and
interseismic Coulomb stress changes in central Italy reveals the role of
fault interaction in controlling irregular earthquake recurrence intervals,
J. Geophys. Res.-Sol. Ea., 122, 5691–5711, https://doi.org/10.1002/2017JB014054,
2017.
Wedmore, L. N. J., Biggs, J., Williams, J. N., Fagereng, Å., Dulanya,
Z., Mphepo, F., and Mdala, H.: Active Fault Scarps in Southern Malawi and
Their Implications for the Distribution of Strain in Incipient Continental
Rifts, Tectonics, 39, e2019TC005834, https://doi.org/10.1029/2019TC005834, 2020a.
Wedmore, L. N. J., Williams, J. N., Biggs, J., Fagereng, Å., Mphepo, F.,
Dulanya, Z., Willoughby, J., Mdala, H., and Adams, B. A.: Structural
inheritance and border fault reactivation during active early-stage rifting
along the Thyolo fault, Malawi, J. Struct. Geol., 139, 104097,
https://doi.org/10.1016/j.jsg.2020.104097, 2020b.
Wedmore, L. N. J., Biggs, J., Floyd, M., Fagereng, Mdala, H., Chindandali,
P., Williams, J. N., and Mphepo, F.: Geodetic Constraints on Cratonic
Microplates and Broad Strain During Rifting of Thick Southern African
Lithosphere, Geophys. Res. Lett., 48, https://doi.org/10.1029/2021GL093785, 2021.
Wedmore, L. N. J., Turner, T., Biggs, J., Williams, J. N., Sichingabula, H. M., Kabumbu, C., and Banda, K.: The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-304, 2022.
Weldon, R., Scharer, K., Fumal, T., and Biasi, G.: Wrightwood and the
earthquake cycle: What a long recurrence record tells us about how faults
work, GSA Today, 14, 4–10, https://doi.org/10.1130/1052-5173(2004)014<4:WATECW>2.0.CO;2, 2004.
Wells, D. L. and Coppersmith, K. J.: New Empirical Relationships among
Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface
Displacement, B. Seismol. Soc. Am., 84, 974–1002, 1994.
Wesnousky, S. G.: Displacement and geometrical characteristics of earthquake
surface ruptures: Issues and implications for seismic-hazard analysis and
the process of earthquake rupture, B. Seismol. Soc. Am., 98,
1609–1632, https://doi.org/10.1785/0120070111, 2008.
Wheeler, W. H. and Rosendahl, B. R.: Geometry of the Livingstone Mountains
Border Fault, Nyasa (Malawi) Rift, East Africa, Tectonics, 13, 303–312,
https://doi.org/10.1029/93TC02314, 1994.
Widess, M. B.: How Thin Is a Thin Bed?, Geophysics, 38, 1176–1180,
https://doi.org/10.1190/1.1440403, 1973.
Williams, J., Werner, M., Goda, K., Wedmore, L., De Risi, R., Biggs, J., Mdala, H., Dulanya, Z., Fagereng, Å., Mphepo, F., and Chindandali, P.: Fault-based Probabilistic Seismic Hazard Analysis in Regions with Low Strain Rates and a Thick Seismogenic Layer: A Case Study from Malawi. 27 March 2022, PREPRINT (Version 1), Research Square, https://doi.org/10.21203/rs.3.rs-1452299/v1, 2022a.
Williams, J. N., Fagereng, Å., Wedmore, L. N. J., Biggs, J., Mphepo, F.,
Dulanya, Z., Mdala, H., and Blenkinsop, T.: How Do Variably Striking Faults
Reactivate During Rifting? Insights From Southern Malawi, Geochem. Geophy. Geosy., 20, 3588–3607, https://doi.org/10.1029/2019GC008219, 2019.
Williams, J. N., Mdala, H., Fagereng, Å., Wedmore, L. N. J., Biggs, J.,
Dulanya, Z., Chindandali, P., and Mphepo, F.: A systems-based approach to
parameterise seismic hazard in regions with little historical or
instrumental seismicity: Active fault and seismogenic source databases for
southern Malawi, Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021,
2021a.
Williams, J. N., Wedmore, L. N. J., Scholz, C. A., Kolawole, F., Wright, L.
J. M., Shillington, D. J., Fagereng, Å., Biggs, J., Mdala, H., Dulanya,
Z., Mphepo, F., Chindandali, P., and Werner, M. J.: Malawi Active Fault
Database (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.5507189, 2021b.
Williams, J. N., Wedmore, L. N. J., Scholz, C. A., Kolawole, F., Wright, L.
J. M., Shillington, D. J., Fagereng, Å., Biggs, J., Mdala, H., Dulanya,
Z., Mphepo, F., Chindandali, P., and Werner, M. J.: The Malawi Active Fault
Database: an onshore-offshore database for regional assessment of seismic
hazard and tectonic evolution, Geochem. Geophy. Geosy., 23,
e2022GC010425, https://doi.org/10.1029/2022gc010425, 2022b.
Williams, J. N., Wedmore, L. N. J., Fagereng, Å., Werner, M. J., Biggs, J., Mdala, H., Kolawole, F., Shillington, D. J., Dulanya, Z., Mphepo, F., Chindandali, P. R. N., Wright, L. J. M., and Scholz, C. A.: LukeWedmore/malawi_seismogenic_source_model: Malawi Seismogenic Source Model v1.2 (v1.2), Zenodo [data set], https://doi.org/10.5281/zenodo.5599616, 2022c.
Williams, J., Werner, M., Goda, K., De Risi, R., Wedmore, L., Biggs, J., Mdala, H., Dulanya, Z., Fagereng, A., Mphepo, F., and Chindandali, P.: Malawi probabilistic seismic hazard analysis (PSHA) using the Malawi Seismogenic Source Model (MSSM) (1.0), Zenodo, https://doi.org/10.5281/zenodo.7265780, 2022d.
Wright, L. J. M., Muirhead, J. D., and Scholz, C. A.: Spatiotemporal
Variations in Upper Crustal Extension Across the Different Basement Terranes
of the Lake Tanganyika Rift, East Africa, Tectonics, 39, e2019TC006019,
https://doi.org/10.1029/2019TC006019, 2020.
Xu, Y., He, H., Deng, Q., Allen, M. B., Sun, H., and Bi, L.: The CE 1303
Hongdong Earthquake and the Huoshan Piedmont Fault, Shanxi Graben:
Implications for Magnitude Limits of Normal Fault Earthquakes, J. Geophys. Res.-Sol. Ea., 123, 3098–3121, https://doi.org/10.1002/2017JB014928, 2018.
Youngs, R. R. and Coppersmith, K. J.: Implications of fault slip rates and
earthquake recurrence models to probabilistic seismic hazard estimates,
B. Seismol. Soc. Am., 75, 939–964, 1985.
Zechar, J. D. and Frankel, K. L.: Incorporating and reporting uncertainties
in fault slip rates, J. Geophys. Res.-Sol. Ea., 114, 1–9,
https://doi.org/10.1029/2009JB006325, 2009.
Zechar, J. D., Schorlemmer, D., Werner, M. J., Gerstenberger, M. C.,
Rhoades, D. A., and Jordan, T. H.: Regional earthquake likelihood models I:
First-order results, B. Seismol. Soc. Am., 103, 787–798, 2013.
Zeng, Y. and Shen, Z. K.: Fault network modeling of crustal deformation in
California constrained using GPS and geologic observations, Tectonophysics,
612–613, 1–17, https://doi.org/10.1016/j.tecto.2013.11.030, 2014.
Zheng, W., Oliva, S. J., Ebinger, C., and Pritchard, M. E.: Aseismic
Deformation During the 2014 Mw5.2 Karonga Earthquake, Malawi, From
Satellite Interferometry and Earthquake Source Mechanisms, Geophys. Res.
Lett., 47, e2020GL090930, https://doi.org/10.1029/2020GL090930, 2020.
Short summary
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur along active faults in Malawi. These faults slip in earthquakes as the tectonic plates on either side of the East African Rift in Malawi diverge. Low divergence rates (0.5–1.5 mm yr) and long faults (5–200 km) imply that earthquakes along these faults are rare (once every 1000–10 000 years) but could have high magnitudes (M 7–8). These data can be used to assess seismic risk in Malawi.
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur...
Altmetrics
Final-revised paper
Preprint