Articles | Volume 21, issue 10
Nat. Hazards Earth Syst. Sci., 21, 3141–3160, 2021
Nat. Hazards Earth Syst. Sci., 21, 3141–3160, 2021

Research article 19 Oct 2021

Research article | 19 Oct 2021

ABWiSE v1.0: toward an agent-based approach to simulating wildfire spread

Jeffrey Katan and Liliana Perez

Related authors

Impacts of grazing on vegetation dynamics in a sediment transport complex model
Phillipe Gauvin-Bourdon, James King, and Liliana Perez
Earth Surf. Dynam., 9, 29–45,,, 2021
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810,,, 2021
Short summary
Spatial and temporal subsidence characteristics in Wuhan (China), during 2015–2019, inferred from Sentinel-1 synthetic aperture radar (SAR) interferometry
Xuguo Shi, Shaocheng Zhang, Mi Jiang, Yuanyuan Pei, Tengteng Qu, Jinhu Xu, and Chen Yang
Nat. Hazards Earth Syst. Sci., 21, 2285–2297,,, 2021
Short summary
Formation, evolution, and drainage of short-lived glacial lakes in permafrost environments of the northern Teskey Range, Central Asia
Mirlan Daiyrov and Chiyuki Narama
Nat. Hazards Earth Syst. Sci., 21, 2245–2256,,, 2021
Short summary
Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885,,, 2021
Short summary
Impact of information presentation on interpretability of spatial hazard information: Lessons from a study in avalanche safety
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2021
Revised manuscript accepted for NHESS
Short summary

Cited articles

Achtemeier, G. L.: “Rabbit Rules” – An application of Stephen Wolfram's “New Kind of Science” to fire spread modeling, in: The 5th Symposium on Fire and Forest Meteorology and the 2nd International Wildland Fire Ecology and Fire Management Congress, 11–16 November 2003, Orlando, Florida, 2003. a, b, c
Achtemeier, G. L.: Field validation of a free-agent cellular automata model of fire spread with fire – atmosphere coupling, Int. J. Wildland Fire, 22, 148–156,, 2013. a, b, c
Achtemeier, G. L., Goodrick, S. A., and Liu, Y.: Modeling multiple-core updraft plume rise for an aerial ignition prescribed burn by coupling daysmoke with a cellular automata fire model, Atmosphere, 3, 352–376,, 2012. a
Ager, A. A., Barros, A. M., Day, M. A., Preisler, H. K., Spies, T. A., and Bolte, J.: Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model, Ecol. Model., 384, 87–102,, 2018. a
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552,, 2019. a
Short summary
Wildfires are an integral part of ecosystems worldwide, but they also pose a serious risk to human life and property. To further our understanding of wildfires and allow experimentation without recourse to live fires, this study presents an agent-based modelling approach to combine the complexity possible with physical models with the ease of computation of empirical models. Model calibration and validation show bottom-up simulation tracks the core elements of complexity of fire across scales.
Final-revised paper