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Abstract. This paper selects fault source models of typ-
ical earthquakes across the globe and uses a volume ex-
tending 100 km horizontally from each mainshock rupture
plane and 50 km vertically as the primary area of earthquake
influence for calculation and analysis. A deep neural net-
work is constructed to model the relationship between elas-
tic stress tensor components and aftershock state at multiple
timescales, and the model is evaluated. Finally, based on the
aftershock hysteresis model, the aftershock hysteresis effect
of the Wenchuan earthquake in 2008 and Tohoku earthquake
in 2011 is analyzed, and the aftershock hysteresis effect at
different depths is compared and analyzed. The correlation
between the aftershock hysteresis effect and the Omori for-
mula is also discussed and analyzed. The constructed after-
shock hysteresis model has a good fit to the data and can pre-
dict the aftershock pattern at multiple timescales after a large
earthquake. Compared with the traditional aftershock spatial
analysis method, the model is more effective and fully con-
siders the distribution of actual faults, instead of treating the
earthquake as a point source. The expansion rate of the af-
tershock pattern is negatively correlated with time, and the
aftershock patterns at all timescales are roughly similar and
anisotropic.

1 Introduction

After the occurrence of strong earthquakes, there is often a
large number of aftershocks, which constitute the aftershock
sequence. The aftershocks can lead to new damage to the area
affected by the main earthquake. Therefore, it is necessary to
study aftershocks and stimulate further discussion. Stein and
Lisowski systematically discussed the influence of the static
stress of the main earthquake on the spatial distribution of
aftershocks (Stein and Lisowski, 1983). A large number of
earthquake examples show that the change in Coulomb stress
produced by the main earthquake is greater than 0.01 MPa,
readily triggering aftershocks (Harris, 1998; Toda, 2003; Ma
et al., 2005). In addition to the Coulomb failure stress change
method, the deep learning method is a new emerging method
that can address some questions of physical mechanism. The
prediction of the aftershock sequence based on the stress
state of the crustal medium is also problematic and is a focus
of source physics (Jordan and Mitchell, 2015; Lecun et al.,
2015). The neural network has the characteristics of a black
box, which can avoid the complicated physical mechanisms
when predicting the aftershock pattern (Bodri, 2001; Mous-
tra et al., 2011). In 2018, DeVries et al. (2018) proposed a
deep neural network to study the spatial distribution of af-
tershocks following the main earthquake. A neural network
classifier based on stress variation was designed by the au-
thors to determine the possibility of a spatial distribution of
aftershocks (DeVries et al., 2018). This idea combines tra-
ditional physical analysis mechanisms with data-driven ma-
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chine learning mechanisms, which can improve our under-
standing of the complex physical mechanism of earthquakes.
Kong et al. also analyzed its necessity (Kong et al., 2019).

The distribution of aftershocks is not only related to spa-
tial changes but also to temporal changes (Kapetanidis et
al., 2015; Papadimitriou et al., 2018), which may be related
to the actual properties of the medium, i.e., the viscoelastic
medium and the porous two-phase medium are closer to the
actual geological medium than the elastic medium. The hys-
teresis effect of the viscoelastic medium on stress change,
the effect of readjustment of pore fluid on stress change and
other time-dependent medium properties are equally impor-
tant to post-earthquake stress change, which is an issue that is
receiving increasing attention in post-earthquake effects re-
search. In the study of the propagation of a seismic wave
and its focal mechanism, the earth medium is assumed to
be a completely elastic body. Prior to the main earthquake,
the crustal medium will be continuously deformed due to
the long-term and slow action of tectonic stress. In the pro-
cess of stress accumulation (Kaviris et al., 2017; Kaviris et
al., 2018), the strain energy of the crustal medium will be
accumulated continuously and be stored in the crust in the
form of elastic strain energy. When the stress intensity is
greater than the bearing stress intensity of the crust, the crust
will lose its stability. Discontinuous crust will produce dis-
placement at the location of its fracture, forming an earth-
quake. Sometimes fracture surfaces are produced in some
locally continuous areas. Simultaneously, the elastic strain
energy stored in the earth’s crust will be released in this pro-
cess. After the occurrence of the main earthquake, the source
body and its surrounding medium will return to the steady
state. However, because the main earthquake causes a sud-
den change in the stress state of the medium, the accumu-
lated elastic strain energy in the entire stress field cannot be
released completely at once, but it will continue to be accu-
mulated in other areas, and it will ultimately be released in
the form of an aftershock sequence. Therefore, there is a hys-
teresis effect between the aftershock and the main earthquake
(Gu et al., 1979). Omori and Utsu proposed the time distri-
bution formulas of aftershocks. However, the formulas are
based on statistical significance, which cannot reflect the un-
derlying reason for the change in aftershock distribution over
time and cannot spatialize the temporal change in aftershocks
(Omori, 1894; Utsu, 1961). Many scholars also analyzed the
spatiotemporal distribution characteristics of aftershocks by
building a model, for example, the ETAS (epidemic-type af-
tershock sequence) model proposed by Ogata (Ogata, 1988),
the Kagan–Jackson model proposed by Kagan and Jack-
son (1994) and the model improved by Ogata based on ETAS
(Ogata, 1998). In 2009, Wong and Schoenberg (2009) pro-
posed a joint distribution model that parameterized the after-
shock location based on the distance and relative angle be-
tween aftershocks and mainshocks (Wong and Schoenberg,
2009). All the above spatiotemporal models of aftershocks
are all based on point source earthquakes, while the actual

earthquake sources are faults. So the distribution of the main
fault zone should be considered when predicting the after-
shock pattern. Some spatial models also ignore the relative
angle or distance between the mainshock and aftershocks.
These deficiencies are taken into account when building the
new prediction model.

In this paper, a method based on deep neural net-
works is proposed to analyze the probability distribution
of aftershocks following the main earthquake on multiple
timescales, which indirectly reflects the hysteresis effect of
aftershocks at different positions under the stress field of the
main earthquake. The SRCMOD fault source model database
and earthquake events are used as raw data (Mai and Thing-
baijam, 2014). First, the analysis area of each main earth-
quake is gridded, and then the aftershocks of each main
earthquake are entered into the grids. The DC3D displace-
ment model is used to calculate the components of stress
change tensor for each cell. Based on this grid, the results
of the calculation are used as the input to train the neural
network, and the aftershock hysteresis model is then ob-
tained. As the application analysis cases for the model, the
Wenchuan and the Tohoku earthquakes are not included in
the training set or the validation set. Finally, the spatial dis-
tribution and expansion characteristics of the aftershock hys-
teresis model are obtained for both the horizontal and vertical
directions. In addition, we focus on two important concepts,
namely the “hysteresis effect” and the “aftershock pattern”.
The hysteresis effect refers to the change in spatial distribu-
tion of aftershocks with the change of timescale. The after-
shock pattern refers to the spatial distribution of aftershocks
at a certain time.

2 Data and methods

2.1 Data

2.1.1 Raw data

Two types of data are used in this paper, SRCMOD finite
fault data and the ISC (International Seismological Centre)
earthquake catalogue (Bondár and Storchak, 2011).

The inversion of finite fault source data facilitates a bet-
ter understanding of the complexity of the earthquake rup-
ture process. Although the spatial resolution of the model is
low, it can provide information on deep seismic slip and fault
evolution over time. Therefore, the finite fault model is an
important means to further study the mechanics and kine-
matics of the process of earthquake fracture. The online SR-
CMOD database provides the inversion results for many typ-
ical earthquakes from 1906 to present. These results are up-
loaded by seismologists globally after the main earthquake
through inversion. Because the earth’s crust is used as an
elastic medium in the calculation of coseismic displacement
stress, we do not consider the impact of the background of
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Figure 1. The structure of the DNN (deep neural network). The neural network is composed of an input layer, hidden layers, output layers
and the connections between each layer. The function of each hidden layer is to transform the features of the network input.

each earthquake. There are 19 finite fault source models used
in this analysis: 15 are used as training data, and 4 are used
as validation data.

The aftershocks following each main earthquake are ob-
tained from the International Earthquake Center (ISC). More
precisely, all aftershock data are from Reviewed ISC Bul-
letin, which is a subset of the ISC Bulletin that has been man-
ually reviewed by ISC analysts. This includes all events that
have been relocated by the ISC. For the mainshock cases in
this paper, the aftershocks within 1, 30, 90, 180 and 365 d and
within a volume extending 100 km horizontally from each
mainshock rupture plane and 50 km vertically are used for
analysis of the aftershock sequences.

2.1.2 Data processing

After acquiring the limited fault source data and aftershock
sequence data, it is necessary to process them to create the fi-
nal data for analysis. First, the volume extending 100 km hor-
izontally from each mainshock rupture plane and 50 km ver-
tically is divided into a grid of 5 km3 cubes. Five timescales
of aftershock sequence data are then entered into each cube.
The aftershock state of a cell with an aftershock is defined as
1, and that of a cell without an aftershock is defined as 0. The
final training data have 15 aftershock sequences containing
318 210 subcells, and the validation data have 4 aftershock
sequences containing 89 900 subcells.

2.2 Methods

2.2.1 Okada elastic dislocation theory

The inversion analysis of seismogenic faults after earth-
quakes is a popular topic in seismology, while in the process
of inversion, the application of dislocation theory and mod-
els is essential. The dislocation model was first used to an-
alyze fault movement in 1958 (Steketee, 1958). Steketee in-
troduced the dislocation theory into the study of seismic de-

formation fields and described the relationship between dis-
continuous displacement on the dislocation plane and the dis-
placement field in an isotropic medium. Okada summarized
the existing research in 1985 and proposed a formula for the
calculation of displacement in an isotropic, uniform elastic
half-space. This formula can be used to calculate the coseis-
mic deformation caused by any fault in the elastic half-space
(Okada, 1985, 1992). The Okada dislocation theory system-
atically summarizes the relationship between point source
dislocation and surface deformation caused by rectangular
dislocation. The crustal movement is typically slow, and the
crustal medium generally shows viscosity and plasticity over
a long timescale. At present, the Okada dislocation theory is
the most widely used dislocation theory and is often used in
combination with InSAR (interferometric synthetic aperture
radar) technology. InSAR is used to monitor the surface co-
seismic deformation field, and the Okada theory is then used
to conduct fault slip inversion (Shan et al., 2017; Wang et al.,
2018; Cheng et al., 2019; Zhao, 2019).

Therefore, the Okada elastic dislocation theory is used to
calculate the coseismic strain stress field of the main earth-
quake in the paper. The Okada elastic dislocation model,
which ignores the influence of stratification in the earth’s
medium, is widely used in the study of coseismic deforma-
tion of the seismic signal source. Okada gives the analytical
expression of the partial derivative ∂ui

∂xj
(i, j = 1, 2, 3) of the

displacement u of the finite fault plane in the elastic half-
space (Okada, 1992). This expression is used to obtain the
strain tensor ε as

εij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
,

and the Lamé constant in the linear solid medium is used to
obtain the surrounding stress change tensor σ as
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Figure 2. ROC (receiver operating characteristic) curve for multiple timescales. Panels (a) through (e) show the ROC curve of the model
within 1, 30, 90, 180 and 365 d, respectively. The horizontal axis represents the FPR (false positive rate), and the vertical axis represents the
TPR (true positive rate).

Figure 3. ROC curve of 1CFS for multiple timescales. Panels (a) through (e) show the ROC curve of the model within 1, 30, 90, 180 and
365 d, respectively. The horizontal axis represents the FPR (false positive rate), and the vertical axis represents the TPR (true positive rate).

σ =[
λtr [ε]+ 2µεxx 2µεxy 2µεxz
2µεyx λtr [ε]+ 2µεyy 2µεyz
2µεzx 2µεzy λtr [ε]+ 2µεzz

]
,

where λ and µ are Lamé constants. In this paper, the crustal
medium is regarded as a Poisson body, and the two Lamé
coefficients are both 3.0×1010 Pa. The parameter tr[ε] is the
trace of strain tensor ε.

2.2.2 DNN

To analyze the hysteresis effect of aftershocks, it is neces-
sary to establish a model that can predict the damage modes

of aftershocks at multiple timescales. We constructed a fully
connected deep neural network (DNN) to simulate the rela-
tionship between the change value of the elastic stress ten-
sor and aftershock and to explain the hysteresis effect of af-
tershocks. The neural network is based on the extension of
the perceptron, and DNN can be understood as a neural net-
work with many hidden layers. A multilayer neural network
and deep neural network actually refer to one thing. DNN is
sometimes called multilayer perceptron (MLP). The network
established here is a network with six hidden layers. Except
for the second hidden layer, which has 100 neurons, the other
five hidden layers have 50 neurons. The input layer dimen-
sion of the entire network is 12. Its input eigenvalue is the
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Figure 4. Multi-timescale aftershock depth distribution curves of (a) the Tohoku earthquake and (b) the Wenchuan earthquake.

Figure 5. Structural background map of the Wenchuan earthquake.
The red and green lines represent the fault structures in this area.
The red line is the main fault zone of the Wenchuan earthquake,
and the green lines represent other fault zones. The focal mecha-
nism of the main aftershocks are also shown. Ngawa Tibetan and
Qiang: Ngawa Tibetan and Qiang Autonomous Prefecture. P, T, NF,
NS, SS, TF, TS and U represent tension axis, pressure axis, normal
fault, strike-slip normal fault, strike-slip fault, reverse fault, strike-
slip reverse fault and unknown type fault, respectively.

combination of the absolute value of six independent com-
ponents of the elastic stress at the center of each subunit and
the negative number of the absolute value, for a total of 12
inputs.

Then we analyze the correlation between aftershocks and
stress change, which is closely related to the inputs of DNN.
At present, the research on aftershocks is primarily based
on statistical methods, and the research content primarily fo-
cuses on the distribution of aftershock strength and time at-
tenuation. The intensity distribution of aftershocks follows

the G–R (Gutenberg–Richter) relationship logN = a− bM ,
where M is the magnitude, N is the number of aftershocks
with magnitude greater than or equal to M , and a and b
are the scale coefficients (Gutenberg and Richter, 1944). The
value of b generally varies from 0.6 to 1.1 (Utsu, 2002), and
its value is related to the regional stress state (Mogi, 1962;
Scholz, 1968).

The study of time attenuation of aftershocks begins with
the statistical description of frequency attenuation character-
istics of the aftershock sequence using the Omori formula
(Omori, 1894). In 1961, Utsu (1961) proposed that the fre-
quency attenuation rate of the actual aftershock sequence
is faster than that calculated by the Omori formula (Utsu,
1961) and proposed the modified Omori formula n(t)=
K(t + c)−p, where n(t) is the aftershock frequency per unit
time, c is a constant and p is the attenuation coefficient of
the aftershock sequence. For a large number of aftershock
sequences, the modified Omori formula accurately describes
the time attenuation of aftershocks. In the modified Omori
formula, the c value is related to the incomplete recording
time after the main earthquake (Kagan and Heidi, 2005),
which can provide a physical explanation for the aftershock
attenuation after the main earthquake (Lindman et al., 2005).
This value is also related to the rupture mode of the main
earthquake (Narteau et al., 2009); i.e., the aftershock atten-
uation is affected by the stress state and related to the stress
change.

The stress change caused by the main earthquake can be
calculated by the Coulomb fracture stress change, which is
also the most widely used analytical method at present. The
change in Coulomb stress produced by the main earthquake
will trigger the stress of the following aftershocks (Har-
ris, 1998). Some seismologists believe that if the change in
Coulomb fracture stress is positive around the main earth-
quake, it will promote fault movement and trigger after-
shocks; if the change in Coulomb fracture stress is nega-
tive, it will inhibit fault movement, and the probability of
triggering an aftershock is reduced (Lin, 2004; Harris, 1998;
Han, 2003). According to the research of DeVries et al., the
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Figure 6. Aftershock damage patterns of the Wenchuan earthquake at multiple timescales. Panels (a) through (d) show the aftershock damage
pattern within 1, 30, 90 and 180 d, respectively. The blue dots indicate the actual location of aftershocks at the corresponding timescale.

Coulomb fracture stress change is an inadequate explanation
for aftershocks, and the relationship between the positive and
negative values of stress change and the triggering of after-
shocks requires further exploration. DeVries et al. modeled
the relationship between stress change and aftershock trig-
gering by training a neural network (DeVries et al., 2018).
The variation in Coulomb fracture stress depends on the ge-
ometric properties and coseismic dislocations of the source
fault (King et al., 1994; Zhu and Wen, 2009). Therefore, the
change value of the stress tensor, which is closely related to
the dislocation of the same earthquake, can be used as the
aftershock variable to build the model.

In addition, Meade et al. tested many stress-related in-
dicators in 2017 to explain the influence of the coseismic
stress field of the main earthquake on the location of after-
shocks. Their results show that the sum of the absolute val-

ues of the six independent components of the stress tensor,
the von Mises yield criterion and the maximum shear stress
produce the best interpretation. These variables can be ob-
tained by the combination of the absolute values of the six
independent components of the stress tensor and the negative
values of the absolute values. Therefore, these variables are
also used as the network input (Meade et al., 2017; Mignan
and Broccardo, 2019). The input components are expressed
as |σxx |,

∣∣σxy∣∣, |σxz|, ∣∣σyy∣∣, ∣∣σyz∣∣, |σzz|, −|σxx |, − ∣∣σxy∣∣,
−|σxz|, −

∣∣σyy∣∣, − ∣∣σyz∣∣ and −|σzz|. The dimension of the
network output layer is 1, and the output value is the relative
probability of aftershocks in each cell, which is between 0
and 1. The dropout layer is also set after each hidden layer.
The dropout layer is set to alleviate the occurrence of over-
fitting in the model training process, which can have a regu-
larization effect. In addition, the activation function of each
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Figure 7. Aftershock hysteresis effect of the Wenchuan earthquake.
The aftershock hysteresis effect can be observed by combining
the aftershock patterns of the Wenchuan earthquake at different
timescales. The blue dots indicate the locations of the actual after-
shocks over 1 year.

hidden layer in the network is a ReLU (rectified linear acti-
vation) function, and the optimizer is Adadelta. The activa-
tion function of the output layer is a sigmoid function, which
maps variables between 0 and 1 (Fig. 1). Five scales are an-
alyzed in this paper. Five neural networks are constructed to
train five submodels. Each submodel is independent from the
others and does not affect the others.

2.2.3 Model evaluation metric

The ROC (receiver operating characteristic) curve and the
AUC (area under curve) are used to evaluate the model. The
ROC considers the results obtained under a variety of differ-
ent criteria. In this article, the ROC curve can reflect the pre-
diction results of the model under multiple thresholds. The
AUC is defined as the area enclosed by the coordinate axis
under the ROC curve, and the value of the area cannot be
greater than 1. Because the ROC curve is generally located
above the straight line y = x, the AUC value range is be-
tween 0.5 and 1. Based on the AUC value, we can interpret
the accuracy of the classifier. When AUC= 1, the classifier
is essentially a perfect classifier, whereas when AUC = 0.5,
the classifier is making a random assessment, and the ob-
tained model is nonsensical. For the training samples in this
paper, there is a class imbalance between positive and nega-
tive samples. A characteristic of the ROC curve is that when
the distribution of positive and negative samples in the test set
changes, the ROC curve can remain unchanged. The closer
the ROC curve is to the y axis and y= 1, i.e., the higher the
AUC value of the classifier, the greater the classification ac-
curacy is. Generally, when the AUC is less than 0.6, the accu-

racy of the classifier is poor; when the AUC is less than 0.75,
the accuracy of the classifier is moderate; and when the AUC
is greater than 0.75, the accuracy of the classifier is good.
The output of the model in this paper is a probability value
between 0 and 1. When the ROC curve is used to evaluate the
model, it is conducted at five timescales, and the model under
each timescale is evaluated as a two-classification problem.

3 Results

3.1 Evaluation of the aftershock hysteresis model

The aftershock hysteresis model under multiple timescales is
obtained by using the neural network to train the constructed
training dataset. In this paper, five submodels are trained, and
the final hysteresis model is composed of five submodels.
The prediction result given by the model is the approximate
range of aftershocks, that is, the position of 5 km3 subcells
where aftershocks may occur. Each cell will have a relative
probability of aftershocks, which is between 0 and 1. Since
this probability value is less than 1 and greater than 0, it does
not necessarily mean that aftershocks will occur or that after-
shocks will definitely not occur. The output value of the neu-
ral network in each cell is binarized with a threshold value
of 0.5. A cell with a predicted value greater than 0.5 is as-
signed as 1, and a cell with a predicted value less than 0.5
is assigned as 0. At locations close to the mainshock, the
probability value predicted by the model is more likely to
be greater than the threshold 0.5 set in the article.

In this paper, the evaluation-method-based ROC curve is
used, and all possible thresholds are taken into account to
evaluate the model and physical model in the text. According
to the ROC curves of the two methods, the effect of the hys-
teresis model in the article may be poor under some thresh-
olds, but its AUC value is much greater than that of the phys-
ical model. Based on the trained aftershock hysteresis model,
the aftershock patterns are predicted for the Wenchuan earth-
quake at multiple timescales, and the ROC curves are ob-
tained for the different timescales. The AUC values of the
five timescales are all above 0.8, in both the training and val-
idation sets, and some are close to 0.9. The AUC values of
the training set are all higher than those of the validation set
for the different timescales. The neural network designed by
DeVries et al. (2018) is used for aftershock prediction. The
AUC value of the training model on the validation set is 0.849
(Fig. 2). In this paper, the AUC value of each submodel on
the validation set is similar to the research results of DeVries
et al. (2018). Therefore, the model achieves good prediction
results at different timescales.

For comparison, we forecast the aftershock location based
on the static Coulomb failure stress change. Considering the
influence of shear stress, normal stress and friction coeffi-
cient on the active fault plane, Coulomb failure stress change
(1CFS) can be expressed as
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Figure 8. Aftershock hysteresis effect of the Wenchuan earthquake in different depths. Panels (a) through (i) show the aftershock hysteresis
effect of the Wenchuan earthquake for depth sections of 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5 and 42.5 km, respectively.

1CFS=1τ +µ1σ,

where µ is the apparent friction coefficient, 1σ is the nor-
mal stress on the fault plane and 1τ is the shear stress in
the direction of fault slip. Based on previous studies, the fric-
tion coefficient in this paper is 0.4 (King et al., 1994; Wan
et al., 2004). Numerous studies have shown that aftershocks
will occur when 1CFS is greater than +0.01 MPa. In order
to compare and analyze the output of DNN, we need to trans-
form the 1CFS to 0–1. Similar to the last layer of DNN, the
variation function adopts a variant of the sigmoid function as
follows:

1CFS′ =
1

(1+ e−10(1CFS−0.01))
,

where 1CFS′ represents the Coulomb failure stress change
after sigmoid transformation. We know that the traditional

sigmoid function is similar to the jump function. In the anal-
ysis process of this paper, 0.01 MPa is the threshold value to
determine whether aftershocks are generated, so the param-
eter 0.01 in the formula is the translation coefficient; that is,
the traditional sigmoid function shifts 0.01 MPa to the right.
Parameter 10 is the zoom coefficient, which compresses the
sigmoid function horizontally to make its shape approach the
jump function as much as possible. When 1CFS is greater
than 0.01 MPa, 1CFS′ approaches 1 as much as possible,
and when 1CFS is less than 0.01 MPa, 1CFS′ approaches 0
as much as possible. Then we evaluated the results and cal-
culated the AUC value on each timescale by the ROC curve.
Compared with the results of the previous model, the AUC
results obtained by the method based on static Coulomb fail-
ure stress change are generally poor, which are no more than
0.6 (Fig. 3).
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Figure 9. Aftershocks distribution of the Tohoku earthquake. The
blue points in the figure are the projection positions of the after-
shocks within a depth of 50 km.

3.2 Case selection and data presentation

In order to verify the method and model in this article,
we selected two typical historical earthquake cases, i.e., the
Wenchuan earthquake and the Tohoku earthquake. These two
earthquake cases are not included in the data used for model
construction. They are characterized by a large magnitude
and a large number of aftershocks.

In the Tohoku earthquake case, there were 15 062 after-
shocks in the study area within 1 year after the mainshock
(Table 1). In the finite fault model used in this article, the
focal depth is 20–25 km, and according to the depth distribu-
tion of aftershocks at multiple timescales, the number of af-
tershocks is the largest at the depth of 35–40 km (Fig. 4a). In
the Wenchuan earthquake case, there were 1455 aftershocks
in the study area within 1 year after the mainshock (Table 1).
In the finite fault model used in this paper, the focal depth
is 10–15 km. According to the depth distribution of after-
shocks at multiple timescales, the number of aftershocks is
the largest at 10–15 km depth. Aftershocks are not necessar-
ily distributed the most on the focal-depth surface (Fig. 4b).

3.3 Application of the model to the Wenchuan
earthquake

3.3.1 Aftershock hysteresis failure mode

According to the tectonic stress figure of the Wenchuan
earthquake, the Wenchuan earthquake was located in the

Table 1. The number of aftershocks of typical historical earthquakes
on multiple timescales.

1 d 30 d 90 d 180 d 365 d

Tohoku earthquake 1241 7642 10 984 13 002 15 062
Wenchuan earthquake 369 957 1180 1327 1455

Longmenshan area in the border mountains east of the
Qinghai–Tibetan Plateau. The geological structure in this
area is complex. The main Longmenshan fault zone is com-
posed of a series of roughly parallel thrust faults. It is divided
into a front mountain zone and a back mountain zone with
the Yingxiu–Beichuan central fault as the boundary. From
northwest to southeast, the main fault zone consists of the
back mountain fault, the central fault and the front mountain
fault. The main fault forming the Wenchuan earthquake is
the Yingxiu–Beichuan central fault. According to the beach
ball plot of the focal-mechanism solution in Fig. 5, the strong
aftershocks following the Wenchuan earthquake are mainly
related to reverse or thrust faults under the action of com-
pressive stress.

Based on the aftershock hysteresis model, the failure pat-
terns of aftershocks are predicted at different timescales, and
the section observation is conducted at a depth of 12.5 km
(essentially at the same depth as the source). Combined
with the focal-mechanism solution analysis of strong after-
shocks around the main fault zone, the aftershocks in this
area are mainly caused by the NW-trending and SE-trending
crustal compressive stress (Fig. 6). The expansion of the af-
tershock hysteresis pattern is observed, which is generally
distributed along the fault strike and extends along the trend
line of the main fault. Within 1 d after the main earthquake
at Wenchuan, there were aftershocks over a wide area. The
location of the aftershocks is distributed along the fault zone,
and the location of the aftershocks is basically distributed in
the geographical space predicted by the model.

Finally, the spatial results of the hysteresis effect of the
Wenchuan earthquake are obtained by synthesizing the dam-
age modes of the aftershocks at multiple timescales (Fig. 7).
The location of the aftershocks is basically along the main
fault, i.e., the Yingxiu–Beichuan central fault. The model
predicts that aftershocks are mainly distributed in the cities
of Chengdu, Mianyang, Deyang, Guangyuan and Ngawa,
which is consistent with the actual location of the after-
shocks. Over time, the area of aftershocks expands outwards,
and the rate decreases gradually. Using the main aftershock
sequence from the Wenchuan earthquake as an example,
the aftershock hysteresis patterns at different timescales are
similar, and the direction of outward expansion is basically
perpendicular to the distribution direction of the previous
timescale. Compared with the attenuation map of earthquake
intensity, the spatial distribution map of aftershock attenua-
tion can provide some reference for follow-up disaster pre-
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Figure 10. Aftershock damage patterns of the Tohoku earthquake at multiple timescales. Panels (a) through (d) show the aftershock damage
pattern of the Tohoku earthquake within 1, 30, 90 and 180 d, respectively. The blue dots indicate the actual location of aftershocks at the
corresponding timescale.

vention and mitigation work after a large earthquake. We can
further understand the attenuation law of aftershocks and at-
tempt to extend its time attenuation from a statistical perspec-
tive to a spatial perspective.

3.3.2 Aftershock hysteresis patterns at different depths

At different focal depths, the aftershock hysteresis patterns
will also change. The focal-depth range of the aftershocks an-
alyzed in this paper is 0–50 km. The aftershock hysteresis ef-
fect is analyzed by selecting sections with depths of 2.5, 7.5,
12.5, 17.5, 22.5, 27.5, 32.5, 37.5 and 42.5 km. Many previous
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studies have shown that the seismogenic layers in central and
western China are located in the middle and upper layers of
the crust at a depth of no more than 20 km (Zhao and Chen,
1995; Yang et al., 2003). The aftershocks with a focal depth
within 20 km are widely distributed (Fig. 8). When the fo-
cal depth exceeds 20 km, the area where the aftershocks are
generated suddenly decreases with increasing depth until no
aftershocks are observed. The focal depth of the largest af-
tershock distribution range is 12.5 km, which is in the same
range as the focal depth of the main earthquake. In the mid-
dle and upper layers of the earth’s crust, the shapes of the
aftershock hysteresis patterns are generally similar at differ-
ent timescales. Over time, the shape of the aftershock hys-
teresis pattern generally expands outward in a similar pattern
as the previous timescale. However, when the focal depth ex-
ceeds a certain value, the hysteresis pattern of the aftershocks
substantially changes. In this case, when the focal depth is
greater than 20 km, the area predicted for aftershocks signif-
icantly decreases, and the evolution of the hysteresis pattern
is also changed. Although the overall expansion direction is
consistent with the main fault, the pattern is less regular and
more random.

3.4 Application of the model to the Tohoku earthquake
in 2011

3.4.1 Aftershock hysteresis failure mode

Japan is located in the circum-Pacific seismic belt at the inter-
section of the Eurasian plate and the Pacific plate, which is an
area with a frequent occurrence of global earthquakes. Due to
the collision between the Pacific plate and the Eurasian plate,
the Pacific plate is subducted under the Eurasian plate, thus
forming the Japan Trench and the Japanese island arc. “OK”
represents the Okhotsk plate, which is part of the Eurasian
plate; “PA” refers to the Pacific plate; and “PS” refers to the
Philippine Sea plate, which is also part of the Eurasian plate
(Bird, 2003) (Fig. 9). The epicenter of the earthquake was
located in the subduction zone of the Japan Trench. The To-
hoku earthquake occurred due to the subduction of the Pa-
cific plate to the Eurasian plate. The aftershocks of the To-
hoku earthquake mainly occurred near the junction of the
Eurasian plate and the Pacific plate. They all belong to the
earthquake between the plates. The Japanese offshore plate
is mainly the Okhotsk plate, which is part of the Eurasian
plate. A total of 12 462 (about 82.7 %) aftershocks occurred
in the Okhotsk plate, and 2576 (about 17.1 %) aftershocks
occurred in the Pacific plate. Based on the aftershock hys-
teresis model, the aftershock patterns within 1, 30, 90, 180
and 365 d after the main earthquake are predicted, and the
section (22.5 km) at the focal depth of the main earthquake is
selected for analysis (Fig. 10). Using the Tohoku earthquake
in Japan as an example, the greatest expansion of the after-
shock distribution area is observed within 30 d. The shape of
the aftershock patterns are similar at all timescales. The af-

Figure 11. Aftershock hysteresis effect of the Tohoku earthquake
in Japan. The aftershock hysteresis effect can be observed by com-
bining the aftershock patterns of the Tohoku earthquake at different
timescales. The blue dots indicate the locations of the actual after-
shocks over 1 year.

tershock and the predicted aftershock patterns are distributed
in an approximately north–south direction along the Japan
Trench and plate boundary.

The aftershock hysteresis model of the Tohoku earthquake
in is obtained by synthesizing the aftershock patterns at dif-
ferent timescales (Fig. 11). Over time, the expansion rate of
the aftershock pattern gradually decreases, and the expan-
sion direction is basically perpendicular to the aftershock pat-
tern at the previous scale. Most of the aftershocks of this
earthquake occurred in the eastern Sea of Japan, and the
area of concentrated terrestrial aftershocks was located in
Fukushima.

3.4.2 Aftershock hysteresis patterns at different depths

Similar to the Wenchuan earthquake, the aftershock hystere-
sis pattern of the Tohoku earthquake changes with the change
in depth. The magnitude of the earthquake was very large,
reaching over Mw9. The main earthquake has a great im-
pact on the surrounding area, and the crust, which stores con-
siderable energy, then releases it in the form of aftershocks.
The predicted expansion direction of the aftershock model is
generally consistent with that of the plate boundary and the
Japan Trench. In this study, the maximum analysis depth is
50 km. Using the depth section of the mainshock source as
the center, the actual aftershock pattern does not change sig-
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Figure 12. Aftershock hysteresis effect of the Tohoku earthquake at different depths. Panels (a) through (i) show the aftershock hysteresis
effect of the Tohoku earthquake for depth sections of 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5 and 42.5 km, respectively.

nificantly when the depth change is small. This may be due to
the large magnitude of the earthquake. The area of the actual
aftershock pattern is reduced at a depth of 42.5 km. However,
the location of the aftershocks is still widely distributed. The
expansion of the aftershock pattern also changes beginning
at a depth of 27.5 km. The general direction of distribution is
along the trench, and some areas begin to expand vertically
along the trench (Fig. 12).

4 Discussion

4.1 Aftershock hysteresis effect

The modified Omori formula is n(t)=K(t + c)−p, where
n(t) is the aftershock frequency per unit time, and as t in-
creases, n(t) will decrease correspondingly to describe the
time attenuation characteristics of aftershocks. In order to
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Figure 13. The modified Omori formula aftershock attenuation
curve of the Tohoku earthquake.

analyze the model results better, we use the modified Omori
formula to analyze the above two earthquake cases. Accord-
ing to the modified Omori formula, the aftershock attenua-
tion of the two earthquake cases of the Tohoku earthquake
and Wenchuan earthquake are analyzed, and the three coeffi-
cients in the attenuation formula of the two earthquake cases
are determined, namely c, K and p. Based on the modified
Omori formula, aftershock attenuation maps of two earth-
quake cases can be obtained (Figs. 13 and 14). The modi-
fied Omori formula reflects the attenuation trend of the oc-
currence rate of aftershocks over time. The attenuation equa-
tions and derivative functions of the two earthquake cases are
shown in Table 2. The revised Omori formula can reflect the
attenuation of the aftershock event rate over time. In addi-
tion, only the quantitative attenuation formula cannot give a
good visualization of the attenuation process in space. From
the derivative functions of the attenuation formulas of the two
earthquake cases, as time increases, the absolute values of the
slope of the derivative functions become smaller and smaller.
If the aftershock attenuation rate of each earthquake case is
calculated on all timescales, it can be found that it gradually
decreases as the timescale increases.

Compared with the Omori formula, the aftershock hystere-
sis effect analyzed in this paper can be reflected by the cor-
relation between the change of timescale and the region of
aftershocks. Based on the discussion of focal-depth sections
of the main earthquake, within 1 d after the Wenchuan earth-
quake, the number of subunits with aftershocks is 213; within
30 d, it is 386, representing an increase of 81.6 %; within
90 d, it is 432, representing an increase of 11.9 %; within
180 d, it is 466, representing an increase of 7.9 %; and within
365 d, it is 488, representing an increase of 4.7 %. Within 1 d
after the Tohoku earthquake, the number of subunits with af-
tershocks was 137; within 30 d, it was 595, representing an
increase of 334 %; within 90 d, it was 724, representing an
increase of 21.7 %; within 180 d, it was 799, representing an

Figure 14. The modified Omori formula aftershock attenuation
curve of the Wenchuan earthquake.

increase of 10.4 %; and within 365 d, it was 856, represent-
ing an increase of 7.1 %. The aftershock pattern predicted
by the model expands over time, but the expansion speed
of the aftershock pattern also gradually decreases. The rate
of expansion is most rapid 30 d after the earthquake. After
30 d, the speed decreases significantly from 30 to 90 d. The
aftershock pattern of the Wenchuan earthquake expanded at
a speed of 28.7 units d−1 within 30 d after the earthquake and
then rapidly dropped to 7.8 units d−1. The aftershock pat-
tern of the Tohoku earthquake in Japan expanded at a rate
of 38.6 units d−1 within 30 d after the earthquake and then
dropped rapidly to 7.3 units d−1. According to the correla-
tion curve in Figs. 15 and 16, the aftershock hysteresis effect
is reflected by the expansion pattern of the aftershocks. Com-
bined with the comprehensive analysis of the previous two
earthquake cases, the expansion rate of the aftershock hys-
teresis effect is v ∝ n(t)∝ 1

t
. Unlike previous research on the

attenuation law of aftershocks based on statistics (Narteau
et al., 2005; Nanjo et al., 2007), this paper starts from an-
other perspective, namely, spatial distribution and returns to
the discussion of the attenuation law of aftershock spatial dis-
tribution.

Finally, a supplementary explanation is given to the phe-
nomenon that the area predicted by the model is larger than
the actual aftershock location. The prediction results of the
hysteresis model are the likely locations of aftershocks at dif-
ferent timescales after the mainshock. At each location, the
predicted value is a number between 0 and 1, which repre-
sents the probability of aftershocks that may occur at that
location. We take the prediction threshold as 0.5 and think
that when the prediction value is greater than 0.5, an earth-
quake is more likely to occur in the subcell with a volume
of 5 km3. In fact, when the predicted value is less than 0.5,
there is also the possibility of aftershocks, but this possibility
is relatively small. For the prediction model, if the threshold
increases, the predicted coverage area of aftershocks is grad-
ually reduced, but as the increase of threshold, the local area
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Table 2. Modified Omori formula and derived function of typical earthquake cases

Earthquake Modified Omori formula Derived function

Tohoku earthquake N(t)= 300(t + 0.42)−0.8 N ′(t)=−240(t + 0.42)−1.8

Wenchuan earthquake N(t)= 67.08(t + 0.21)−1.07 N ′(t)=−71.78(t + 0.21)−2.07

Figure 15. The curve of the aftershock hysteresis effect (actual aftershocks). Panel (a) shows the change in the number of cells with af-
tershocks at different timescales, and panel (b) shows the change in the growth rate of the number of cells with aftershocks at different
timescales.

prediction will also produce more errors and deviations. In
addition, if we focus on some aftershocks far away from the
fault, we will find that aftershocks are also likely to occur at
locations far away from the fault on multiple timescales, but
the density of aftershocks is relatively small at these loca-
tions. Therefore, if these sparsely distributed aftershocks are
taken into account, the predicted aftershock coverage area is
wider than the area where the aftershocks are concentrated
along the fault.

4.2 Comparative analysis of prediction models

The widely used temporal-magnitude earthquake generation
model (ETAS) was proposed by Ogata (Ogata, 1988). Later
on, he observed that the distribution of aftershock sequences
tended to be elliptic rather than circular. He established the
anisotropic aftershock attenuation function and took the nor-
mal distribution as the spatial distribution model of an af-
tershock (Ogata, 1998). It is a widely observed fact that
aftershocks usually occur on or near the fault of a main-
shock. However, the normal distribution model does not in-
clude the source mechanism information of the mainshock
when predicting the aftershock mode. Kagan et al. intro-
duced the anisotropy function of the spatial smooth core into
long-term earthquake prediction and established the spatial-
smooth-core model, including the source mechanism infor-
mation of the mainshock (Kagan and Jackson, 1994). How-
ever, the above models ignore the internal relationship of the
relative distance or direction between the mainshock and the
aftershocks. Based on this, Wong and Schoenberg (2009)
proposed a joint distribution model to parameterize the af-

tershock location according to the distance and relative angle
between the mainshock and aftershocks (Wong and Schoen-
berg, 2009). In the prediction process of the above models,
the epicenter of the mainshock is used as a point source for
analysis. Actually, the distribution of the fault plane of the
mainshock should be fully considered. Based on the finite
fault model, the distribution information of the main fault is
considered in the paper. At the same time, the relative po-
sition and direction between the mainshock and aftershocks
have been considered in the process of calculating the vari-
ation of stress tensor by using the Okada dislocation theory.
Therefore, in the process of model training and learning, the
relative-position relation is also identified. Compared with
the static Coulomb failure stress change method, the after-
shock hysteresis model has a better prediction effect.

In the previous comparison of the two methods in this ar-
ticle, the subcell location where the aftershock was located
was used for evaluation, and the subcells with aftershocks
were marked. To further prove the validity of the model,
the actual location of the aftershock event is further used
instead of the subcell location, and the threshold is set to
0.5. The prediction results were verified on the focal depth
of the two earthquake cases to compare the effects of the
aftershock hysteresis model and the Coulomb failure stress
change method. The evaluation results of the aftershock hys-
teresis model are as follows: 97.6 % of the Wenchuan earth-
quake aftershocks fall in the area with the predicted value
greater than 0.5, and 96 % of the Tohoku earthquake after-
shocks fall within the area with the predicted value greater
than 0.5. The evaluation results based on the Coulomb failure
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Figure 16. The curve of the aftershock hysteresis effect (predicted aftershock pattern). Panel (a) shows the number of cells with aftershocks
predicted at different timescales, and panel (b) shows the increment of cells with aftershocks at each timescale.

Figure 17. The hysteresis model prediction result and the1CFS prediction result of the Wenchuan earthquake. Panel (a) shows the hysteresis
model prediction result, and panel (b) shows the 1CFS prediction result.

stress change method are as follows: 87.3 % of the Wenchuan
earthquake aftershocks fall in the area with a predicted value
greater than 0.5, and 45.3 % of the Tohoku earthquake after-
shocks fall within the area with a predicted value greater than
0.5 (Figs. 17 and 18). Therefore, if the evaluation is made
from the specific location of the aftershock event, the pre-
diction result of the constructed model is still better than the
result based on the Coulomb failure stress change method.

In addition, the model is a six-layer neural network, which
is a black box model. Compared with the traditional statis-
tical model or physical model, is the deep learning model
more complex? We think this complexity is relative. In fact,
the starting point of the traditional model and of the model
in this paper are similar. They are all based on data, trying
to find a relationship between some basic physical quantities
and aftershocks. The complexity of traditional models lies
in the process of finding such a connection. The complex-

ity of the deep learning model lies in its seemingly complex
structure. The complex structure will lead to the increase of
the number of internal variables to be learned, and the rapid
computing ability of today’s computers can solve this prob-
lem, thus reducing man power and time-consuming work. In
addition, the deep learning model is a data-driven method. It
will be more convenient than the traditional model when the
dataset or the amount of data changes greatly or the model
needs to be adjusted.

5 Conclusions

In this paper, based on the criterion of correlation between af-
tershocks and stress changes caused by the main earthquakes,
a deep neural network is trained using the SRCMOD finite
fault data and the ISC earthquake catalogue and is used to
construct an aftershock hysteresis model. Using the main af-
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Figure 18. The hysteresis model prediction result and the 1CFS prediction result of the Tohoku earthquake. Panel (a) shows the hysteresis
model prediction result, and panel (b) shows the 1CFS prediction result.

tershock sequences of the Wenchuan and the Tohoku earth-
quakes as examples, the characteristics of the aftershock hys-
teresis effect in plane space and at different depths are then
analyzed. The main contributions are as follows:

1. The trained model of aftershock hysteresis is accu-
rate. It can predict the aftershock patterns at multiple
timescales after a large earthquake and produce a spa-
tial distribution map of the aftershock hysteresis effect.
Compared with static Coulomb failure stress change,
this model is more effective.

2. Compared with the traditional aftershock spatial analy-
sis method, the model fully considers the distribution of
actual faults in the prediction of an aftershock pattern,
instead of treating the earthquake as a point source. In
the analysis of the model, the relative-position informa-
tion between the mainshock and aftershocks has been
included.

3. The expansion rate of the aftershock patterns changes
over time, i.e., v ∝ n(t)∝ 1

t
. In the middle and upper

layers of the crust, the shape of the aftershock pattern
is generally consistent, and the expansion direction is
typically perpendicular to the direction of distribution
of the previous timescale.

4. According to the prediction results of the model, the af-
tershock patterns at all timescales are roughly similar

and anisotropic. The distribution law of aftershock hys-
teresis effect will change with the increase of the depth.

In the analysis of each aftershock sequence, we only consider
the influence of the main earthquake fault zone. If we com-
prehensively consider the stress field superposition of multi-
ple or all faults in the analysis area of each earthquake case,
the prediction of the aftershock pattern will be more accu-
rate. In addition, we focus on the location of the aftershocks
and will further explore and study aftershocks from the per-
spectives of magnitude and energy in the future.
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