Articles | Volume 22, issue 6
https://doi.org/10.5194/nhess-22-1931-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-1931-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hidden-state modeling of a cross-section of geoelectric time series data can provide reliable intermediate-term probabilistic earthquake forecasting in Taiwan
Haoyu Wen
CORRESPONDING AUTHOR
Division of Physics and Applied Physics, School of Physical and
Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link,
637371, Singapore
Hong-Jia Chen
Department of Earth Sciences, National Central University, Taoyuan
32001, Taiwan
Chien-Chih Chen
Department of Earth Sciences, National Central University, Taoyuan
32001, Taiwan
Earthquake-Disaster & Risk Evaluation and Management Center,
National Central University, Taoyuan 32001, Taiwan
Massimo Pica Ciamarra
Division of Physics and Applied Physics, School of Physical and
Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link,
637371, Singapore
Siew Ann Cheong
Division of Physics and Applied Physics, School of Physical and
Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link,
637371, Singapore
Related authors
No articles found.
Yi-Ying Wen, Chien-Chih Chen, Strong Wen, and Wei-Tsen Lu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-114, https://doi.org/10.5194/nhess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
Knowing the spatiotemporial seismicity patterns prior to impending large earthquakes might help to the earthquake hazard assessment. Several recent moderate earthquakes occurred in the various regions of Taiwan, which help to further investigate the spatiotemporal seismic pattern related to the regional tectonic stress. We should pay attention when seismicity decrease of 2.5 < M < 4.5 events around southern Central Range, or the accelerating seismicity of 3 < M < 5 events appears in central Taiwan.
Cited articles
Abdel-Hamid, O. and Jiang, H.: Fast speaker adaptation of hybrid NN/HMM
model for speech recognition based on discriminative learning of speaker
code, 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, 7942–7946, https://doi.org/10.1109/ICASSP.2013.6639211, 2013.
Asim, K., Martínez-Álvarez, F., Basit, A., and Iqbal, T.:
Earthquake magnitude prediction in Hindukush region using machine learning
techniques, Nat. Hazards, 85, 471–486, 2017.
Asim, K. M., Idris, A., Martínez-Álvarez, F., and Iqbal, T.: Short
term earthquake prediction in Hindukush region using tree based ensemble
learning, 2016 International conference on frontiers of information
technology (FIT), 365–370, https://doi.org/10.1109/FIT.2016.073, 2016.
Batac, R. C. and Kantz, H.: Observing spatio-temporal clustering and separation using interevent distributions of regional earthquakes, Nonlin. Processes Geophys., 21, 735–744, https://doi.org/10.5194/npg-21-735-2014, 2014.
Beyreuther, M. and Wassermann, J.: Continuous earthquake detection and
classification using discrete Hidden Markov Models, Geophys. J.
Int., 175, 1055–1066, 2008.
Bilmes, J. A.: A gentle tutorial of the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models,
International Computer Science Institute, 4, p. 126, https://www.semanticscholar.org/paper/A-gentle-tutorial-of-the-em-algorithm-and-its-to-Bilmes/3a5fa1ea14cea5e55e4e1f844f78332fccefa285 (last access: 30 May 2022), 1998.
Chambers, D. W., Baglivo, J. A., Ebel, J. E., and Kafka, A. L.: Earthquake
forecasting using hidden Markov models, Pure Appl. Geophys., 169,
625–639, 2012.
Chavan, R. S. and Sable, G. S.: An overview of speech recognition using HMM,
International Journal of Computer Science and Mobile Computing, 2, 233–238,
2013.
Cheong, S. A.: Hidden-State Modelling of a Cross-section of Geoelectric Time Series Data Can Provide Reliable Intermediate-term Probabilistic Earthquake Forecasting in Taiwan (V1), DR-NTU [data set], https://doi.org/10.21979/N9/JSUTCD, 2021.
Chen, C.-C.: Accelerating seismicity of moderate-size earthquakes before the
1999 Chi-Chi, Taiwan, earthquake: Testing time-prediction of the
self-organizing spinodal model of earthquakes, Geophys. J.
Int., 155, F1–F5, 2003.
Chen, H.-J. and Chen, C.-C.: Testing the correlations between anomalies of
statistical indexes of the geoelectric system and earthquakes, Nat.
Hazards, 84, 877–895, 2016.
Chen, H.-J., Chen, C.-C., Ouillon, G., and Sornette, D.: Using skewness and
kurtosis of geoelectric fields to forecast the 2016/2/6, ML6. 6 Meinong,
Taiwan Earthquake, Terrestrial, Atmospheric and Oceanic Sciences, 28,
745–761, 2017.
Chen, H.-J., Chen, C.-C., Ouillon, G., and Sornette, D.: A paradigm for
developing earthquake probability forecasts based on geoelectric data, The
European Physical Journal Special Topics, 230, 381–407, 2021.
Chen, H.-J., Chen, C.-C., Tseng, C.-Y., and Wang, J.-H.: Effect of tidal triggering on seismicity in Taiwan revealed by the empirical mode decomposition method, Nat. Hazards Earth Syst. Sci., 12, 2193–2202, https://doi.org/10.5194/nhess-12-2193-2012, 2012.
Chen, H. J., Ye, Z. K., Chiu, C. Y., Telesca, L., Chen, C. C., and Chang, W.
L.: Self-potential ambient noise and spectral relationship with
urbanization, seismicity, and strain rate revealed via the Taiwan
Geoelectric Monitoring Network, J. Geophys. Res.-Sol.
Ea., 125, e2019JB018196, https://doi.org/10.1029/2019JB018196, 2020.
Cho, S.-B. and Park, H.-J.: Efficient anomaly detection by modeling
privilege flows using hidden Markov model, computers & security, 22,
45-55, 2003.
Cornell, C. A.: Engineering seismic risk analysis, B.
Seismol. Soc. Am., 58, 1583–1606, 1968.
Dash, R., Paramguru, R. L., and Dash, R.: Comparative analysis of supervised
and unsupervised discretization techniques, International Journal of
Advances in Science and Technology, 2, 29–37, 2011.
Dieterich, J.: A constitutive law for rate of earthquake production and its
application to earthquake clustering, J. Geophys. Res.-Sol.
Ea., 99, 2601–2618, 1994.
Ebel, J. E., Chambers, D. W., Kafka, A. L., and Baglivo, J. A.:
Non-Poissonian earthquake clustering and the hidden Markov model as bases
for earthquake forecasting in California, Seismol. Res. Lett.,
78, 57–65, 2007.
Fischer, T. and Bachura, M.: Detection capability of seismic network based
on noise analysis and magnitude of completeness, J. Seismol., 18,
137–150, 2014.
Frohlich, C.: Aftershocks and temporal clustering of deep earthquakes,
J. Geophys. Res.-Sol. Ea., 92, 13944–13956, 1987.
Geller, R. J., Jackson, D. D., Kagan, Y. Y., and Mulargia, F.: Earthquakes
cannot be predicted, Science, 275, 1616–1616, 1997.
Gupta, A., Mehrotra, K. G., and Mohan, C.: A clustering-based discretization
for supervised learning, Stat. Probabil. Lett., 80, 816–824,
2010.
Hayakawa, M. and Hobara, Y.: Current status of seismo-electromagnetics for
short-term earthquake prediction, Geomatics, Natural Hazards and Risk, 1,
115–155, 2010.
Healy, J. H., Kossobokov, V. G., and Dewey, J. W.: A test to evaluate the earthquake prediction algorithm, M8, 92(401), US Geological Survey, 1992.
Holbrook, J., Autin, W. J., Rittenour, T. M., Marshak, S., and Goble, R. J.:
Stratigraphic evidence for millennial-scale temporal clustering of
earthquakes on a continental-interior fault: Holocene Mississippi River
floodplain deposits, New Madrid seismic zone, USA, Tectonophysics, 420,
431–454, 2006.
Huang, Q. and Lin, Y.: Selectivity of seismic electric signal (SES) of the
2000 Izu earthquake swarm: a 3D FEM numerical simulation model, P.
Jpn. Acad. B-Phys., 86, 257–264, 2010.
Ismail-Zadeh, A. T.: Earthquake Prediction and Forecasting, in: Encyclopedia
of Natural Hazards, edited by: Bobrowsky, P. T., Springer Netherlands,
Dordrecht, 225–231, https://doi.org/10.1007/978-1-4020-4399-4_106, 2013.
Jiang, F., Chen, X., Chen, C.-C., and Chen, H.-J.: Relationship between
seismic electric signals and tectonics derived from dense geoelectric
observations in Taiwan, Pure Appl. Geophys., 177, 441–454, 2020.
Joshi, S. S. and Phoha, V. V.: Investigating hidden Markov models
capabilities in anomaly detection, Proceedings of the 43rd annual Southeast
regional conference-Volume 1, 98–103, 2005.
Kagan, Y. and Jackson, D.: Long-term probabilistic forecasting of
earthquakes, J. Geophys. Res.-Sol. Ea., 99, 13685–13700,
1994.
Kagan, Y. Y.: Are earthquakes predictable?, Geophys. J.
Int., 131, 505–525, 1997.
Kamiyama, M., Sugito, M., Kuse, M., Schekotov, A., and Hayakawa, M.: On the
precursors to the 2011 Tohoku earthquake: crustal movements and
electromagnetic signatures, Geomatics, Natural Hazards and Risk, 7, 471–492,
2016.
Kanamori, H.: Earthquake prediction: An overview, International Geophysics Series, Academic Press, 81, 1205–1216, https://doi.org/10.1016/S0074-6142(03)80186-9, 2003
Keilis-Borok, V. I.: Intermediate-term earthquake prediction, P.
Natl. Acad. Sci. USA, 93, 3748–3755, 1996.
Keilis-Borok, V. I. and Rotwain, I.: Diagnosis of time of increased
probability of strong earthquakes in different regions of the world:
algorithm CN, Phys. Earth Planet. Int., 61, 57–72, 1990.
Kinoshita, M., Uyeshima, M., and Uyeda, S.: Earthquake Prediction Research
by Means of Telluric Potential Monitoring: Progress Report No. 1:
Installation of Monitoring Network, Bulletin of the Earthquake Research Institute,
University of Tokyo, 64, https://repository.dl.itc.u-tokyo.ac.jp/?action=repository_action_common_download&item_id=32803&item_no=1&attribute_id=19&file_no=1 (last access: 30 May 2022), 255–311, 1989.
Kossobokov, V., Romashkova, L., Panza, G., and Peresan, A.: Stabilizing
intermediate-term medium-range earthquake predictions, Journal of Seismology
and Earthquake Engineering, 4, 11–19, 2002.
Kuo-Chen, H., Wu, F. T., and Roecker, S. W.: Three-dimensional P velocity
structures of the lithosphere beneath Taiwan from the analysis of TAIGER and
related seismic data sets, J. Geophys. Res.-Sol. Ea.,
117, B06306, https://doi.org/10.1029/2011JB009108, 2012.
Larue, P., Jallon, P., and Rivet, B.: Modified k-mean clustering method of
HMM states for initialization of Baum-Welch training algorithm, 2011 19th
European Signal Processing Conference, Barcelona, Spain, 29 August–2 September 2011, https://hal.archives-ouvertes.fr/hal-00620012 (last access: 30 May 2022), 951–955, 2011.
Lee, S. J., Yeh, T. Y., and Lin, Y. Y.: Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: A synergy effect of source rupture and site amplification, Seismol. Res. Lett., 87, 1319–1326, 2016.
Marzocchi, W., Zechar, J. D., and Jordan, T. H.: Bayesian forecast
evaluation and ensemble earthquake forecasting, B.
Seismol. Soc. Am., 102, 2574–2584, 2012.
Meletti, C., Galadini, F., Valensise, G., Stucchi, M., Basili, R., Barba,
S., Vannucci, G., and Boschi, E.: A seismic source zone model for the
seismic hazard assessment of the Italian territory, Tectonophysics, 450,
85–108, 2008.
Mignan, A., Werner, M., Wiemer, S., Chen, C.-C., and Wu, Y.-M.: Bayesian
estimation of the spatially varying completeness magnitude of earthquake
catalogs, B. Seismol. Soc. Am., 101, 1371–1385,
2011.
Moustra, M., Avraamides, M., and Christodoulou, C.: Artificial neural
networks for earthquake prediction using time series magnitude data or
seismic electric signals, Expert Syst. Appl., 38, 15032–15039,
2011.
Nanjo, K., Rundle, J., Holliday, J., and Turcotte, D.: Pattern informatics
and its application for optimal forecasting of large earthquakes in Japan,
in: Computational Earthquake Physics: Simulations, Analysis and
Infrastructure, Part II, edited by: Yin, Xc., Mora, P., Donnellan, A., and Matsu’ura, M., Springer, 2417–2432, https://doi.org/10.1007/978-3-7643-8131-8_12, 2006.
Nanjo, K., Ishibe, T., Tsuruoka, H., Schorlemmer, D., Ishigaki, Y., and
Hirata, N.: Analysis of the completeness magnitude and seismic network
coverage of Japan, B. Seismol. Soc. Am., 100,
3261–3268, 2010.
Nath, S. and Thingbaijam, K.: Probabilistic seismic hazard assessment of
India, Seismol. Res. Lett., 83, 135–149, 2012.
Nomikos, K., Vallianatos, F., Kaliakatsos, I., Sideris, E., and Bakatsakis,
M.: The latest aspects of telluric and electromagnetic variations associated
with shallow and intermediate depth earthquakes in the South Aegean, Ann.
Geophys., 40, 2, https://doi.org/10.4401/ag-3919, 1997.
Novoa, J., Wuth, J., Escudero, J. P., Fredes, J., Mahu, R., and Yoma, N. B.:
DNN-HMM based automatic speech recognition for HRI scenarios, Proceedings of
the 2018 ACM/IEEE International Conference on Human-Robot Interaction,
150–159, https://doi.org/10.1145/3171221.3171280, 2018.
Orihara, Y., Kamogawa, M., Nagao, T., and Uyeda, S.: Preseismic anomalous
telluric current signals observed in Kozu-shima Island, Japan, P.
Natl. Acad. Sci. USA, 109, 19125-19128, 2012.
Oudelha, M. and Ainon, R. N.: HMM parameters estimation using hybrid
Baum-Welch genetic algorithm, 2010 International Symposium on Information
Technology, 542–545, https://doi.org/10.1109/ITSIM.2010.5561388, 2010.
Palaz, D., Magimai-Doss, M., and Collobert, R.: End-to-end acoustic modeling
using convolutional neural networks for HMM-based automatic speech
recognition, Speech Commun., 108, 15–32, 2019.
Pan, S.-T., Cheng, Y.-Y., Wu, C.-L., Chang, R. H., Chiu, C., Foo, N.-P., Chen, P.-T., Wang, T.-Y., Chen, L.-H., and Chen, C.-J.: Association of injury pattern and entrapment location inside damaged buildings in the 2016 Taiwan earthquake, J. Formos. Med. Assoc., 118, 311–323, 2019.
Papadimitriou, E. E.: Long-term earthquake prediction along the western
coast of South and Central America based on a time predictable model, in:
Shallow Subduction Zones: Seismicity, Mechanics and Seismic Potential Part
1, edited by: Dmowska, R. and Ekström, G., Springer, 301–316, https://doi.org/10.1007/978-3-0348-5846-5_6, 1993.
Papazachos, B., Papadimitriou, E., Karakaisis, G., and Panagiotopoulos, D.:
Long-term earthquake prediction in the circum-Pacific convergent belt, Pure
Appl. Geophys., 149, 173–217, 1997.
Papazachos, B., Papadimitriou, E., Kiratzi, A., Papaioannou, C. A., and
Karakaisis, G.: Probabilities of occurrence of large earthquakes in the
Aegean and surrounding area during the period 1986–2006, Pure Appl.
Geophys., 125, 597–612, 1987.
Peresan, A., Kossobokov, V., Romashkova, L., and Panza, G.:
Intermediate-term middle-range earthquake predictions in Italy: a review,
Earth-Sci. Rev., 69, 97–132, 2005.
Petersen, M. D.: Probabilistic seismic hazard assessment for the state of California, California Department of Conservation Division of Mines and Geology, 96–706, https://doi.org/10.3133/ofr96706, 1996.
Qiao, Y., Xin, X., Bin, Y., and Ge, S.: Anomaly intrusion detection method
based on HMM, Electron. Lett., 38, 663–664, 2002.
Reyes, J., Morales-Esteban, A., and Martínez-Álvarez, F.: Neural
networks to predict earthquakes in Chile, Appl. Soft Comput., 13,
1314–1328, 2013.
Rundle, J. B., Klein, W., Turcotte, D. L., and Malamud, B. D.: Precursory
seismic activation and critical-point phenomena, in: Microscopic and
Macroscopic Simulation: Towards Predictive Modelling of the Earthquake
Process, edited by: Mora, P., Matsu’ura, M., Madariaga, R., and Minster, J. B., Springer, 2165–2182, https://doi.org/10.1007/978-3-0348-7695-7_19, 2000.
Rydelek, P. A. and Sacks, I. S.: Testing the completeness of earthquake
catalogues and the hypothesis of self-similarity, Nature, 337, 251–253,
1989.
Sarlis, N., Lazaridou, M., Kapiris, P., and Varotsos, P.: Numerical model of
the selectivity effect and the ÄV/L criterion, Geophys. Res.
Lett., 26, 3245–3248, 1999.
Sarlis, N. V.: Statistical Significance of Earth's Electric and Magnetic
Field Variations Preceding Earthquakes in Greece and Japan Revisited,
Entropy, 20, 561, https://doi.org/10.3390/e20080561, 2018.
SciPy Cookbook: Butterworth Bandpass: https://scipy-cookbook.readthedocs.io/items/ButterworthBandpass.html (last access: 23 April 2021), 2012.
Shebalin, P., Keilis-Borok, V., Gabrielov, A., Zaliapin, I., and Turcotte,
D.: Short-term earthquake prediction by reverse analysis of lithosphere
dynamics, Tectonophysics, 413, 63–75, 2006.
Shin, T.-C., Chang, C.-H., Pu, H.-C., Hsiao-Wei, L., and Leu, P.-L.: The
geophysical database management system in Taiwan, TAO: Terrestrial,
Atmos. Ocean. Sci., 24, T51A–2454, https://doi.org/10.3319/TAO.2012.09.20.01(T), 2013.
Sornette, A. and Sornette, D.: Earthquake rupture as a critical point:
Consequences for telluric precursors, Tectonophysics, 179, 327–334, 1990.
Sykes, L. R.: Intermediate-and long-term earthquake prediction, P. Natl. Acad. Sci. USA, 93, 3732-3739, 1996.
Tavakoli, B. and Ghafory-Ashtiany, M.: Seismic hazard assessment of Iran, Ann. Geophys., 42, 6, https://doi.org/10.4401/ag-3781, 1999.
Telesca, L., Lapenna, V., and Lovallo, M.: Fisher Information Analysis of earthquake-related geoelectrical signals, Nat. Hazards Earth Syst. Sci., 5, 561–564, https://doi.org/10.5194/nhess-5-561-2005, 2005a.
Telesca, L., Lapenna, V., and Macchiato, M.: Multifractal fluctuations in
earthquake-related geoelectrical signals, New J. Phys., 7, 214, https://doi.org/10.1088/1367-2630/7/1/214,
2005b.
Telesca, L., Lovallo, M., Ramirez-Rojas, A., and Angulo-Brown, F.: A
nonlinear strategy to reveal seismic precursory signatures in
earthquake-related self-potential signals, Physica A, 388, 2036–2040, 2009.
Telesca, L., Lovallo, M., Romano, G., Konstantinou, K. I., Hsu, H.-L., and
Chen, C.-c.: Using the informational Fisher–Shannon method to investigate
the influence of long-term deformation processes on geoelectrical signals:
An example from the Taiwan orogeny, Physica A, 414, 340–351, 2014.
Tong-En, M., Ji-Lou, X., Yan-Qiong, W., and Shu-Zhi, Y.: The variation characteristics of the telluric field in the process of earthquake, Chinese J. Geophys., 42, 520–528, 1999.
Uyeda, S., Nagao, T., Orihara, Y., Yamaguchi, T., and Takahashi, I.:
Geoelectric potential changes: Possible precursors to earthquakes in Japan,
P. Natl. Acad. Sci. USA, 97, 4561–4566, 2000.
Varotsos, P. and Lazaridou, M.: Latest aspects of earthquake prediction in
Greece based on seismic electric signals, Tectonophysics, 188, 321–347,
1991.
Varotsos, P., Alexopoulos, K., and Lazaridou, M.: Latest aspects of
earthquake prediction in Greece based on seismic electric signals, II,
Tectonophysics, 224, 1–37, 1993.
Varotsos, P., Sarlis, N., and Skordas, E.: Long-range correlations in the
electric signals that precede rupture, Phys. Rev. E, 66, 011902, https://doi.org/10.1103/PhysRevE.66.011902, 2002.
Varotsos, P., Sarlis, N., Skordas, E., and Lazaridou, M.: Seismic Electric
Signals: An additional fact showing their physical interconnection with
seismicity, Tectonophysics, 589, 116–125, 2013.
Varotsos, P. A., Sarlis, N. V., and Skordas, E. S.: Identifying the
occurrence time of an impending major earthquake: a review, Earthquake
Science, 30, 209–218, 2017.
Vilanova, S. P. and Fonseca, J. F.: Probabilistic seismic-hazard assessment
for Portugal, B. Seismol. Soc. Am., 97,
1702–1717, 2007.
Wang, T. and Bebbington, M.: Identifying anomalous signals in GPS data using
HMMs: An increased likelihood of earthquakes?, Comput. Stat.
Data An., 58, 27–44, 2013.
Wang, Y.-J., Chan, C.-H., Lee, Y.-T., Ma, K.-F., Shyu, J. B. H., Rau, R.-J.,
and Cheng, C.-T.: Probabilistic seismic hazard assessment for Taiwan, Terr.
Atmos. Ocean. Sci., 27, 325–340, 2016.
Wen, H.: HMM_Geoelectric_EQ (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6598498, 2022.
Wen, F., Chen, Z.-h., Zhuo, R., and Zhou, G.-m.: Reinforcement learning
method of continuous state adaptively discretized based on K-means
clustering, Control and Decision, 21, 143, 2006.
Yang, F., Balakrishnan, S., and Wainwright, M. J.: Statistical and
computational guarantees for the Baum-Welch algorithm, J.
Mach. Learn. Res., 18, 4528–4580, 2017.
Yang, L., Widjaja, B., and Prasad, R.: Application of hidden Markov models
for signature verification, Pattern Recogn., 28, 161–170, 1995.
Yi-Ben, T.: Seismotectonics of Taiwan, Tectonophysics, 125, 17–37, 1986.
Yip, C. F., Ng, W. L., and Yau, C. Y.: A hidden Markov model for earthquake
prediction, Stoch. Env. Res. Risk A., 32,
1415–1434, 2018.
Zhang, Y., Zhao, D., and Liu, J.: The application of baum-welch algorithm in
multistep attack, Sci. World J., 2014, 374260, https://doi.org/10.1155/2014/374260, 2014.
Short summary
Recently, there has been growing interest from earth scientists to use the electric field deep underground to forecast earthquakes. We go one step further by using the electric fields, which can be directly measured, to separate/classify time periods with two labels only according to the statistical properties of the electric fields. By checking against historical earthquake records, we found time periods covered by one of the two labels to have significantly more frequent earthquakes.
Recently, there has been growing interest from earth scientists to use the electric field deep...
Altmetrics
Final-revised paper
Preprint