Articles | Volume 20, issue 11
Nat. Hazards Earth Syst. Sci., 20, 3117–3134, 2020
https://doi.org/10.5194/nhess-20-3117-2020
Nat. Hazards Earth Syst. Sci., 20, 3117–3134, 2020
https://doi.org/10.5194/nhess-20-3117-2020

Research article 24 Nov 2020

Research article | 24 Nov 2020

Deep learning of the aftershock hysteresis effect based on the elastic dislocation theory

Jin Chen et al.

Related authors

ANALYSIS OF RESPONSE AND RECOVERY OF VEGETATION TO FOREST FIRE
A. Gong, J. Li, Y. Yang, Y. Chen, T. Zeng, J. Wu, J. Li, Y. Chen, H. Tang, and J. Yue
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 1207–1212, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1207-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1207-2020, 2020
RESEARCH ON OPTIMAL OBSERVATION SCALE FOR DAMAGED BUILDINGS AFTER EARTHQUAKE BASED ON OPTIMAL FEATURE SPACE
J. Chen, W. Chen, A. Dou, W. Li, and Y. Sun
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 155–160, https://doi.org/10.5194/isprs-archives-XLII-3-155-2018,https://doi.org/10.5194/isprs-archives-XLII-3-155-2018, 2018
BUILDING DAMAGE EXTRACTION TRIGGERED BY EARTHQUAKE USING THE UAV IMAGERY
S. Li and H. Tang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 929–936, https://doi.org/10.5194/isprs-archives-XLII-3-929-2018,https://doi.org/10.5194/isprs-archives-XLII-3-929-2018, 2018
MULTI-SATELLITE OBSERVATION SCHEDULING FOR LARGE AREA DISASTER EMERGENCY RESPONSE
X. N. Niu, H. Tang, and L. X. Wu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1327–1331, https://doi.org/10.5194/isprs-archives-XLII-3-1327-2018,https://doi.org/10.5194/isprs-archives-XLII-3-1327-2018, 2018
DISASTER MONITORING AND EMERGENCY RESPONSE SERVICES IN CHINA
J. Wu, X. Han, Y. Zhou, P. Yue, X. Wang, J. Lu, W. Jiang, J. Li, H. Tang, F. Wang, X. Li, and J. Fan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1879–1881, https://doi.org/10.5194/isprs-archives-XLII-3-1879-2018,https://doi.org/10.5194/isprs-archives-XLII-3-1879-2018, 2018

Related subject area

Earthquake Hazards
Fault network reconstruction using agglomerative clustering: applications to southern Californian seismicity
Yavor Kamer, Guy Ouillon, and Didier Sornette
Nat. Hazards Earth Syst. Sci., 20, 3611–3625, https://doi.org/10.5194/nhess-20-3611-2020,https://doi.org/10.5194/nhess-20-3611-2020, 2020
Short summary
Style of faulting of expected earthquakes in Italy as an input for seismic hazard modeling
Silvia Pondrelli, Francesco Visini, Andrea Rovida, Vera D'Amico, Bruno Pace, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020,https://doi.org/10.5194/nhess-20-3577-2020, 2020
Short summary
The utility of earth science information in post-earthquake land-use decision-making: the 2010–2011 Canterbury earthquake sequence in Aotearoa New Zealand
Mark C. Quigley, Wendy Saunders, Chris Massey, Russ Van Dissen, Pilar Villamor, Helen Jack, and Nicola Litchfield
Nat. Hazards Earth Syst. Sci., 20, 3361–3385, https://doi.org/10.5194/nhess-20-3361-2020,https://doi.org/10.5194/nhess-20-3361-2020, 2020
Short summary
Spatiotemporal changes of seismicity rate during earthquakes
Chieh-Hung Chen, Yang-Yi Sun, Strong Wen, Peng Han, Li-Ching Lin, Huaizhong Yu, Xuemin Zhang, Yongxin Gao, Chi-Chia Tang, Cheng-Horng Lin, and Jann-Yenq Liu
Nat. Hazards Earth Syst. Sci., 20, 3333–3341, https://doi.org/10.5194/nhess-20-3333-2020,https://doi.org/10.5194/nhess-20-3333-2020, 2020
Short summary
Measuring the seismic risk along the Nazca–South American subduction front: Shannon entropy and mutability
Eugenio E. Vogel, Felipe G. Brevis, Denisse Pastén, Víctor Muñoz, Rodrigo A. Miranda, and Abraham C.-L. Chian
Nat. Hazards Earth Syst. Sci., 20, 2943–2960, https://doi.org/10.5194/nhess-20-2943-2020,https://doi.org/10.5194/nhess-20-2943-2020, 2020
Short summary

Cited articles

Bird, P.: An updated digital model of plate boundaries, Geochem., Geophys., Geosys., 4, 1027, https://doi.org/10.1029/2001GC000252, 2003. 
Bodri, B.: A neural-network model for earthquake occurrence, J. Geodyn., 32, 289–310, https://doi.org/10.1016/S0264-3707(01)00039-4, 2001. 
Bondár, I. and Storchak, D. A.: Improved location procedures at the International Seismological Centre, Geophys. J. Int., 186, 1220–1244, https://doi.org/10.1111/j.1365-246X.2011.05107.x, 2011. 
Cheng, D., Zhang, Y., and Wang, X.: Coseismic deformation and fault slip inversion of the 2017 Mw7.3 Halabjah, Iraq, earthquake based on Sentinel-1A data, Acta Seismologica Sinica, 41, 484–493, https://doi.org/10.11939/jass.20180113, 2019. 
DeVries, P. M. R., Viégas, F., Wattenberg, M., and Meade, B. J.: Deep learning of aftershock patterns following large earthquakes, Nature, 560, 632–634, https://doi.org/10.1038/s41586-018-0438-y, 2018. 
Download
Short summary
The spatial and temporal distribution characteristics of aftershocks around the fault are analyzed according to the stress changes after the main earthquake. The model can be used to predict the multi-timescale anisotropy distribution of aftershocks fairly. The finite fault model of the main earthquake is used in the construction of the prediction model. The model is a deep neural network; the inputs are the stress components of each point; and the output is the probability of an aftershock.
Altmetrics
Final-revised paper
Preprint