Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-577-2021
https://doi.org/10.5194/nhess-21-577-2021
Research article
 | 
11 Feb 2021
Research article |  | 11 Feb 2021

Study on the influence of the seafloor soft soil layer on seismic ground motion

Jingyan Lan, Juan Liu, and Xing Song

Related subject area

Sea, Ocean and Coastal Hazards
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024,https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024,https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Revisiting regression methods for estimating long-term trends in sea surface temperature
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024,https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Global application of a regional frequency analysis to extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024,https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024,https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary

Cited articles

Bardet, J. P. and Tobita, T.: NERA, A computer program for nonlinear earthquake site response analyses of layered soil deposits, Department of Civil Engineering, University of Southern California, 2001. 
Bardet, J. P., Ichii, K., and Lin, C. H.: EERA, A computer program for equivalent-linear earthquake site response analyses of layered soil deposits, Department of Civil Engineering, University of Southern California, 2000. 
Boore, D. M. and Smith, C. E.: Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS) instruments deployed off the coast of southern California, B. Seismol. Soc. Am., 89, 260–274, 1999. 
Celebi, M.: Topographical and geological amplification: case studies and engineering implications, Structural Safety, 10, 199–217 https://doi.org/10.1016/0167-4730(91)90015-2, 1991. 
Chen, B.: Characteristics of Offshore Ground Motions and Seismic Response Analysis of Sea-crossing Bridges. Ph.D. Thesis, Dalian Unversity of Technology, Dalian, 2016 
Download
Short summary
In current marine seismic engineering research, the influence of overlying-seawater weight and soft soil on seabed ground motion is often ignored, which leads to unsafe seismic design. In this paper, four representative calculation models are constructed, and the finite-element method is used for numerical simulation analysis in order to evaluate the amplification effect of overlying seawater and the seafloor soft soil layer on ground motion.
Altmetrics
Final-revised paper
Preprint