Articles | Volume 20, issue 6
https://doi.org/10.5194/nhess-20-1617-2020
https://doi.org/10.5194/nhess-20-1617-2020
Research article
 | 
05 Jun 2020
Research article |  | 05 Jun 2020

Estimation of tropical cyclone wind hazards in coastal regions of China

Genshen Fang, Lin Zhao, Shuyang Cao, Ledong Zhu, and Yaojun Ge

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024,https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024,https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024,https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Surprise floods: the role of our imagination in preparing for disasters
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024,https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024,https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary

Cited articles

Apsley, D. D.: Numerical Modeling of Neutral and Stably Stratified Flow and Dispersion in Complex Terrain, PhD Thesis, Faculty of Engineering, University of Surrey, Guildford, Surrey, UK, 1995. 
Arthur, W. C.: A statistical-parametric model of tropical cyclones for hazard assessment, Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-192, in review, 2019. 
ASCE STANDARD: ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, Virginia, USA, 2017. 
Batts, M. E., Russell, L. R., and Simiu, E.: Hurricane wind speeds in the United States, J. Struct. Div.-ASCE, 106, 2001–2016, 1980. 
Buildings Department: Code of Practice on Wind Effects in Hong Kong 2004, The Government of the Hong Kong Special Administrative Region, Hong Kong, 2004a. 
Download
Short summary
Coastal regions of China feature high population densities as well as flexible structures and are therefore vulnerable to tropical cyclone (TC) damage. A TC is a moving rotating storm with a small occurrence rate at a specific site. Wind anemometers are usually damaged during strong typhoon events, making the record of observed winds an unreliable predictor for design wind speed. This study uses the Monte Carlo simulation to investigate the typhoon wind hazards in coastal regions of China.
Altmetrics
Final-revised paper
Preprint