Articles | Volume 21, issue 10
https://doi.org/10.5194/nhess-21-3141-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3141-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ABWiSE v1.0: toward an agent-based approach to simulating wildfire spread
Jeffrey Katan
CORRESPONDING AUTHOR
Laboratory of Environmental Geosimulation (LEDGE), Department of Geography, Université de Montréal, 1375, Avenue Thérèse Lavoie-Roux, Montreal, H2V 0B3, QC, Canada
Liliana Perez
Laboratory of Environmental Geosimulation (LEDGE), Department of Geography, Université de Montréal, 1375, Avenue Thérèse Lavoie-Roux, Montreal, H2V 0B3, QC, Canada
Related authors
No articles found.
Navid Mahdizadeh Gharakhanlou and Liliana Perez
Adv. Cartogr. GIScience Int. Cartogr. Assoc., 5, 20, https://doi.org/10.5194/ica-adv-5-20-2025, https://doi.org/10.5194/ica-adv-5-20-2025, 2025
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024, https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary
Short summary
Social–ecological systems are the subject of many sustainability problems. Because of the complexity of these systems, we must be careful when intervening in them; otherwise we may cause irreversible damage. Using computer models, we can gain insight about these complex systems without harming them. In this paper we describe how we connected an ecological model of forest insect infestation with a social model of cooperation and simulated an intervention measure to save a forest from infestation.
Phillipe Gauvin-Bourdon, James King, and Liliana Perez
Earth Surf. Dynam., 9, 29–45, https://doi.org/10.5194/esurf-9-29-2021, https://doi.org/10.5194/esurf-9-29-2021, 2021
Short summary
Short summary
Arid ecosystem health is a complex interaction between vegetation and climate. Coupled with impacts from grazing, it can result in quick changes in vegetation cover. We present a wind erosion and vegetation health model with active grazers over 100-year tests to find the limits of arid environments for different levels of vegetation, rainfall, wind speed, and grazing. The model shows the resilience of grass landscapes to grazing and its role as an improved tool for managing arid landscapes.
Cited articles
Achtemeier, G. L.: “Rabbit Rules” – An application of Stephen Wolfram's “New Kind of Science” to fire spread modeling, in: The 5th Symposium on Fire and Forest Meteorology and the 2nd International Wildland Fire Ecology and Fire Management Congress, 11–16 November 2003, Orlando, Florida, 2003. a, b, c
Achtemeier, G. L.: Field validation of a free-agent cellular automata model of fire spread with fire – atmosphere coupling, Int. J. Wildland Fire, 22, 148–156, https://doi.org/10.1071/WF11055, 2013. a, b, c
Achtemeier, G. L., Goodrick, S. A., and Liu, Y.: Modeling multiple-core
updraft plume rise for an aerial ignition prescribed burn by coupling
daysmoke with a cellular automata fire model, Atmosphere, 3, 352–376,
https://doi.org/10.3390/atmos3030352, 2012. a
Ager, A. A., Barros, A. M., Day, M. A., Preisler, H. K., Spies, T. A., and
Bolte, J.: Analyzing fine-scale spatiotemporal drivers of wildfire in a
forest landscape model, Ecol. Model., 384, 87–102,
https://doi.org/10.1016/j.ecolmodel.2018.06.018, 2018. a
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019. a
Anderson, D. H., Catchpole, E. A., De Mestre, N. J., and Parkes, T.:
Modelling the spread of grass fires,
The Journal of the Australian
Mathematical Society. Series B. Applied Mathematics, 23, 451–466,
https://doi.org/10.1017/S0334270000000394, 1982. a
Anderson, H. E.: Heat transfer and fire spread, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, 1–7, https://doi.org/10.5962/bhl.title.69024, 1969. a
Batty, M. and Torrens, P. M.: Modelling and prediction in a complex world,
Futures, 37, 745–766, https://doi.org/10.1016/j.futures.2004.11.003, 2005. a
Boer, M. M., Sadler, R. J., Wittkuhn, R. S., McCaw, L., and Grierson, P. F.:
Long-term impacts of prescribed burning on regional extent and incidence of
wildfires-Evidence from 50 years of active fire management in SW Australian
forests, Forest Ecol. Manag., 259, 132–142,
https://doi.org/10.1016/j.foreco.2009.10.005, 2009. a
Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A.,
Antonio, C. M. D., Defries, R., Johnston, F. H., Keeley, J. E., Krawchuk,
M. A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott,
A. C., Sodhi, N. S., and Swetnam, T. W.: The human dimension of fire regimes
on Earth, J. Biogeogr., 38, 2223–2236, https://doi.org/10.1111/j.1365-2699.2011.02595.x, 2011. a
Bowman, D. M. J. S., Murphy, B. P., Williamson, G. J., and Cochrane, M. A.:
Pyrogeographic models, feedbacks and the future of global fire regimes,
Global Ecol. Biogeogr., 23, 821–824, https://doi.org/10.1111/geb.12180, 2014. a
Brenkert-Smith, H., Dickinson, K. L., Champ, P. A., and Flores, N.: Social
Amplification of Wildfire Risk: The Role of Social Interactions and
Information Sources, Risk Anal., 33, 800–817,
https://doi.org/10.1111/j.1539-6924.2012.01917.x, 2013. a
Brieman, L., Friedman, J., Stone, C., and Olshen, R.: Classification and
regression trees, CRC Press, Boca Raton, Florida, 1984. a
Butry, D. T., Mercer, D. E., Prestemon, J. P., Pye, J. M., and Holmes, T. P.:
What Is the Price of Catastrophic Wildfire, J. Forest., 99, 9–17, 2001. a
Byram, G. M.: Combustion of forest fuels, in: Forest Fire Control and Use,
chap. 3, McGraw-Hill Book Company, New York, 61–89, https://doi.org/10.1016/S0010-2180(03)00147-0, 1959. a, b, c
Camp, P. E. and Krawchuk, M. A.: Spatially varying constraints of human-caused
fire occurrence in British Columbia, Canada,
Int. J. Wildland Fire, 26, 219–229, https://doi.org/10.1071/WF16108, 2017. a
Carroll, M. S., Higgins, L. L., Cohn, P. J., and Burchfield, J.: Community
wildfire events as a source of social conflict, Rural Sociol., 71,
261–280, https://doi.org/10.1526/003601106777789701, 2006. a
Cary, G. J., Keane, R. E., Gardner, R. H., Lavorel, S., Flannigan, M. D.,
Davies, I. D., Li, C., Lenihan, J. M., Rupp, T. S., and Mouillot, F.:
Comparison of the sensitivity of landscape-fire-succession models to
variation in terrain, fuel pattern, climate and weather,
Landscape Ecol., 21, 121–137, https://doi.org/10.1007/s10980-005-7302-9, 2006. a
Cheng, T. and Wang, J.: Integrated spatio-temporal data mining for forest fire
prediction, T. GIS, 12, 591–611,
https://doi.org/10.1111/j.1467-9671.2008.01117.x, 2008. a
Chu, T. and Guo, X.: Remote sensing techniques in monitoring post-fire effects
and patterns of forest recovery in boreal forest regions: A review, Remote
Sens., 6, 470–520, https://doi.org/10.3390/rs6010470, 2013. a
Chuvieco, E., Martínez, S., Román, M. V., Hantson, S., and
Pettinari, M. L.: Integration of ecological and socio-economic factors to
assess global vulnerability to wildfire, Global Ecol. Biogeogr.,
23, 245–258, https://doi.org/10.1111/geb.12095, 2014. a
Chuvieco, E., Yue, C., Heil, A., Mouillot, F., Alonso-Canas, I., Padilla, M.,
Pereira, J. M., Oom, D., and Tansey, K.: A new global burned area product
for climate assessment of fire impacts, Global Ecol. Biogeogr., 25,
619–629, https://doi.org/10.1111/geb.12440, 2016. a
Chuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanasse, M.,
Koutsias, N., García, M., Yebra, M., Padilla, M., Gitas, I., Heil, A.,
Hawbaker, T. J., and Giglio, L.: Historical background and current
developments for mapping burned area from satellite Earth observation,
Remote Sens. Environ., 225, 45–64, https://doi.org/10.1016/j.rse.2019.02.013,
2019. a, b
Clark, T. L., Jenkins, M. A., Coen, J. L., and Packham, D. R.: A coupled
atmosphere-fire model: Role of the convective froude number and dynamic
fingering at the fireline, Int. J. Wildland Fire, 6,
177–190, https://doi.org/10.1071/WF9960177, 1996. a
Clements, C. B., Zhong, S., Goodrick, S., Li, J., Potter, B. E., Bian, X.,
Heilman, W. E., Charney, J. J., Perna, R., Jang, M., Lee, D., Patel, M.,
Street, S., and Aumann, G.: Observing the Dynamics of Wildland Grass Fires:
FireFlux – A Field Validation Experiment,
B. Am. Meteorol. Soc., 88, 1369–1382, https://doi.org/10.1175/BAMS-88-9-1369, 2007. a
Clements, C. B., Kochanski, A. K., Seto, D., Davis, B., Camacho, C., Lareau,
N. P., Contezac, J., Restaino, J., Heilman, W. E., Krueger, S. K., Butler,
B., Ottmar, R. D., Vihnanek, R., Flynn, J., Filippi, J. B., Barboni, T.,
Hall, D. E., Mandel, J., Jenkins, M. A., O'Brien, J., Hornsby, B., and Teske,
C.: The FireFlux II experiment: A model-guided field experiment to improve
understanding of fire-atmosphere interactions and fire spread, Int. J. Wildland Fire, 28, 308–326, https://doi.org/10.1071/WF18089, 2019. a
Coen, J.: Some Requirements for Simulating Wildland Fire Behavior Using
Insight from Coupled Weather – Wildland Fire Models, Fire, 1, 6,
https://doi.org/10.3390/fire1010006, 2018. a
Coen, J. L., Cameron, M., Michalakes, J., Patton, E. G., Riggan, P. J., and
Yedinak, K. M.: WRF-Fire: Coupled Weather–Wildland Fire Modeling with the
Weather Research and Forecasting Model,
J. Appl. Meteorol. Clim., 52, 16–38, https://doi.org/10.1175/JAMC-D-12-023.1, 2013. a, b
Fernandes, P. M. and Botelho, H. S.: A review of prescribed
burning effectiveness in fire hazard reduction,
Int. J. Wildland Fire, 12, 117–128, 2003. a
Filippi, J. B., Bosseur, F., Mari, C., Lac, C., Le Moigne, P., Cuenot, B.,
Veynante, D., Cariolle, D., and Balbi, J.-H.: Coupled atmosphere–wildland
fire modelling, J. Adv. Model. Earth Sy., 2, 11,
https://doi.org/10.3894/JAMES.2009.1.11, 2009. a, b
Filippi, J. B., Pialat, X., and Clements, C. B.: Assessment of
ForeFire/Meso-NH for wildland fire/atmosphere coupled simulation of the
FireFlux experiment, P. Combust. Inst., 34,
2633–2640, https://doi.org/10.1016/j.proci.2012.07.022, 2013. a
Filippi, J.-B., Mallet, V., and Nader, B.: Representation and evaluation of
wildfire propagation simulations, Int. J. Wildland Fire, 23, 46–57, https://doi.org/10.1071/WF12202, 2014. a, b, c
Finney, M. A.: Mechanistic modeling of landscape fire patterns, in: Spatial
modeling of forest landscape change: approaches and applications, edited by:
Mladenoff, D. and Baker, W., chap. 8, 186–209, Cambridge University Press, Cambridge, 1999. a
Flannigan, M. D., Wotton, B. M., Marshall, G. A., de Groot, W. J., Johnston,
J., Jurko, N., and Cantin, A. S.: Fuel moisture sensitivity to temperature
and precipitation: climate change implications, Climatic Change, 134,
59–71, https://doi.org/10.1007/s10584-015-1521-0, 2016. a
Forkel, M., Andela, N., Harrison, S. P., Lasslop, G., van Marle, M., Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., Li, F., Melton, J., Sitch, S., Yue, C., and Arneth, A.: Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models, Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, 2019. a
Gaudreau, J., Perez, L., and Drapeau, P.: BorealFireSim: A GIS-based cellular
automata model of wildfires for the boreal forest of Quebec in a climate
change paradigm, Ecol. Inform., 32, 12–27,
https://doi.org/10.1016/j.ecoinf.2015.12.006, 2016. a, b
Ghisu, T., Arca, B., Pellizzaro, G., and Duce, P.: An improved Cellular
Automata for wildfire spread, Procedia Comput. Sci., 51, 2287–2296,
https://doi.org/10.1016/j.procs.2015.05.388, 2015. a
Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J.: An enhanced
contextual fire detection algorithm for MODIS,
Remote Sens. Environ., 87, 273–282, https://doi.org/10.1016/S0034-4257(03)00184-6, 2003. a
Giglio, L., Schroeder, W., and Justice, C. O.: The collection 6 MODIS active
fire detection algorithm and fire products, Remote Sens. Environ.,
178, 31–41, https://doi.org/10.1016/j.rse.2016.02.054, 2016. a
Gott, B.: Aboriginal fire management in south-eastern Australia: Aims and
frequency, J. Biogeogr., 32, 1203–1208,
https://doi.org/10.1111/j.1365-2699.2004.01233.x, 2005. a
Harati, S., Perez, L., Molowny-Horas, R., and Pontius, R. G. J.: Validating
models of one-way land change: an example case of forest insect disturbance,
Landscape Ecol., 36, 2919–2935, https://doi.org/10.1007/s10980-021-01272-0, 2021. a
Hilton, J. E., Sullivan, A. L., Swedosh, W., Sharples, J., and Thomas, C.:
Incorporating convective feedback in wildfire simulations using pyrogenic
potential, Environ. Modell. Softw., 107, 12–24,
https://doi.org/10.1016/j.envsoft.2018.05.009, 2018. a, b, c, d
Hoffman, C., Sieg, C., Linn, R., Mell, W., Parsons, R., Ziegler, J., and Hiers,
J.: Advancing the Science of Wildland Fire Dynamics Using Process-Based
Models, Fire, 1, 32, https://doi.org/10.3390/fire1020032, 2018. a, b
Johnston, L. M. and Flannigan, M. D.: Mapping Canadian wildland fire interface
areas, Int. J. Wildland Fire, 27, 1–14, https://doi.org/10.1071/WF16221,
2018. a
Jordanov, G., Beezley, J. D., Dobrinkova, N., Kochanski, A. K., Mandel, J., and Sousedík, B.: Simulation of the 2009 Harmanli fire (Bulgaria), in:
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 7116 LNCS,
Springer, New York, 291–298, https://doi.org/10.1007/978-3-642-29843-1_33, 2012. a
Katan, J.: JeffLEDGE/ABWiSE-Fire-spread-model: ABWiSE v1.0.0 (v1.0.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.4976112, 2021. a, b
Keane, R. E., Cary, G. J., Davies, I. D., Flannigan, M. D., Gardner, R. H.,
Lavorel, S., Lenihan, J. M., Li, C., and Rupp, T. S.: A classification of
landscape fire succession models: Spatial simulations of fire and vegetation
dynamics, Ecol. Model., 179, 3–27,
https://doi.org/10.1016/j.ecolmodel.2004.03.015, 2004. a
Keane, R. E., Cary, G. J., Flannigan, M. D., Parsons, R. A., Davies, I. D.,
King, K. J., Li, C., Bradstock, R. A., and Gill, M.: Exploring the role of
fire, succession, climate, and weather on landscape dynamics using
comparative modeling, Ecol. Model., 266, 172–186,
https://doi.org/10.1016/j.ecolmodel.2013.06.020, 2013. a
Kirchmeier-Young, M. C., Zwiers, F. W., Gillett, N. P., and Cannon, A. J.:
Attributing extreme fire risk in Western Canada to human emissions,
Climatic Change, 144, 365–379, https://doi.org/10.1007/s10584-017-2030-0, 2017. a
Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J., and
Anslow, F. S.: Attribution of the Influence of Human-Induced Climate Change
on an Extreme Fire Season, Earth's Future, 7, 2–10,
https://doi.org/10.1029/2018EF001050, 2019. a
Kochi, I., Donovan, G. H., Champ, P. A., and Loomis, J. B.: The economic cost
of adverse health effectsfrom wildfire-smoke exposure: A review,
Int. J. Wildland Fire, 19, 803–817, https://doi.org/10.1071/WF09077,
2010. a
Kroese, D. P., Brereton, T., Taimre, T., and Botev, Z. I.: Why the Monte Carlo
method is so important today, Wiley Interdisciplinary Reviews: Computational
Statistics, 6, 386–392, https://doi.org/10.1002/wics.1314, 2014. a
Langlois, P.: Complexity and Spatial Systems, The Modeling Process in
Geography: From Determinism to Complexity, Wiley-ISTE, London, 255–276,
https://doi.org/10.1002/9780470611722.ch11, 2010. a, b
Lawson, B., Stocks, B., Alexander, M., and Van Wagner, C. E.: A system for
predicting fire behavior in Canadian forests, in: Proceedings of the 8th Conference on Fire and Forest Meteorology, 85, 29 April–2 May 1985, Detroit, 6–16, 1985. a
Linn, R. R. and Harlow, F.: FIRETEC: A transport description of wildfire
behavior, in: Second Symposium on Fire and Forest Meteorology, vol. 836, 11–16 January 1998, Pheonix, 1–6, 1998. a
Linn, R. R., Goodrick, S. L., Brambilla, S., Brown, M. J., Middleton, R. S.,
O'Brien, J. J., and Hiers, J. K.: QUIC-fire: A fast-running simulation tool
for prescribed fire planning, Environ. Modell. Softw., 125,
104616, https://doi.org/10.1016/j.envsoft.2019.104616, 2020. a, b, c, d
Loh, W. Y.: Classification and regression trees, WIRES Data Min. Knowl., 1, 14–23,
https://doi.org/10.1002/widm.8, 2011. a
Lozano, O. M., Salis, M., Ager, A. A., Arca, B., Alcasena, F. J., Monteiro,
A. T., Finney, M. A., Del Giudice, L., Scoccimarro, E., and Spano, D.:
Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean
Areas, Risk Anal., 37, 1898–1916, https://doi.org/10.1111/risa.12739, 2017. a
McLoughlin, N.: Case study information pertaining to the Dogrib sample dataset for Prometheus, Ministry of Agriculture and Forestry, Government of Alberta, Edmonton [data set], 1–8, available at: http://www.firegrowthmodel.ca/prometheus/software_e.php
(last access: 15 October 2021), 2019. a, b, c, d
Metropolis, N. and Ulam, S.: The Monte Carlo Method,
J. Am. Stat. Assoc., 44, 335–341, 1949. a
Moritz, M. A., Krawchuk, M. A., and Parisien, M.-A.: Pyrogeography:
Understanding the ecological niche of fire Science Highlights: Paleofire,
PAGES news, 18, 83–85, 2010. a
Niazi, M. A., Siddique, Q., Hussain, A., and Kolberg, M.: Verification &
validation of an agent-based forest fire simulation model, in: Spring Simulation Multiconference 2010, SpringSim'10, 11–15 April 2010, Orlando, 1–8, https://doi.org/10.1145/1878537.1878539, 2010. a
Oloo, F. and Wallentin, G.: An Adaptive Agent-Based Model of Homing Pigeons: A
Genetic Algorithm Approach, ISPRS Int. Geo-Inf.,
6, 27, https://doi.org/10.3390/ijgi6010027, 2017. a
Opperman, T., Gould, J., Finney, M., and Tymstra, C.: Applying Fire Spread
Simulators in New Zealand and Australia: Results from an International
Seminar, in: 1st Fire Behavior and Fuels Conference: Fuels Management – How to Measure Success, 28–30 March 2006, Portland, OR, 2006. a
Parisien, M.-A., Dawe, D. A., Miller, C., Stockdale, C. A., and Armitage,
O. B.: Applications of simulation-based burn probability modelling: a
review, Int. J. Wildland Fire, 28, 913–926,
https://doi.org/10.1071/WF19069, 2019. a
Parks, S. A., Holsinger, L. M., Miller, C., and Nelson, C. R.: Wildland fire
as a self-regulating mechanism: The role of previous burns and weather in
limiting fire progression, Ecol. Appl., 25, 1478–1492,
https://doi.org/10.1890/14-1430.1, 2015. a
Parunak, H. V. D., Savit, R., and Riolo, R. L.: Agent-Based Modeling vs.
Equation-Based Modeling: A Case Study and Users' Guide, in: Workshop on
Modeling Agent Based Systems, July, 10–25, Springer, Berlin, Heidelberg, https://doi.org/10.1007/10692956_2,
1998. a
Pérez, L. and Dragićević, S.: Exploring forest management
practices using an agent-based model of forest insect infestations, in: Modelling for Environment's Sake: Proceedings of the 5th Biennial Conference
of the International Environmental Modelling and Software Society, iEMSs 2010, 1, 5–8 July 2010, Ottawa, 766–773, 2010. a
Pérez, L. and Dragićević, S.: ForestSimMPB: A swarming
intelligence and agent-based modeling approach for mountain pine beetle
outbreaks, Ecol. Inform., 6, 62–72,
https://doi.org/10.1016/j.ecoinf.2010.09.003, 2011. a, b
Perez, L. and Dragicevic, S.: Landscape-level simulation of forest insect
disturbance: Coupling swarm intelligent agents with GIS-based cellular
automata model, Ecol. Model., 231, 53–64,
https://doi.org/10.1016/j.ecolmodel.2012.01.020, 2012. a
Pontius, R. G. J., Castella, J.-C., de Nijs, T., Duan, Z., Fotsing, E.,
Goldstein, N., Kok, K., Koomen, E., Lippitt, C., McConnell, W., Mohd Sood,
A., Pijanowski, B., Verburg, P., and Veldkamp, A. T.: Trends in Spatial
Analysis and Modelling, in: Trends in spatial analysis and modelling,
vol. 19, chap. 8, Springer, New York, https://doi.org/10.1007/978-3-319-52522-8, 2018. a
Richardson, L. A., Champ, P. A., and Loomis, J. B.: The hidden cost of
wildfires: Economic valuation of health effects of wildfire smoke exposure in
Southern California, J. Forest Econ., 18, 14–35,
https://doi.org/10.1016/j.jfe.2011.05.002, 2012. a
Roos, C. I., Swetnam, T. W., Ferguson, T. J., Liebmann, M. J., Loehman, R. A., Welch, J. R., Margolis, E. Q., Guiterman, C. H., Hockaday, W. C., Aiuvalasit, M. J., Battillo, J., Farella, J., and Kiahtipes, C. A.: Native American fire management at an ancient wildland–urban interface in the Southwest United States, P. Natl. Acad. Sci. USA, 118, e2018733118, https://doi.org/10.1073/pnas.2018733118, 2021. a
Singh, B., Hansen, B. S., Brown, M. J., and Pardyjak, E. R.: Evaluation of the
QUIC-URB fast response urban wind model for a cubical building array and wide
building street canyon, Environ. Fluid Mech., 8, 281–312,
https://doi.org/10.1007/s10652-008-9084-5, 2008. a
Smith, A. K. and Dragicevic, S.: An agent-based model to represent space-time
propagation of forest-fire smoke, in: ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 4, 207–212,
https://doi.org/10.5194/isprs-annals-IV-4-207-2018, 2018. a
Spies, T. A., White, E. M., Kline, J. D., Fischer, A. P., Ager, A., Bailey, J.,
Bolte, J., Koch, J., Platt, E., Olsen, C. S., Jacobs, D., Shindler, B.,
Steen-Adams, M. M., and Hammer, R.: Examining fire-prone forest landscapes
as coupled human and natural systems, Ecol. Soc., 19, art9,
https://doi.org/10.5751/ES-06584-190309, 2014. a
Stevens, J. T., Safford, H. D., Harrison, S., and Latimer, A. M.: Forest
disturbance accelerates thermophilization of understory plant communities,
J. Ecol., 103, 1253–1263, https://doi.org/10.1111/1365-2745.12426, 2015. a
Stocks, B., Lawson, B., Alexander, M., Van Wagner, C., McAlpine, R., Lynham, T., and Dubé, D.: Canadian Forest Fire Danger Rating System: An Overview, Forest. Chron., 65, 258–265, 1989. a
Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro,
B. D., Flannigan, M. D., Hirsch, K. G., Logan, K. A., Martell, D. L., and
Skinner, W. R.: Large forest fires in Canada, 1959–1997, J. Geophys. Res., 108, 8149, https://doi.org/10.1029/2001JD000484, 2002. a
Stralberg, D., Wang, X., Parisien, M.-A., Robinne, F.-N., Sólymos, P.,
Mahon, C. L., Nielsen, S. E., and Bayne, E. M.: Wildfire-mediated vegetation
change in boreal forests of Alberta, Canada, Ecosphere, 9, e02156,
https://doi.org/10.1002/ecs2.2156, 2018. a
Sullivan, A. L.: Wildland surface fire spread modelling, 1990–2007. 1:
Physical and quasi-physical models, Int. J. Wildland Fire,
18, 349–368, https://doi.org/10.1071/WF06143, 2009a. a, b, c, d
Sullivan, A. L.: Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models, Int. J. Wildland Fire, 18, 369–386, https://doi.org/10.1071/WF06142, 2009b. a, b
Sullivan, A. L.: Wildland surface fire spread modelling, 1990–2007. 3:
Simulation and mathematical analogue models, Int. J. Wildland Fire, 18, 387–403, https://doi.org/10.1071/WF06144, 2009c. a, b
Sun, Y. and Cheng, L.: A Survey on Agent-Based Modelling and Equation-based
Modelling, Citeseerx, Department of Computer Science, Georgia State University, Atlanta, 2005. a
Taylor, S. W., Woolford, D. G., Dean, C. B., and Martell, D. L.: Wildfire
Prediction to Inform Fire Management: Statistical Science Challenges,
Stat. Sci., 28, 586–615, https://doi.org/10.1214/13-sts451, 2013. a
Tymstra, C., Bryce, R. W., Wotton, B. M., Taylor, S. W., and Armitage, O. B.:
Information Report NOR-X-417 Northern Forestry Centre Canadian Forest
Service Development and Structure of Prometheus: the Canadian Wildland Fire
Growth Simulation Model Development and Structure of Prometheus: the Canadian
Wildland Fire Growth Simulation, Information Report NOR-X-405, Northern Forestry Centre, Edmonton, 1–83, 2010. a, b, c, d
Van Wagner, C.: A Simple Fire-Growth Model, Forest. Chron., 45, 103–104, https://doi.org/10.5558/tfc45103-2, 1969. a, b
Varga, O. G., Pontius, R. G., Singh, S. K., and Szabó, S.: Intensity
Analysis and the Figure of Merit's components for assessment of a Cellular
Automata – Markov simulation model, Ecol. Indic., 101, 933–942,
https://doi.org/10.1016/j.ecolind.2019.01.057, 2019. a
Wilenski, U.: NetLogo, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, 1999. a
Wolfram, S.: A New Kind of Science, Wolfram Media, Inc., Champaign, IL, 2002. a
Wotton, M. B.: Interpreting and using outputs from the Canadian Forest Fire
Danger Rating System in research applications,
Environ. Ecol. Stat., 16, 107–131, https://doi.org/10.1007/s10651-007-0084-2, 2009. a
Yassemi, S., Dragićević, S., and Schmidt, M.: Design and
implementation of an integrated GIS-based cellular automata model to
characterize forest fire behaviour, Ecol. Model., 210, 71–84,
https://doi.org/10.1016/j.ecolmodel.2007.07.020, 2008. a, b
Short summary
Wildfires are an integral part of ecosystems worldwide, but they also pose a serious risk to human life and property. To further our understanding of wildfires and allow experimentation without recourse to live fires, this study presents an agent-based modelling approach to combine the complexity possible with physical models with the ease of computation of empirical models. Model calibration and validation show bottom-up simulation tracks the core elements of complexity of fire across scales.
Wildfires are an integral part of ecosystems worldwide, but they also pose a serious risk to...
Altmetrics
Final-revised paper
Preprint