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Abstract. Wildfires are a complex phenomenon emerging
from interactions between air, heat, and vegetation, and while
they are an important component of many ecosystems’ dy-
namics, they pose great danger to those ecosystems, as well
as human life and property. Wildfire simulation models are
an important research tool that help further our understand-
ing of fire behaviour and can allow experimentation without
recourse to live fires. Current fire simulation models fit into
two general categories: empirical models and physical mod-
els. We present a new modelling approach that uses agent-
based modelling to combine the complexity possible with
physical models with the ease of computation of empiri-
cal models. Our model represents the fire front as a set of
moving agents that respond to, and interact with, vegetation,
wind, and terrain. We calibrate the model using two simu-
lated fires and one real fire and validate the model against
another real fire and the interim behaviour of the real calibra-
tion fire. Our model successfully replicates these fires, with a
figure of merit on par with simulations by the Prometheus
simulation model. Our model is a stepping-stone in using
agent-based modelling for fire behaviour simulation, as we
demonstrate the ability of agent-based modelling to replicate
fire behaviour through emergence alone.

1 Background

Fire is an integral part of ecosystems the world over but also
poses a serious danger to human life and property (Bowman
et al., 2011; Moritz et al., 2010; Brenkert-Smith et al., 2013;
Butry et al., 2001; Carroll et al., 2006; Chuvieco et al., 2014;
Kochi et al., 2010; Richardson et al., 2012). In recent years,

anthropogenic climate change has exacerbated this danger
chiefly by lengthening growing seasons and increasing the
risk of drought (Flannigan et al., 2016; Lozano et al., 2017),
leading to more frequent and more extreme fires in many
parts of the world (Chuvieco et al., 2016; Kirchmeier-Young
et al., 2019, 2017). The use of controlled burning has, for a
very long time (Gott, 2005; Roos et al., 2021), helped to mit-
igate the risks of extreme fires and to maintain forest health
(Boer et al., 2009; Camp and Krawchuk, 2017; Fernandes
and Botelho, 2003). Given the exacerbation of conditions
ripe for extreme fires, it is paramount to predict how a fire
might spread if it starts, especially for prescribed burns. Fire
behaviour models are an important research tool that help
further our understanding of fire behaviour and can allow ex-
perimentation without recourse to live fires (Hoffman et al.,
2018). More specifically, modelling at the scale of individual
fires is important for both the study of fire regimes (Keane
et al., 2013; Parisien et al., 2019) and the operational man-
agement of active fires (Finney, 1999; Lawson et al., 1985;
Tymstra et al., 2010; Van Wagner, 1974).

Bearing in mind that a complex system is one in which
numerous elements interact in ways that give rise to emer-
gent behaviour, often non-linear in nature, usually featuring
feedback loops (Batty and Torrens, 2005; Langlois, 2010),
at its base, fire is a complex system of interactions between
fuel, oxygen, and heat (Byram, 1959). The dynamics and
emerging behaviour are the result of self-organization, and
the complex system will exhibit some form of hierarchy
(Langlois, 2010), e.g. heat released from combustion warms
neighbouring material to the point of combustion and creates
convective currents in the air, moving oxygen through the
system, which in turn keeps feeding the fire (Anderson, 1969;
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Byram, 1959). In a forest fire, the heat flux of all the burning
material contributes to convection in the air mass surround-
ing a fire, sometimes enough to alter the flow of air that drives
it (Clements et al., 2019; Filippi et al., 2009). This fire leaves
a portion of land bereft of vegetation until it is recolonized,
and this patch of land responds differently to new ignitions
thereafter (Parks et al., 2015). Many fires over many years
may affect the climate, which affects the vegetation, affecting
the fires as a result, forming a feedback loop (Bowman et al.,
2014; Stevens et al., 2015; Stralberg et al., 2018). Neverthe-
less, the challenge of any fire model is to balance complex
behaviour with speed of computation, at a relevant scale.

Our goal is to demonstrate the potential of agent-based
modelling (ABM) for the simulation of forest fire spread.
Using ABM and a complex systems approach, we build a
model that uses simple rules to reproduce fire behaviour as an
emergent property of interactions between numerous agents
representing fire. Agent-based modelling is a useful tool for
modelling complex systems and is broadly much more com-
putationally efficient at reproducing these systems than clas-
sical approaches based on solving numerous partial differen-
tial equations (Parunak et al., 1998; Sun and Cheng, 2005).
As presented in the literature review below, ABM has ap-
peared very little in fire behaviour research, and with this
study, we aim to illustrate the potential of this approach to
the field of forest fire disturbances and address some of its
limitations.

1.1 Fire behaviour models

Bearing in mind that wildfires are a global phenomenon that
pose significant and growing threats to human lives, prop-
erty, wildlife habitat, regional economies, and global climate
change, a variety of tools to tackle and envisage fire prop-
agation have been developed. Some of these tools have the
purpose of monitoring (Chu and Guo, 2013; Chuvieco et al.,
2019; Giglio et al., 2016, 2003), others to forecast the like-
lihood of wildfire events (Cheng and Wang, 2008; Taylor
et al., 2013; Forkel et al., 2019), and lastly some to model
and simulate fire behaviour (Sullivan, 2009a, b, c). The liter-
ature concerning this latter category is of particular interest
to the goal of this study.

There are many fire behaviour models described in the lit-
erature, ranging from empirical relations between environ-
mental factors and fire behaviour to physics-based models
that simulate the heat transfer of combustion between fuels
and between fuel and atmosphere (Sullivan, 2009a). Among
the most important advantages of empirical simulation mod-
els is their speed of computation; by simplifying the interac-
tions between environmental factors and the fire front, they
only have a small set of equations to solve at each time
step (Sullivan, 2009b). The primary design goal for empir-
ical models is operational use by firefighters, who need rapid
results and have the expert knowledge to overcome model
limitations (Finney, 2004; Stocks et al., 1989). On the other

hand, physical simulation models are better able to repre-
sent fire–atmosphere interactions and replicate the complex-
ity and emergent behaviour of real fires (Coen, 2018). For
example, while semi-empirical models such as FARSITE
(Finney, 2004) or Prometheus (Tymstra et al., 2010) assume
that fire shape is elliptical, physics-based models do not make
this assumption, and fire shape matches observations through
emergence (Filippi et al., 2009; Linn and Harlow, 1998).
The drawback of physics-based models is their computation
time; since they typically simulate interactions at a very small
scale and have huge computational requirements, such mod-
els struggle to perform faster-than-real-time (FTRT) simula-
tions (Sullivan, 2009a).

Modellers are attempting to bridge this gap between com-
plexity of model behaviour and execution speed in various
ways. One is by coupling a computational fluid dynamics
model (CFD) with empirical fire behaviour models (Coen
et al., 2013; Filippi et al., 2013), though it is argued that
the generally coarse scale of the fire behaviour component
limits their use (Linn et al., 2020). Yet despite simplifying
the fire spread component of a coupled fire–CFD model,
FTRT simulation can be difficult to achieve. Using the WRF-
Fire (Weather Research and Forecasting – Fire) model (Coen
et al., 2013) to simulate a real fire event in Bulgaria, Jor-
danov et al. (2012) reported simulation speeds based on num-
ber of processing cores and noted that FTRT simulation re-
quired a minimum of 120 cores. The CFD was the more de-
manding component of those simulations. It is possible to
simulate fire–atmosphere interactions without using a com-
plicated CFD but instead using a model that considers only
relevant airflow. Hilton et al. (2018) created a model of py-
rogenic potential to simulate two-dimensional airflow at the
fire line, and their results match well with real-world exper-
imental fires. While physics-based models provide the most
realistic representations of fire behaviour, simplified physi-
cal or empirical models are also able to reproduce reasonably
realistic fire behaviour by retaining relevant fire–atmosphere
interactions. Other models take advantage of principles from
complex systems modelling, in which complex phenomena
are simplified by spreading calculations to individual, inter-
acting computational units known as automata or agents in
order to capture the essential interactions of a system (Sulli-
van, 2009c).

1.2 Complex systems modelling

In complex systems modelling, there are two broad com-
putational approaches to modelling environmental systems:
cellular automata (CA) and agent-based model(ing) (ABM).
CA are a mathematical representation of a complex system
wherein a lattice of cells is subject to a set of rules that de-
termine their state and state information is passed between
neighbouring cells (Gaudreau et al., 2016; Yassemi et al.,
2008). Agent-based modelling uses autonomous, interacting
agents following a rule set, like in CA. The key differences
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are that in an ABM, agents are mobile and can be hetero-
geneous; agents can interact with each other and their envi-
ronment while moving through it, and different agents can
follow different rule sets (Perez and Dragicevic, 2012; Pérez
and Dragićević, 2011).

There are numerous CA models of forest fire behaviour.
Earlier CA fire models had difficulty simulating correct fire
shapes generally due to grid and neighbourhood shape bi-
ases (Tymstra et al., 2010). More recently, CA models on par
with popular semi-empirical models have been developed;
for example, the model by Ghisu et al. (2015) compares well
with FARSITE, and that by Yassemi et al. (2008) does so
with Prometheus. Due to their simplicity, CA models find
use in dynamic fire–vegetation models, which simulate fire–
climate–vegetation interactions over long time spans and at
coarse spatial scales (Cary et al., 2006; Gaudreau et al.,
2016). However, few, if any, CA models we have reviewed
account for fire–atmosphere interactions to inform fire be-
haviour.

Agent-based modelling often simulates systems where
mobile individuals are important, such as predator–prey sys-
tems (Grimm et al., 2005), flocks of birds or fish (Oloo and
Wallentin, 2017), or insect infestations in forests (Pérez and
Dragićević, 2011). Agent-based modelling lends itself well
to simulating socio-ecological systems, such as forest man-
agement (Ager et al., 2018; Pérez and Dragićević, 2010;
Spies et al., 2014) in which human decision-making must be
modelled. While these examples have so far shown the utility
of ABM for simulating decision-making entities, ABM does
well with physical systems such as particles or smoke. A re-
cent paper (Smith and Dragicevic, 2018) presents a physics-
based ABM of forest fire smoke propagation, including two
types of agents, one for fires and one for smoke particles.
A single fire agent represents a single fire and produces the
smoke agents. The fire agents can be either stationary or
move according to a very simplified model of fire spread (2 %
of surface wind speed), but fire shape and area are not repre-
sented. Because the only aspect of fire behaviour present in
the model is smoke production, we do not consider this an
ABM of fire behaviour.

The one paper we have found that explicitly claims to be
an ABM of fire behaviour is the work by Niazi et al. (2010). It
uses a virtual overlay multi-agent system (VOMAS) for val-
idation and verification of their fire spread model, in which
the VOMAS serves as a simulacrum of measurement points
in the simulated forest.

Our literature search has uncovered only two fire be-
haviour models that match our description of ABM, yet the
authors refer to them as CA. The first is the Rabbit Rules
model of Achtemeier (2003) that bases itself on some of
the principles of complex systems theory as described by
Wolfram (2002). The first paper describing the Rabbit Rules
model (Achtemeier, 2003) does explain that it is not a CA
model and that “each element, a rabbit, is an autonomous
agent . . . not constrained by the definition of the underlying

grid (raster) domain”; nevertheless, the term ABM does not
appear. Later papers that use or mention the Rabbit Rules
model refer to it as a CA model, masking the fact that it
uses a completely different modelling approach (Achtemeier
et al., 2012; Achtemeier, 2013; Linn et al., 2020). The Rab-
bit Rules model recasts the physical and mathematical prob-
lems of fire behaviour as a set of rules of “rabbit behaviour”
due to the analogical resemblance between fire and rabbit be-
haviours. Rabbits eat, jump, and reproduce just as fire con-
sumes fuel, passes from fuel element to fuel element or spots,
and reproduces as it ignites unburned material. In addition
to rules for eating (fuel consumption), jumping (spotting),
and reproduction (new ignitions), secondary rules modify
these to include the effects of terrain, weather, fuel, and fire–
atmosphere feedbacks. The Rabbit Rules model produces a
ring shape under windless conditions, and a bowed front in
high wind, without any predetermined geography such as in
ellipse-based models. Just like an ABM, Rabbits move across
the landscape, interact with each other and their environment,
and produce reasonable perimeter shapes due to emergence
alone.

Achtemeier (2013) presents a field validation of the Rabbit
Rules model with the FireFlux experimental grassland fire,
conducted in tall-grass prairies near the Gulf Coast of Texas,
USA (Clements et al., 2007). The field validation demon-
strates a reasonable match between simulated and observed
airflow 2 m above the surface at two observation towers used
in the FireFlux experiment. That study also notes that the
Rabbit Rules model can simulate non-linear processes un-
achievable by empirical models and much more quickly than
full-physics models; while FIRETEC can take about 90 s for
each second of simulation on a 64-processor supercomputer,
Rabbit Rules took only 0.67 s for each second of simula-
tion on a desktop PC for this experiment. The simulation
speed information for FIRETEC comes from a review by
Sullivan (2009a). We have not found more recent informa-
tion on simulation speed for FIRETEC, although the website
for HIGRAD/FIRETEC states that “FIRETEC takes the huge
computational resources at the Los Alamos National Labo-
ratory to run, so it is currently a research tool only” (https:
//www.frames.gov/firetec/home, last access: 20 April 2021).

The initial exploration of ABM applied to fire behaviour
by Achtemeier (2003, 2013) provided the base for a new
model, QUIC-Fire (Linn et al., 2020). QUIC-Fire is a fuel–
fire–atmosphere simulation model that combines the rapid
wind solver QUIC-Urb (Singh et al., 2008) with their new
physics-based fire spread model Fire-CA. This fire spread
model builds on the conceptual framework of the Rabbit
Rules model, in which instead of “rabbits”, energy pack-
ets (EPs) represent units of energy that can evaporate mois-
ture, burn fuel, or transfer their energy to the atmosphere.
While Fire-CA is described as a cellular automata model,
the EPs act like agents that move across the grid-based com-
putational landscape; therefore we include it with the Rab-
bit Rules model as the only other example of fire behaviour
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simulation using ABM. Linn et al. (2020) demonstrate the
model in two case studies, comparing the simulation results
of FIRETEC and QUIC-Fire. The first case study was a sim-
ulated grass fire, and the second was a simulated prescribed
fire in a forest landscape, replicating conditions typical of a
prescribed burn at Eglin Air Force Base, in Florida, USA.
Even though the paper does not report simulation speed, it
does state QUIC-Fire is capable of FTRT simulation and re-
quired ∼ 1/2000 of the computational cost of FIRETEC for
the simulations reported.

As stated earlier, the aim of this study is to demonstrate
the potential of ABM for the simulation of forest fire spread.
To do so we build an agent-based simulation model of fire
behaviour using an empirical approach. This allows us to
demonstrate how interactions between agents can produce
common patterns found in fires by following simple rules.
The model proposed here does not aim to replace or upgrade
any fire spread model but rather to showcase the advantages
and potential of using an alternative modelling approach.
With this in mind, we design it for the simulation of large
individual fire events in Canada, as large fires (> 200 ha)
account for ∼ 3 % of fires in Canada and are responsible
for ∼ 97 % of total area burned (Stocks et al., 2002). Fires
of this scale are particularly relevant for the study of fire
regimes and fire–climate–vegetation interactions, as present
in dynamic global vegetation models. These types of models
typically use very simple fire spread models (Keane et al.,
2004) and could benefit from a computationally efficient fire
spread model that accounts for complex interactions during
a fire event. An ABM of fire spread could potentially fill this
niche.

The proposed and implemented Agent-Based Wildfire
Simulation Environment (ABWiSE) model represents the
fire front as a set of moving agents whose behaviour is deter-
mined by rules accounting for vegetation, terrain, and wind,
as well as the interactions among the agents and with their
environment (such as fire–wind feedback). We implement the
ABWiSE model on two base case scenarios and two parts of
one real fire (cases 1 through 4, respectively). The first two
cases are simulated fires, and the latter two are from a fire
in Alberta, Canada. The cases are detailed in Sect. 3.1 and
listed in Table 1. We calibrate the model with cases 1, 2, and
3 and validate the model against case 4, as well as progres-
sion data for case 3. While we perform some preliminary un-
certainty and sensitivity analyses to calibrate the model and
evaluate some assumptions, a thorough uncertainty and sen-
sitivity analysis will be the subject of future work.

2 ABWiSE fire spread simulator

2.1 General overview

ABWiSE translates the concept of a moving fire front as a set
of mobile fire agents that, viewed in aggregate, form a line of

varying thickness. Ultimately, the goal of such a fire simula-
tion model is to provide predictions of the behaviour of hypo-
thetical fires. Presently, this paper uses ABWiSE to explore
how ABM, using simple interactions between agents and a
simple atmospheric feedback model, can simulate emerg-
ing fire spread patterns. Specifically, we aim to identify the
strengths and weaknesses of ABM applied to this purpose
and how it differs from other modelling approaches.

We use pattern-oriented modelling as a strategy to both
design and evaluate our model (Grimm et al., 2005). The
patterns in question are fire line rate of spread (RoS; tem-
poral), fire shape (spatial), and fire–wind interactions (emer-
gence). As mentioned earlier, the ellipse is widely accepted
as the generic fire shape (Anderson et al., 1982; Van Wagner,
1969), and it serves as the starting pattern. In uniform fuel
and wind conditions, how can we get agents to burn an el-
liptical area through emergence and not an explicit rule? The
guiding assumptions that lead to the model’s current form
are that fire is slower at the edges of a fire line than the cen-
ter (Finney, 2004; Van Wagner, 1969), that the relationship
between wind speed and rate of spread changes with the an-
gle between the direction of spread and wind direction, and
that fire dries the fuel ahead of it, making it more flammable
(Byram, 1959). Fire line rate of spread and fire–wind interac-
tions are what create fire shape as it evolves over time (Clark
et al., 1996), so we use fire shape to evaluate our model un-
der different conditions and at different times. The specific
evaluation scenarios are described in Sect. 3.

2.2 Entities, state variables, and scales

The model entities are fire agents and grid cells. The fire
agents have two main properties, heading and rate of spread
(RoS), plus their location (floating-point coordinates). The
heading is the direction, in degrees, an agent faces. The RoS
is the portion of a cell an agent travels every time step (called
a tick). The units of the RoS depend on the spatial and tem-
poral scales of the model.

Grid cells represent the world with which fire agents in-
teract. Their state variables are their location (integer coordi-
nates, at the center of the cell), fuel level, flammability, slope,
aspect, wind speed, and wind direction. Location, slope, and
aspect are static throughout a model run, while the other vari-
ables can change. Flammability and fuel are unitless vari-
ables ranging from 0 to 1. Slope is input as a percentage,
in which flat is 0 % and vertical is 100 %. Aspect is in de-
grees. Wind speed is input as kilometres per hour (km h−1).
Flammability is a measure of how quickly the vegetation in
a cell can burn, and thus how fast the fire can move through
it. Fuel is a measure of the amount of material available for
combustion in a cell. Wind can be spatially and temporally
uniform or dynamic.

The spatial and temporal resolutions of the model are lin-
early proportional; e.g. at a 200 m cell size, each time step
(or tick) represents 1 min, and at a 400 m resolution, each
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tick is 2 min. The spatial and temporal extents of the model
depend entirely on the scenario to simulate. The model is im-
plemented in the NetLogo multi-agent programmable mod-
elling environment (Wilenski, 1999). The code and data are
freely available under an open source license on GitHub
(https://doi.org/10.5281/zenodo.4976112, Katan, 2021).

We base the flammability and fuel of cells on the Canadian
Forest Fire Danger Rating System (CFFDRS) (Van Wag-
ner, 1974; Wotton, 2009). We chose it due to the availabil-
ity of fuel type data in Canada and the system’s use around
the world (Opperman et al., 2006). The system includes 16
classes of vegetation for which there are empirically de-
rived equations relating fuel moisture and weather to fire be-
haviour. The CFFDRS is currently composed of two sub-
systems: the Fire Weather Index (FWI), which provides a
general rating of fire spread potential based on fuel moisture,
temperature, and wind speed, and the Fire Behaviour Predic-
tion (FBP) system, which combines the FWI with fuel type
characteristics to provide more detailed fire behaviour infor-
mation. This system has been in use for decades but does not
account for any form of feedback mechanism. Because AB-
WiSE uses feedback loops to replicate fire behaviour, using
the FWI would require reworking its equations without wind,
as it is an important variable within its subsystems. Doing
so is beyond the scope of this research at this time. Instead,
we chose to map the average characteristics of fuel types of
the CFFDRS, as described in Forestry Canada Fire Danger
Group (1992), to flammability and fuel values (Sect. A1).
This keeps wind as a separate input and variable that forms
part of a feedback loop.

2.3 Procedures

Figure 1 provides a schematic overview of the procedures. A
model run begins with an ignition, creating four fire agents at
that point, each facing one cardinal direction. Since flamma-
bility is the first driver of fire spread, fire agents have an ini-
tial RoS value set to the flammability of the cell they start in.
At each time step, fire–wind interactions provide a local ef-
fective wind speed and direction for cells within a certain dis-
tance of fire agents (Feedback procedure, Sect. A2.1). Next,
fire agents update their RoS and heading based on wind,
flammability, terrain, and the local density of fire agents and
then move by that RoS in that direction (Spread procedure,
Sect. A2.2). After moving, agents preheat the cell within the
distance of their RoS by a small amount, raising its flamma-
bility (Preheating procedure, Sect. A2.3). Next, agents have a
chance to be extinguished (or die) based on the fuel value at
their location and their RoS (Death procedure, Sect. A2.4).
Those that do not die then propagate if they have travelled
more than a certain distance from their point of origin and
if there are fewer than a set number of other fires already
in their current cell (Sect. A2.5). Lastly, fire agents reduce
the amount of fuel in a cell based on their RoS (Sect. A2.6).
The simulation ends if there are no more fire agents or after

a predetermined number of iterations. Detailed descriptions
of the procedures, including the equations involved, are in-
cluded in the Appendix (Sect. A2). However, we will explain
here some of the reasoning behind key procedures, namely
Feedback and Spread. The Feedback procedure combines
the input wind values at a cell with the effect of fire agents
nearby and smooths the resulting vector based on the wind in
nearby cells. This is a simple proxy for fire–wind interactions
that was inspired by the pyrogenic potential of Hilton et al.
(2018). The Spread procedure attempts to match the relation-
ship between RoS and wind speed and direction to observa-
tions, as well as producing a reasonable fire shape. In short,
low wind speeds have a small effect on the fire agents but
have a stronger effect on fire agents whose heading is close to
the wind direction. The relationship between RoS and wind
speed follows a logistic curve based on the same assump-
tion as Forestry Canada Fire Danger Group (1992) that there
exists a maximum RoS based on fuel type, though the rela-
tionship is not identical. The various feedbacks change the fi-
nal RoS from that particular logistic equation, so it would be
moot to use the exact same relationship between wind speed
and RoS as the FBP system.

The last important detail about model processes is stochas-
ticity. There are two sources of stochasticity in the model:
the first is the chance of agents dying out, and the second
is the turn order of the agents at each time step. While the
operations listed above happen in the order presented, the or-
der of agents or cells performing them is random. This asyn-
chronous updating of agents is a default of the NetLogo pro-
gramming language and serves to avoid artifacts of execution
order. Due to the stochasticity, we base the model evaluation
on ensemble maps representing the sum of 100 simulations
with the exact same inputs and parameters.

3 Calibration and validation

To calibrate ABWiSE, we compare its output with expected
behaviour and adjust the parameters until it performs ade-
quately. Overfitting is a serious problem with this approach,
and we try to minimize it by fitting our model to three dif-
ferent scenarios. However, detailed fire behaviour data and
corresponding weather data are difficult to come by, espe-
cially for large and remote wildfires. Fortunately, the free-to-
use Prometheus model (Tymstra et al., 2010) offers a sample
dataset of a real fire for download: the Dogrib fire of 2001
in the foothills of the Rocky Mountains in Alberta, Canada
(McLoughlin, 2019). We use one part of this fire for cali-
bration, leaving another part for validation. Because we did
not find other datasets using the Canadian FBP fuel type as
model input, the two other scenarios for calibration are base
cases as simulated by Prometheus.
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Figure 1. Schematic description of model procedures. The “Check cell” diamond represents the check for the Death procedure, followed
by the check for Propagation, after which Consumption occurs. Fire agent RoS and heading are updated in the Spread procedure, which are
used by the Feedback procedure at the start of the next iteration. Because agents update asynchronously within a procedure, Preheating by
one agent can affect the next agent to perform the Spread procedure.

Figure 2. The two base scenarios.

3.1 Scenarios

The four scenarios are listed in Table 1 for ease of reference.
The first base case scenario (Fig. 2a) is a 2 h long fire on a
flat plane of the C-2 fuel type, Boreal Spruce, with no wind
and a temperature of 25 ◦C. The second base case (Fig. 2b)
is the same but with 20 km/h wind speed, coming from the
east. Though ABWiSE does not use temperature as an input,
Prometheus uses it to calculate the FWI and track changes in
fuel moisture over time.

The Dogrib fire started on 25 September 2001 in the Rocky
Mountains of southwest Alberta, Canada. The fire was de-
tected at 17:00 MDT (all times are in mountain daylight time)
on 29 September and reached a size of 675 ha at 16:30 the
next day. Fire suppression started at 06:00 on 1 October. It
burned at various rates under some suppression efforts until
it grew to 852 ha by 15 October. On the 16th, a wind event
pushed the fire through a gap in the surrounding mountains
and caused the fire to jump the Red Deer River. After this, it
spread 19 km in 6.7 h in a northeast direction. The final fire
size was 10 216 ha, 90 % of which was a result of the 16 Oc-
tober fire run (McLoughlin, 2019). The vegetation consumed
by the fire consisted mostly of lodgepole pine (Pinus con-
torta), followed by subalpine fir (Abies lasiocarpa), and En-
gelmann spruce (Picea engelmannii). Respectively, the FBP
fuel types C-3, C-1, and C-2 represent these.

Table 1. Scenarios used for model calibration and evaluation.

Scenarios Description

Case 1 C-2 (Boreal Spruce) fuel type, no wind
Case 2 C-2 (Boreal Spruce) fuel type, 20 km east
Case 3 Dogrib fire, 16 October portion
Case 4 Dogrib fire, 29 September portion

The example scenario provided with Prometheus provides
data for both the initial unsuppressed burn between 17:00 on
29 September and 18:30 on 30 September and the 16 Octo-
ber fire run, shown in Fig. 3. These represent cases 4 and 3,
respectively. Case 4 serves as an independent dataset for vali-
dation, and the final perimeter of case 3 serves for calibration,
while the progression perimeters (solid polygons in Fig. 3, as
provided with example data) are used for interim validation.
The nearby Yaha Tinda automated weather station provided
the necessary weather data for the simulation. According to
the case study, this single weather station could not account
for the complex topography of the mountainous area. The
Dogrib case study includes a manually created weather patch
for the Prometheus simulation in order to replicate the wind
funnelling effect of the Red Deer River valley observed in
the actual fire event. This funnelling is what drove the fire
through a gap in the mountains and across the river. The re-
port states that use of this weather patch provided more real-
istic simulation results in the case study than either uniform
winds or dynamically modelled weather grids accounting for
topographical influence on wind flow (McLoughlin, 2019).
We use the exact same weather information for the ABWiSE
simulations.

After calibration and validation, we perform a preliminary
sensitivity analysis of the model’s response to different fuel
types by repeating the experiments for cases 1 and 2 but with
the other fuel types present in the fuel type map for the Do-
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grib case study, as well as testing case 3 on a randomized fuel
map.

3.2 Model evaluation

Evaluation is critical for any simulation model, especially
one that relies on empirical relations between variables in-
stead of physical rules. Quantitative spatial methods to mea-
sure fire behaviour model performance broadly fall into two
categories: final perimeter methods and time-based methods.
Final perimeter methods, as the name suggests, measure the
similarity between the final simulation perimeter and a final
observed perimeter. Such methods are dependent on the error
of the observation time and related assumptions about simu-
lation duration, and they provide no information about model
performance at intermediate times (Filippi et al., 2014).

In order to measure model performance throughout cali-
bration, we use a final perimeter measure: the figure of merit
(FoM) (Eq. 1), equivalent to the Jaccard similarity coefficient
(Pontius et al., 2018). Values of the FoM range from 0 to 1,
with 1 being a perfect match. In the case of fire perimeters,
hits are those cells burned by the simulation that were also
burned in the observation, misses are those unburned by the
simulation but burned in observation, and false alarms are
those burned by the simulation that were not burned in obser-
vation. Though there are some criticisms about the FoM and
its use in measuring land-use change models (Harati et al.,
2021; Varga et al., 2019), it still provides useful information
and is easy to interpret when used to compare burned areas
(Filippi et al., 2014). In particular, criticisms surrounding the
FoM are based on full map comparisons, but in this study,
the comparison is between burned perimeters only. Correct
rejections far from the area of interest are never considered.
Furthermore, simplicity of calculation is an important factor
when measuring millions of simulations, as is necessary in
calibrating this model.

FoM=
hits

hits+misses+ false alarms
(1)

3.3 Calibration

Calibration begins with manual exploration of the parameter
space to eliminate parametrizations that produce very inac-
curate results (based on both visual assessment and FoM).
Large deviations from these manually identified initial set-
tings produce very poor results (e.g. FoM less than 0.2). The
next stage explores promising regions of parameter space at
finer resolution, which consists of varying parameters around
those manually identified initial settings by steps of about
5 % of their total range, up to three steps above and below
the initial setting. We uses up to three steps because varying
all 12 parameters by six steps would require just over 2 bil-
lion simulations. In addition, the need to repeat simulations
for each combination to account for stochasticity acts as a
multiplier to that number. We keep our parametrization runs

to about 100 000 combinations at a time, with three repeti-
tions, choosing to apply a broader sweep to those parame-
ters deemed to have the most impact and a smaller sweep
to the other parameters. The parametrization runs generate
a table with each row containing the parameter values and
the final FoM of that simulation. After such a run, we use
a classification and regression tree (CART) (Brieman et al.,
1984; Loh, 2011) based on the table to identify new “search”
areas for parametrization. That is, the CART identifies im-
portant parameters and determines the values above or be-
low which the FoM was better. However, the non-random
nature of how we set the parameters and explore parame-
ter space means the CART models are never as robust as if
we had used random samples of the parameter space. We re-
peat the parametrization–CART process twice to arrive at a
parametrization that adequately simulates all three scenarios
without over-fitting the model to the few scenarios available
to us.

After calibration, we use Monte Carlo methods (Kroese
et al., 2014; Metropolis and Ulam, 1949) to account for the
stochasticity of the model, producing ensemble maps of 100
simulations of each scenario. One ensemble map is the sum
of the output maps of all 100 simulations. Cell values in these
maps range between 0 and 100, representing how many times
it burned in the ensemble or, in other words, burn probabil-
ity. Note that this is the probability of that cell burning in the
ensemble of simulations, not a prediction of burn probabil-
ity in reality. We calculate a more robust FoM based on the
statistics of these probability maps.

3.4 Validation

Typical model validation compares model output for scenar-
ios not used in model calibration (Hoffman et al., 2018).
The only independent scenario available is case 4, the 29–
30 September portion of the Dogrib fire that was not subject
to suppression efforts. This fire was about 14 km away from
the automated weather station that supplied the data for the
Dogrib case study and was nestled in a mountain valley. The
available weather data are almost certainly less accurate than
those for the 16 October run, which had improvements from
experts and field observations. Therefore, while independent
for the sake of model validation, the quality of the data limits
the robustness of this validation. We supplement this vali-
dation with a time-based method to validate interim fire be-
haviour. Because the measure for calibration was only the fi-
nal perimeter, the measure of intermediate fire behaviour is to
some extent independent and can validate interim behaviour
(Filippi et al., 2014). Although this cannot validate the whole
model, it helps to elucidate the validity of its mechanisms. In
addition to burn probability maps, the ensemble simulations
provide maps of mean arrival time, which we use with the
Dogrib fire progression data for case 3 in a time-based mea-
sure of performance to validate interim behaviour. Progres-
sion data for case 3 consist of reconstructions of the Dogrib
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Figure 3. Two parts of the Dogrib fire. The ignition points are those provided with the sample data, as used in our simulations, as well as
the Prometheus simulations. Background is a combination of hill shading, elevation, and fuel type. The solid polygons show fire progression
representing the time by which at least that much area has burned.

fire perimeter at four instances between the start and end of
the fire. Progression data for case 4 are too sparse for this
method. Details for this evaluation are in Sect. 4.3.

4 Results

4.1 Ensemble maps

The ensemble maps in Fig. 4 provide a visual overview of
model performance. Cases 1 (Fig. 4a and b) and 2 (Fig. 4c
and d) both show an excellent agreement between simulated
and expected shapes, with case 2 having slightly more vari-
ation in its final perimeter. Since there is wind driving the
fire in case 2, there is more room for emergence through the
fire–wind interactions, and thus we would expect more vari-
ability in the ensemble simulation. This variability is even
more present in case 3 (Fig. 4e), in which not only is the
time of burn longer, but the input wind itself is more dy-
namic. The ensemble simulations of case 3 demonstrate a
wide range of potential outcomes. The majority of simula-
tions do burn within a similar area as the real Dogrib fire,
though some also cross the mountains further north and burn
a large swath of land parallel to the real fire. Simulation of
case 4 often burns far less than the observed fire. The sim-

ulation also never burns for the full duration of the observa-
tion data, with a mean burn time of 421 min out of 1550 min
and a maximum of 1492 min before burning out completely.
Table 2 summarizes the FoM of the simulations in an ensem-
ble, i.e. the summary statistics of the score of each individ-
ual simulation. To test whether the fire–wind feedback has
a meaningful influence on fire behaviour in ABWiSE, we
also perform these simulations with the w1 parameter (see
Sect. A2.1) set to 1, which effectively reduces the effect of
fire–wind feedback to 0. The table also includes the FoM for
simulations by Prometheus for comparison.

Considering that ABWiSE is designed with coarse scales
in mind, we perform the same simulation measurements as
before but at a resolution of 500 m per cell instead of 200 m.
The scores, in Table 2, are generally lower due in part to the
smaller total number of cells involved in the calculations. As
for fire–wind feedback, almost every scenario scores lower
without the feedback effect than with it. Only case 1 at a
200 m resolution and case 3 at a 500 m resolution score better
without it. Most notably, the maximum scores are all lower.
As seen in Fig. 5, simulated fire shape under windy condi-
tions tend to be fan-shaped, rather than elliptical, with case
2 showing the most evident difference between simulations
with and without fire–wind feedback.
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Figure 4. Ensemble maps for all four scenarios at two resolutions (200 and 500 m). Graticule spacing for every map is 2000 m except (i),
for which it is 500 m. This is to help compare the size of each scenario. Panels (e) to (h) have the same spatial extent in order to show the
relative size and locations of cases 3 and 4.

Table 2. Figure of merit (FoM) descriptive statistics based on each run in an ensemble simulation; “(no fb)” specifies scenarios run with the
fire–wind feedback disabled.

200 m resolution 500 m resolution Prometheus

Case Mean FoM Max FoM SD Mean FoM Max FoM SD FoM

1 0.8322 0.8800 0.0185 0.5416 0.6300 0.0286 1
2 0.8080 0.9300 0.0873 0.5598 0.6900 0.0524 1
3 0.4783 0.6800 0.1830 0.4279 0.7200 0.1839 0.5647
4 0.2817 0.4100 0.0608 0.2139 0.4600 0.0803 0.2108
1 (no fb) 0.8362 0.8769 0.0141 0.4939 0.5882 0.0204 NA
2 (no fb) 0.4558 0.5507 0.0431 0.3716 0.5000 0.0274 NA
3 (no fb) 0.4116 0.4550 0.0214 0.4449 0.5507 0.0731 NA
4 (no fb) 0.1377 0.1806 0.0277 0.1423 0.3673 0.0647 NA

NA stands for not available.

4.2 Figure of merit maps

There are two ways of calculating and showing the FoM of
these ensemble maps. The first, in Fig. 6, shows an ensem-
ble of the FoM components as calculated for each individual
simulation. This visualization of the different FoM compo-
nents provides insight into just how, and where, the model
agrees or disagrees with observations. For case 1 (Fig. 6a,
b, c), the simulation burns the entirety of the observed burn
almost all the time, misses a few cells in a scant 2 % of simu-
lations, and over-burns only a small ring outside the observa-
tion perimeter. With a mean FoM of 0.83, the simulation of
case 1 is in good agreement with observations and, notably,
creates a circular perimeter through emergence alone. Case
2 has a mean FoM of 0.81, also indicating good agreement.
Figure 6e and f show that there is a fair amount of under-
and over-burning in the ensemble, which contribute to the er-

ror. Once again, the simulation perimeter closely resembles
the expected ellipse through emergence alone. Case 3 has a
mean FoM of 0.48, much lower than the first two cases. Fig-
ure 6g shows that the majority of simulations in the ensemble
do burn in a similar shape and area as the observation, but the
ensemble frequently under-burns the top edge of the Dogrib
fire. Figure 6h shows the corollary and demonstrates that the
model very rarely burns the full width of the Dogrib fire, par-
ticularly in the bottom portion of the fire. Over-burning is the
smaller source of error for case 3, with mostly low probabil-
ities, and Fig. 6j highlights the particularly low probability
of the northern parallel burn mentioned earlier. Case 4 has
a mean FoM of 0.28 and never burns the full extent of the
observed fire, as visible in Fig. 6k and l. On the other hand,
the simulations very rarely over-burn except a small portion
to the north of the fire, which is the top of a ridge.
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Figure 5. Ensemble maps for all four scenarios at two resolutions (200 and 500 m) for simulations with no fire–wind feedback. Note that the
simulation space topology is toroidal, meaning that fire agents that reach the edge of the world disappear and reappear at the opposite edge.
Under normal circumstances this condition should not be reached, but the lack of fire–wind feedback resulted in exceptionally fast-moving
fire fronts that passed the edge of the world before the end of the simulation. The results of this can be seen in panels (c), (d), (e), and (f).

The second way to calculate FoM from ensemble simula-
tions uses a statistically derived subset of the full ensemble
map to calculate FoM. The subset consists of those cells with
a burn probability above a certain threshold value, and this
subset is compared to the observation data. We calculated the
FoM for four threshold values: the mean, 1 standard devia-
tion, 2 standard deviations, and the second quartile. This pro-
vides the FoM of the most probable outcome of the model.
Figure 7 shows the resultant FoM maps and scores for cases 3
(Fig. 7a to d) and 4 (Fig. 7e to f) for the four different thresh-
olds. These results show that while the mean FoM for cases
3 and 4 are relatively low, the most probable outcomes of the
model (as defined by the statistical subsets) score higher.

4.3 Time-based evaluation

A time-based measure of model performance allows us to
evaluate interim fire behaviour and thus validate to some ex-
tent the processes that make up the simulation. In particular,
it reduces the impact on FoM of impossibly burned cells, as
mentioned above. Figure 8 shows how our simulation corre-
sponds to the coarse reconstructions of the Dogrib fire (which
are included with the sample data). Simulation progression
uses the mean arrival time of a cell to determine those burned
within a time period, and we use the mean probability sub-
set (shown in Fig. 7a for comparison). In the first time pe-
riod (Fig. 8a), both reconstructed and simulated fires grow
similarly, though offset, but their fronts advance to a similar
point. In the second period (Fig. 8b), the simulation fire con-
tinues to over-burn to the north and lags behind the furthest
eastward extent of the reconstructed perimeter. By the third
period (Fig. 8c) the simulation fire rushes ahead of the recon-
struction, though the width of the fires stays similar. At the

end of the fire the simulation has burned further and wider
than the reconstruction. These tests show a degree of agree-
ment between the progression of the simulated fire and that
described in the case study (McLoughlin, 2019) in that the
fire grows slowly in the first two periods, and then spreads
very quickly in the last two.

4.4 Fuel type sensitivity

ABWiSE uses a very simplified representation of fuel types,
and it is explicitly calibrated to a single fuel type (C1, Bo-
real Spruce, with cases 1 and 2) and only implicitly for other
fuel types (case 3). Therefore, the assumptions related to
the fuel variables remain untested, both for the parametriza-
tion of fuel type values and their influence on agent RoS.
By repeating the ensemble runs for cases 1 and 2, but with
other fuel types, we can determine how well the other fuel
types are modelled (however this does not allow us to distin-
guish between problems with parametrization of fuel types
and parametrization of model equations). The experiments
for the sensitivity analysis of fuel type use the same ignition
and weather as cases 1 and 2 and change only the fuel type.
We test the nine different fuel types present in the Dogrib fuel
type map and perform the usual 100 simulations to account
for stochasticity. To test whether fuel type plays an important
role in case 3, we also run 100 simulations of that scenario
but with a randomized fuel map. This randomized fuel map
only changes the fuel type of cells that already had a fuel type
other than non-fuel or water.

As seen in Table 3, model performance varies greatly
across fuel types. The model scores an FoM above 0.5 in 11
out of the 18 uniform fuel scenarios, but by fuel type, only
4 out of 9 have such scores at both wind speeds. The model
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Figure 6. Individual FoM components from each simulation, stacked as ensemble maps. Cell value represents how many times a cell was part
of a given component in the ensemble, in other words, the percent occurrence in that category. In this case count and percent are equivalent,
given that an ensemble consists of 100 simulations.

regularly under-burns (i.e. misses) for fuel types C1 and C6,
while over-burning (i.e. false alarms) is the larger kind of er-
ror in those fuel types for which the model scored poorly. As
for case 3 with randomized fuel, ABWiSE almost exclusively
under-burns.

5 Discussion

Overall, the results of our simulations show good agree-
ment between ABWiSE simulations and observations. The

model performs very well in simulating the two base cases,
while its performance decreases when simulating the real
fire of cases 3 and 4. Ensemble simulation produces an im-
proved score but also introduces certain problems related
to the process-based nature of the phenomenon for case 3
(Fig. 7b), in which using the second quartile as a threshold
includes cells in the subset that could only have been burned
if the fire had burned further north earlier in the simulation.
The core concept of using ABM to simulate fire spread has
proven successful. The agent-based framework lends itself
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Table 3. Figure of merit values from ensemble simulations for different fuel types.

Scenario Figure of merit Hits Misses False alarms

Fuel type and wind speed Mean SD Mean SD Mean SD Mean SD

C-1 00 km 0.16 0.01 3 0 0 0 16.37 0.86
C-1 20 km 0.27 0.02 33.69 2.04 89.31 2.04 1.57 1.32
C-2 00 km 0.83 0.02 56.96 0.2 0.04 0.2 11.35 1.28
C-2 20 km 0.82 0.06 146.11 9.23 15.89 9.23 15.86 8.52
C-3 00 km 0.11 0 9 0 0 0 72.46 1.91
C-3 20 km 0.54 0.04 105.29 4.02 1.71 4.02 89.4 16.89
C-4 00 km 0.79 0.02 64 0 0 0 17.45 1.97
C-4 20 km 0.79 0.06 168.77 9.4 18.23 9.4 28.49 13.81
C-5 00 km 0.1 0.01 2 0 0 0 17.39 1.01
C-5 20 km 0.61 0.03 23.73 0.51 3.27 0.51 11.94 2.46
C-6 00 km 0.46 0.02 9 0 0 0 10.43 0.87
C-6 20 km 0.22 0.01 34.42 1.79 118.58 1.79 0.87 1.31
D-1 00 km 1 0 1 0 0 0 0 0
D-1 20 km 0.17 0.01 1 0 0 0 5 0.4
M-1 00 km 0.84 0.04 19.3 0.83 3.7 0.83 0 0
M-1 20 km 0.62 0.03 34.93 1.98 21.07 1.98 0.77 1.05
O-1 00 km 0.8 0.03 21 0 0 0 5.18 0.95
O-1 20 km 0.84 0.05 36.32 1.17 1.68 1.17 5.17 2.84
Case 3 random 0.04 0.02 104.58 65.19 2318.42 65.19 0.25 1.35

well to the complex nature of forest fires. Integrating com-
plexity at the level of a disaggregated fire line means fire
behaviour emerges from the bottom up, as in physical mod-
els, but with far less computational load. While the fire–wind
feedback mechanism has a role in adequately simulating fire
behaviour, it is clearly not the sole factor at play, both as a
source of error and a vital part of successful simulation. De-
spite the simplicity of the fire–wind feedback sub-model, the
results presented in Table 2 and Fig. 5 do indicate that AB-
WiSE produces more realistic simulations with it than with-
out it. Even though the results of the validation are promis-
ing, there is still room for improvement. Two avenues for im-
provement are, of course, more data and an enhanced model.
Exploring the limitations of both the data and the model helps
us by highlighting the successes and failures of this approach
and guides future work.

5.1 Error and data limitations

Differentiating between input error and model error requires
high-quality data to minimize input error, leaving the model
as the only potential source of error. Data availability and
quality limit the validation of the model, in particular the
weather observation data for case 4. Simulation of case 4
by Prometheus has an FoM of 0.21 (compared to the Do-
grib perimeter at a 200 m resolution) because it over-burns a
large area southwards, which indicates that case 4 is difficult
and complex to simulate and reinforces the notion that input
data for it are inaccurate and a large source of error. How-
ever, we can consider our test cases 1 and 2 to have perfect

input data since the comparison was another model’s output
based on the same data. Any inaccuracy in cases 1 and 2
is due to model error. The data for case 3 are the best real-
world data available to us and are of sufficient quality for the
Prometheus model to have an FoM of 0.568. On the other
hand, there are obvious problems with the reconstructed fire
perimeters used for the time-based validation of case 3: the
reconstructed fire progression does not reach the full extent
of the observed final perimeter, nor is it as wide, indicating
some discrepancy between reconstruction and reality. Limits
to input data do not mean model errors are the same between
ABWiSE and Prometheus. Attributing sources of error and
uncertainty in model output is the goal of sensitivity and un-
certainty analyses (SA and UA, respectively).

The preliminary sensitivity analysis pertaining to fuel
types demonstrates that fuel is an important subject of error
in the model. The true source of error is presently indistin-
guishable between the model procedures using the fuel type
variables and the fuel type variables themselves. The Spread,
Death, Preheating, and Consumption procedures all use or
affect these variables. Furthermore, this analysis shows only
the discrepancy between ABWiSE and Prometheus, not real
fire behaviour. However, the fact that randomized fuel re-
sulted in an extremely low FoM for case 3 means that fuel
is an important input factor, and its parametrization is at least
somewhat correct. Described further in Sect. 5.3, SA and UA
are the next step for the model presented in this paper.

The general problems of data limitations can be addressed
by new field experiments and observation techniques (Chu-
vieco et al., 2019). In particular, the proliferation of publicly
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Figure 7. Components of figure of merit. Each column shows the
FoM components and score for cells in the ensemble with a burn
probability value above a threshold burn probability. First column
is cells in the ensemble with a value above the mean, second column
is those above 1 standard deviation below the maximum (100), third
is above 2 standard deviations from the max, and fourth is above the
second quartile. Note that the real fire shape is the combination of
hits and misses, while the simulated fire shape is the combination
of hits and false alarms.

available satellite data is a great resource for forest fire ob-
servations, though limits to return time and resolution affect
the quality and applicability of these observations (Andela
et al., 2019). Canada’s future WildFireSat mission (https://
www.asc-csa.gc.ca/eng/satellites/wildfiresat/default.asp, last
access: 9 June 2021) will address this issue and provide daily
infrared observations of wildfires at a 200–500 m resolution;
an ideal scale for the niche ABWiSE aims to fill.

5.2 Model limitations

ABWiSE makes many assumptions about fire behaviour in
the form of the equations that define fire agent RoS and head-
ing and their relation to environmental variables. Another as-
sumption is the simple fire–wind feedback sub-model. There
was no intention for the equations based on these assump-

Figure 8. Components of FoM for case 3 at four times past ignition.

tions to be a new way to explain fire behaviour. Rather, they
were kept relatively simple in order to explore the potential
of ABM as a way to simulate fire behaviour in a bottom-
up, complex systems approach. The design of these equa-
tions makes use of numerous parameters so that the rela-
tions between agents and input variables could be honed
in on through calibration across many scenarios. Although
the equations are purely empirical in nature, not adhering to
the physics of fire (thus imposing an ultimate limit on the
model’s accuracy and validity), the modelling approach and
the calibration framework mean that the model could be con-
tinuously improved with more data up to that limit. However,
the corollary to this – that the model performs well in spite
of a purely empirical formulation – supports our objective of
demonstrating the potential of ABM for fire spread simula-
tion.

5.3 Future work

Future work on ABWiSE may focus on sensitivity and uncer-
tainty analyses. Together, SA and UA quantify the overall un-
certainty of a model and partition the output variation among
the input factors. These input factors include not only param-
eters but data and even the model’s equations and algorithms.
By this process, we could clearly identify the limits of the
model and attribute the uncertainty to specific sources. From
this point, a renewed calibration effort could proceed on the
sources (input factors) most influential to the model output.
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However, this would require more input data to analyze the
model over a larger spread of scenarios, as well as poten-
tially billions of simulations to properly explore the param-
eter space. As demonstrated with the brief sensitivity anal-
ysis presented above, examining one factor at a time is not
necessarily enough to identify precise sources of error. How-
ever, if we performed similar analyses pertaining to wind and
terrain, we might discern which of the major environmental
inputs upon which to focus our efforts first.

Given that ABWiSE is currently a proof-of-concept
model, and we consider that it has proven the concept of
using ABM to simulate fire spread, a simpler way forward
may be to replace many of its algorithms and equations with
adaptations of empirical models: specifically, implementing
the FWI and FBP system equations in a way that accom-
modates the ABM approach and fire–wind interactions. This
wind feedback, in turn, may be generated by coupling with
a CFD or most likely implementing the pyrogenic potential
model of Hilton et al. (2018). ABWiSE, in its current state,
would then serve as the benchmark for improvements.

One of the benefits of the ABM approach, and the NetL-
ogo environment in general, is that it is relatively easy to add
functionalities to the model, such as fire suppression. For ex-
ample, firefighting efforts are an important factor in the be-
haviour of fires subjected to it, and suppressed fires tend to
be significant for their proximity to the wildland–urban in-
terface (Johnston and Flannigan, 2018). In its current form,
ABWiSE could simulate the effect of firefighting by simply
reducing the flammability and/or available fuel in those cells
being suppressed. The matter of simulating intelligent fire-
fighter behaviour is a completely different challenge, how-
ever.

5.4 Computation

All simulations in this study used a desktop PC with a
12-core, 64 bit processor. On average, simulation speed is
10 time steps per second, though speed goes down as the
number of agents grows very large (> 500, occasionally sur-
passed in case 3). The most intense scenario, case 3, runs
in under 80 s, on average, which compares favourably to
Prometheus’ 93 s on the same computer. ABWiSE’s simu-
lation time goes down for ensemble simulations, as NetLogo
can take advantage of multi-threading for simultaneous runs.
The Monte Carlo simulations of all four cases at two dif-
ferent resolutions (800 runs, producing the ensemble maps)
took approximately 40 min. Simulation speed varied greatly
during calibration, with some parameter sets resulting in very
slow speeds, and so calibration took the longest time, with
each parameter sweep taking about 30 h to complete.

6 Conclusions

Through a complex systems approach focusing on key in-
teractions and conceiving of fire as a set of mobile agents,
this study demonstrates the potential of agent-based mod-
elling for use in simulating forest fire behaviour. We present
ABWiSE, an empirically calibrated ABM of fire behaviour,
which succeeds at the key goal of replicating fire shape
through emergence from basic rules. We evaluate the model
with a suite of perimeter comparison techniques, including
a time-based method, which identify specific strengths and
weaknesses in simulation results. ABWiSE is still in the early
stages of development and requires more data for both cali-
bration and validation, which will help refine its output and
determine its range of applicability. It is no replacement for
existing models of fire behaviour but rather a step in explor-
ing a new avenue of modelling. While other ABMs of fire
spread such as the Rabbit Rules model or QUIC-Fire demon-
strate the potential of ABM at small scales, ABWiSE ap-
plies another formulation to large forest fires, highlighting
how ABM can track the core elements of complexity of fire
across scales. By using the interactions of individual agents
to simulate fire behaviour, complex patterns and behaviours
emerge without specifically coding them in. We believe the
use of ABM in fire modelling merits further research as it
leverages efficient bottom-up simulation of complex systems
for coupled fire–wind interactions.

Appendix A

A1 Fuel type characteristics

Table A1 presents a detailed description of the variables
mapped and used in our model. The Dogrib fire case study
does not include all 16 fuel types of the FBP system; thus we
only present those present. The mapping of fuel types to fuel
and flammability values for our model uses the curves pre-
sented in Forestry Canada Fire Danger Group (1992). The
flammability value is based on the steepness and maximum
value of the rate of spread vs. Initial Spread Index curves in
Sect. 7.2 of the aforementioned report. Fuel values are based
on assumptions of fuel type characteristics. This is a gross
simplification of fuel type characteristics, but the use of a
simple index for each value means a sub-model could later
serve to generate more accurate values.

A2 Procedures

A2.1 Fire–wind interactions

The local wind vector L is the weighted average of the global
(or ambient) wind G, the effect of fire on wind L, and the
current local wind L0, written as

L= w1G+ (1−w1)(w2L0+ (1−w2)F ), (A1)
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Table A1. Fuel type and variable values.

Fuel type Model value

Code Name Fuel Flammability

C-1 Spruce–Lichen 0.5 0.5
C-2 Boreal Spruce 0.5 0.85
C-3 Mature Jack or Lodgepole Pine 0.5 0.9
C-4 Immature Jack or Lodgepole Pine 0.5 0.85
C-7 Ponderosa Pine–Douglas-Fir 0.5 0.2
D-1/D-2 Aspen 0.5 0.1
O-1a/O-1b Grass 0.4 0.6
M-1/M-2 Boreal Mixed-wood 0.5 0.6
– Non-fuel 0 0
– Water 0 0

where L0 is the local wind based on values of the previous
time step, and w1 and w2 are weighting parameters. Only
cells within a certain distance of fire agents (six cells if the
resolution is 200 m) calculate a local wind vector, and only
a subset of these (cells within four cells of fire) calculate the
effect of fire on wind and apply a smoothing function to their
wind vectors. The smoothed local wind vector for the subset
is the inverse distance weighted (IDW) interpolation (Eq. A2)
of L of the larger set. The general formula for IDW is

IDW(x)=

∑n
i=1

xi
d

p
i∑n

i=1
1
d

p
i

, (A2)

where d is the distance between x and xi , and p is a constant
value affecting the influence of distance. These calculations
mean that at the exterior edge of this active wind zone, global
wind is the most influential factor on local wind, and fire has
the strongest effect in cells with fire agents present.

The fire influence, F in Eq. (A1), is the sum of a lo-
cal gradient of fire RoS, ∇RoS, and a smoothed fire vector,
IDW(RoS). The gradient ∇RoS is a vector pointing to the
greatest change in the sum of the RoS of fire agents in the
eight neighbouring cells (a.k.a. the Moore neighbourhood),
with the exception that if there are no fires in one of the
neighbouring cells, the value for that cell is substituted with
that of the center cell. The value of F is then

F = k∇RoS+ IDW(RoS), (A3)

with the constant k scaling the effect of ∇RoS. Because fire
agents spawn and die suddenly at each time step, we used
IDW(RoS) of fires in that Moore neighbourhood to improve
continuity between time steps. This is a very simple proxy
for actual fire–wind interactions, and it was inspired by the
pyrogenic potential of Hilton et al. (2018).

A2.2 Fire spread

Fire agent RoS is the result of flammability, wind, and slope
at its present location. Many corrective factors were neces-

sary to match the relationship between RoS and wind speed
and direction to observations, as well as producing a reason-
able fire shape. In short, low wind speeds have a small effect
on the fire agents but have a stronger effect on fire agents
whose heading is close to the wind direction. The relation-
ship between RoS and wind speed follows a logistic curve
based on the same assumption as Forestry Canada Fire Dan-
ger Group (1992) that there exists a maximum RoS based
on fuel type. Equation (4) shows how fire agent RoS, wind,
and slope vectors are combined to determine the new RoS by
which a fire agent will move this time step and carry on to
the next.

RoS= RoSbfmodρmod+L(1.05−fmod)wmod+Ssmod, (A4)

where

RoSb =
[
f1RoS0+ (1− f1)(flam1.3

+flam

+w3‖L‖|collinear|)+ s1‖S‖coslope
]
m1wmod, (A5)

where flam is the flammability of a cell; f1, w3, s1, and m1
are user-defined parameters; and collinear and co-slope are
the cosines of the difference between the fire agent’s head-
ing and the wind direction and terrain aspect, respectively.
Using the absolute value of collinear means that fires mov-
ing directly into the wind still increase their RoS instead of
slowing to a stop. This reflects an assumption that the oxygen
supplied by the wind in this case is sufficient to increase the
strength of the fire, allowing fire to move against the wind in
low-wind conditions. The term wmod represents the logistic
equation with parameters a, b, and k:

wmod =
a+ flam

30[
1+ be−k‖L‖

] 1
flam+2.6+RoS

. (A6)

In Eq. (A4), fmod is an additional correction component with
some constants fixed at values that appeared to provide ac-
ceptable model behaviour, and one parameter, f2, is left open
to more thorough parametrization.
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fmod = f2(1.2−
wmod

1.3
) (A7)

Finally, ρmod is another correction factor based on the den-
sity of fire agents, representing an assumption that closely
clumped fire agents stay hotter for longer, and fire agents out
on their own lose heat more quickly and do not move as fast.
Density, ρ, is expressed as the number of fire agents within
a radius of 1 of the agent calculating it, and the near-density,
ρnear, is the mean density of those same agents in a radius of
1, such that the density modifier is

ρmod =
ρ+ 1
ρmax

−
ρnear+ 1

ρ
, (A8)

where ρmax is the maximum density of all fire agents at that
time step.

A2.3 Preheating

Agents heat the cell ahead of them at a distance of their RoS
by raising its flammability. RoS may be less than 1; thus the
“cell ahead” may be the cell the agent is already in. The mod-
elling software determines cell location by the center of the
cell, so a cell that is 1 RoS away may have a different distance
from the agent. For example, if the edge of a cell is 1 RoS
away, its distance to the agent is 1 RoS+0.5. Therefore, the
distance between the cell and the agent, d in Eq. (A9), is not
the same as the RoS. Only cells with a flammability below 1
(the maximum) are heated by the amount defined by

flam= flam0
0.005RoS
(1+ d)2

. (A9)

A2.4 Death

Just after moving, fire agents have a chance to die out if the
fuel value at their location is below a certain threshold mod-
ulated by their own RoS (Eq. A10). This means that slower
fires have a higher chance to die out at higher fuel values than
faster fires. If the fuel of their current cells is lower than that
threshold, agents die if they generate a random floating-point
number between 0 and RoS−1 that is less than 1. This means
that slower fires, while triggering this condition sooner than
fast fires, have a smaller chance of actually dying out. This
counterbalancing aims to simulate a kind of smouldering be-
haviour.

fuel threshold= 0.2(1.1−RoS) (A10)

Pdie = ran
1

RoS
(A11)

A2.5 Propagation

If, after moving, fires find themselves beyond
√

4×RoS cell
lengths from their start location, and if there are fewer than
three other fire agents already in that cell, they spawn three

new fire agents then die. The limit of three prevents an exces-
sive number of agents from suddenly appearing in one cell
and very rapidly consuming all the fuel. Slower fire agents
spawn and die more frequently than faster fires. The new fire
agents each inherit their “parent’s” RoS and heading and de-
viate from that heading by −45, 0, and +45◦. These new fire
agents consume fuel on this tick but only start moving on the
next tick.

A2.6 Consumption

Finally, the fires present at this time step of the simulation
consume fuel. They reduce the fuel value of the cell they
are in by RoS× fuel×B−1, where B is another parameter.
Including the fuel variable in the rate of consumption means
that cells with high fuel levels lose fuel quickly, but as fuel
reduces, it burns away more slowly.

Code and data availability. The ABWiSE code, along with the
data used for the simulations presented in this paper, is freely avail-
able on GitHub (https://doi.org/10.5281/zenodo.4976112, Katan,
2021).
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