Articles | Volume 20, issue 11
Nat. Hazards Earth Syst. Sci., 20, 2889–2903, 2020
https://doi.org/10.5194/nhess-20-2889-2020
Nat. Hazards Earth Syst. Sci., 20, 2889–2903, 2020
https://doi.org/10.5194/nhess-20-2889-2020

Research article 03 Nov 2020

Research article | 03 Nov 2020

Macrozonation of seismic transient and permanent ground deformation of Iran

Saeideh Farahani et al.

Related subject area

Earthquake Hazards
Fault network reconstruction using agglomerative clustering: applications to southern Californian seismicity
Yavor Kamer, Guy Ouillon, and Didier Sornette
Nat. Hazards Earth Syst. Sci., 20, 3611–3625, https://doi.org/10.5194/nhess-20-3611-2020,https://doi.org/10.5194/nhess-20-3611-2020, 2020
Short summary
Style of faulting of expected earthquakes in Italy as an input for seismic hazard modeling
Silvia Pondrelli, Francesco Visini, Andrea Rovida, Vera D'Amico, Bruno Pace, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020,https://doi.org/10.5194/nhess-20-3577-2020, 2020
Short summary
The utility of earth science information in post-earthquake land-use decision-making: the 2010–2011 Canterbury earthquake sequence in Aotearoa New Zealand
Mark C. Quigley, Wendy Saunders, Chris Massey, Russ Van Dissen, Pilar Villamor, Helen Jack, and Nicola Litchfield
Nat. Hazards Earth Syst. Sci., 20, 3361–3385, https://doi.org/10.5194/nhess-20-3361-2020,https://doi.org/10.5194/nhess-20-3361-2020, 2020
Short summary
Spatiotemporal changes of seismicity rate during earthquakes
Chieh-Hung Chen, Yang-Yi Sun, Strong Wen, Peng Han, Li-Ching Lin, Huaizhong Yu, Xuemin Zhang, Yongxin Gao, Chi-Chia Tang, Cheng-Horng Lin, and Jann-Yenq Liu
Nat. Hazards Earth Syst. Sci., 20, 3333–3341, https://doi.org/10.5194/nhess-20-3333-2020,https://doi.org/10.5194/nhess-20-3333-2020, 2020
Short summary
Deep learning of the aftershock hysteresis effect based on the elastic dislocation theory
Jin Chen, Hong Tang, and Wenkai Chen
Nat. Hazards Earth Syst. Sci., 20, 3117–3134, https://doi.org/10.5194/nhess-20-3117-2020,https://doi.org/10.5194/nhess-20-3117-2020, 2020
Short summary

Cited articles

Adib, A., and Afzal, P.: Landslide Hazard Zonation And Risk Analysis In Goloord Region (North Of Iran) Using AHP Method, in: International Multidisciplinary Scientific GeoConference, SGEM – Surveying Geology & mining Ecology Management, Bulgaria, 18, 449–456, 2018. 
Aghda, S. F. and Bagheri, V.: Evaluation of earthquake-induced landslides hazard zonation methods: a case study of Sarein, Iran, earthquake (1997), Arab. J. Geosci., 8, 7207–7227, 2015. 
Akbarimehr, M., Motagh, M., and Haghshenas-Haghighi, M.: Slope stability assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated using InSAR and GPS observations, Remote Sens., 5, 3681–3700, 2013. 
Alavi, M.: Tectonics of the Zagros orogenic belt of Iran: new data and interpretations, Tectonophysics, 229, 211–238, 1994. 
Allen, T. I. and Wald, D. J.: Topographic slope as a proxy for seismic site-conditions (VS30) and amplification around the globe, US Geological Survey 2331-1258, US Geological Survey, USA, 2007. 
Download
Short summary
Iran is located on the Alpide earthquake belt, in the active collision zone between the Eurasian and Arabian plates. Due to the rapid demands for new lifelines, a risk assessment should be performed to reduce the probable damage in advance. In this study, a precise GIS-based map is proposed by employing the HAZUS methodology.
Altmetrics
Final-revised paper
Preprint