Articles | Volume 20, issue 6
https://doi.org/10.5194/nhess-20-1833-2020
https://doi.org/10.5194/nhess-20-1833-2020
Research article
 | 
29 Jun 2020
Research article |  | 29 Jun 2020

Assessing the annual risk of vehicles being hit by a rainfall-induced landslide: a case study on Kennedy Road in Wan Chai, Hong Kong

Meng Lu, Jie Zhang, Lulu Zhang, and Limin Zhang

Related authors

Variation of sediment supply by periglacial debris flows at Zelunglung in the eastern syntaxis of Himalayas since the 1950 Assam Earthquake
Kaiheng Hu, Hao Li, Shuang Liu, Li Wei, Xiaopeng Zhang, Limin Zhang, Bo Zhang, and Manish Raj Gouli
EGUsphere, https://doi.org/10.5194/egusphere-2024-312,https://doi.org/10.5194/egusphere-2024-312, 2024
Short summary
EDDA 2.0: integrated simulation of debris flow initiation and dynamics considering two initiation mechanisms
Ping Shen, Limin Zhang, Hongxin Chen, and Ruilin Fan
Geosci. Model Dev., 11, 2841–2856, https://doi.org/10.5194/gmd-11-2841-2018,https://doi.org/10.5194/gmd-11-2841-2018, 2018
Short summary
Characterizing the spatial variations and correlations of large rainstorms for landslide study
Liang Gao, Limin Zhang, and Mengqian Lu
Hydrol. Earth Syst. Sci., 21, 4573–4589, https://doi.org/10.5194/hess-21-4573-2017,https://doi.org/10.5194/hess-21-4573-2017, 2017
Short summary
Spatial characteristics of severe storms in Hong Kong
L. Gao and L. M. Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-6981-2015,https://doi.org/10.5194/hessd-12-6981-2015, 2015
Manuscript not accepted for further review
Short summary
EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes
H. X. Chen and L. M. Zhang
Geosci. Model Dev., 8, 829–844, https://doi.org/10.5194/gmd-8-829-2015,https://doi.org/10.5194/gmd-8-829-2015, 2015
Short summary

Related subject area

Landslides and Debris Flows Hazards
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024,https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024,https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary

Cited articles

Bíl, M., Vodák, R., Kubeček, J., Bílová, M., and Sedoník, J.: Evaluating road network damage caused by natural disasters in the czech republic between 1997 and 2010, Transport. Res. A-Pol., 80, 90–103, 2015. 
Brand, E. W.: Landslides in Southeast Asia: A State-of-the-art Report, in: vol. 1, Proceedings of the 4th International Symposium on Landslides, 16–21 September 1984, Toronto, Canada, 17–59, 1984. 
Budetta, P.: Assessment of rockfall risk along roads, Nat. Hazards Earth Syst. Sci., 4, 71–81, https://doi.org/10.5194/nhess-4-71-2004, 2004. 
Budetta, P. and Riso, R. D.: The mobility of some debris flows in pyroclastic deposits of the northwestern Campanian region (southern Italy), B. Eng. Geol. Environ., 63, 293–302, 2004. 
Bunce, C., Cruden, D., and Morgenstern, N.: Assessment of the hazard from rock fall on a highway, Can. Geotech. J., 34, 344–356, 1997. 
Download
Short summary
When analyzing the risk of landslides hitting moving vehicles, the spacing between vehicles and the vehicle types on the highway can be highly uncertain. Using a highway slope case study in Hong Kong, this paper presents a method to assess the risk of moving vehicles being hit by a rainfall-induced landslide; the method allows for the investigation of the possible number of different types of vehicles hit by the landslide and provides a new guideline for highway slope design.
Altmetrics
Final-revised paper
Preprint