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Abstract. Coastal regions of China feature high popula-
tion densities as well as wind-sensitive structures and are
therefore vulnerable to tropical cyclones (TCs) with approx-
imately six to eight landfalls annually. This study predicts
TC wind hazard curves in terms of design wind speed versus
return periods for major coastal cities of China to facilitate
TC-wind-resistant design and disaster mitigation as well as
insurance-related risk assessment. The 10 min wind informa-
tion provided by the Japan Meteorological Agency (JMA)
from 1977 to 2015 is employed to rebuild TC wind field pa-
rameters (radius of maximum winds Rmax,s and shape pa-
rameter of radial pressure profile Bs) at surface level using
a height-resolving boundary layer model. These parameters
will be documented to develop an improved JMA dataset.
The probabilistic behaviors of historical tracks and wind field
parameters at the first time step within a 500 km radius subre-
gion centered at a site of interest are examined to determine
preferable probability distribution models before stochasti-
cally generating correlated genesis parameters utilizing the
Cholesky decomposition method. Recursive models are ap-
plied for translation speed,Rmax,s and Bs during the TC track
and wind field simulations. Site-specific TC wind hazards are
studied using 10 000-year Monte Carlo simulations and com-
pared with code suggestions as well as other studies. The re-
sulting estimated wind speeds for northern cities (Ningbo and
Wenzhou) under a TC climate are higher than code recom-
mendations, while those for southern cities (Zhanjiang and
Haikou) are lower. Other cities show a satisfactory agree-
ment with code provisions at the height of 10 m. Some po-
tential reasons for these findings are discussed to emphasize

the importance of independently developing hazard curves of
TC winds.

1 Introduction

Tropical cyclones (TCs) are rapidly rotating storms charac-
terized by strong winds, heavy rain, high storm surges and
even devastating tornadoes. They inflict tremendous damage
on property and considerable loss of human life and pose
threats to flexible structures in coastal areas (Done et al.,
2020). In the western Pacific basin, TCs form throughout the
year. It is the most active TC basin in the world, producing
more than 30 storms annually, accounting for almost one-
third of the global total (Knapp et al., 2010; Yang and Chen,
2019). The southeast China coastal area has long coastlines
and numerous islands, which feature high population densi-
ties as well as many wind-sensitive structures including high-
rise buildings and long-span bridges (Tao et al., 2018; Tao
and Wang, 2019). It is a TC-prone region, with an average of
six to eight TC landfalls per year. It has been estimated that
more than 1600 fatalities and CNY 80 billion of direct eco-
nomic loss can be attributed to TCs and subsequent floods
in 2006 alone in coastal regions of China (Liu et al., 2009),
demonstrating that this area is extremely vulnerable to TC
damage. Accordingly, it is an issue of great importance to
analyze TC wind hazards to support wind-resistant design as
well as disaster mitigation and insurance-related risk assess-
ment.
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Unlike non-TC winds such as monsoons, TCs are mov-
ing rotating storms with a small occurrence rate at a specific
location. Moreover, wind anemometers are usually vulner-
able to damage during strong typhoon events, making the
record of historically observed winds an unreliable predic-
tor for design wind speed based on statistical distribution
models. The largest yearly wind speed dataset derived from
both non-TC and TC winds is considered to be not well be-
haved because the contribution of each wind speed to de-
scribe the probabilistic behavior of the extreme winds is in-
homogeneous (Simiu and Scanlan, 1996). An alternative ap-
proach, called stochastic simulation or Monte Carlo simu-
lation, introduced in the 1970s by some pioneering studies
(e.g., Russell and Schueller, 1974; Batts et al., 1980), has
been widely adopted to stochastically generate a large num-
ber of wind speed samples using historical data-based prob-
ability distributions of several key field parameters. In order
to achieve TC hazard assessment by Monte Carlo simula-
tion, the circular subregion method (CSM) was developed by
Georgiou (1985) and later employed by Vickery and Twis-
dale (1995), Xiao et al. (2011), and Li and Hong (2015). The
CSM uses the circled historical track information centered
on the site of interest to characterize the statistics of some
TC parameters before conducting storm simulation and wind
speed prediction. This is a site-specific approach. The state-
of-the-art empirical full-track technique was first developed
by Vickery et al. (2000b) and followed by FEMA (Federal
Emergency Management Agency, 2015) as well as the ASCE
7-16 loads standard (ASCE STANDARD, 2017) and Li and
Hong (2016), which simulates the TC tracks as well as the
intensity in terms of a relative intensity index from genesis
to lysis, facilitating the TC risk assessments for the whole
coastal region. Although the full-track model is preferable
for modeling the TC hazards along the whole coastline, the
CSM is widely used for some site-specific TC risk studies
and can be easily updated and improved by supplementary
observations. This is also adopted in this study.

During TC wind estimation, the parametric TC wind field
model has been commonly adopted and has been continu-
ously improved over the past several decades based on the
ever increasing number of observation data. This model is
considered to be more economical with time and even more
accurate in predicting TC wind velocity compared with some
meteorological models. Some pioneering studies on paramet-
ric TC wind field modeling have been performed since the
1980s (Batts et al., 1980; Georgiou, 1985; Vickery et al.,
2000a, 2009; Nederhoff et al., 2019; Arthur, 2019). These
studies employed a gradient wind speed model solved by the
atmospheric balance equation of a stationary storm coupled
with a depth-averaged (Vickery et al., 2000a) or a semiempir-
ical observation-based boundary layer vertical profile model
(Vickery et al., 2009). In recent years, with advances in com-
puting capacity, another more sophisticated physical model
has received intensive attention. This is the so-called height-
resolving model, in which the boundary layer wind field is

solved semianalytically based on 3D Navier–Stokes equa-
tions (Meng et al., 1995; Kepert, 2010; Snaiki and Wu, 2017;
Fang et al., 2018a). This is of great help in interpreting the
underlying physics of the TC boundary layer.

Conventionally, wind field parameters such as the radius
of maximum wind speed Rmax and shape parameter of radial
pressure profile B were statistically modeled as functions of
surface central pressure deficit, TC eye center latitude and
sea surface temperature (Vickery et al., 2000b; Vickery and
Wadhera, 2008; Xiao et al., 2011; Zhao et al., 2013; FEMA,
2015; Fang et al., 2018b). This facilitated TC-related hazard
assessment by carrying out a large number of scenarios us-
ing a Monte Carlo algorithm since the historical track infor-
mation is readily available in each best-track dataset. How-
ever, the correlations between these parameters were not very
strong, as shown by Vickery et al. (2000b), with all coeffi-
cients of determination less than 0.30. The auto correlations
of Rmax as well as B between different time steps in these
studies were usually propagated from surface pressure deficit
and sea surface temperature, which were integrated with a
term of relative intensity and modeled by a recursive model.
Moreover, the cross-adoption of these parameter models in
different basins could cause some undesired results since
they are always region dependent due to differences among
macroscopic atmospheric thermodynamic environments.

In this study, wind field information of a 10 min time du-
ration provided by the best-track dataset of the Japan Meteo-
rological Agency (JMA) was adopted to develop a dataset
of Rmax and B at surface level (Rmax,s and Bs) using a
height-resolving wind field model. Then the TC design wind
speed was predicted by following the procedures illustrated
in Fig. 1. Based on the historical track information extracted
from the JMA dataset within a circular subregion with a ra-
dius of 500 km centered at the site of interest, the prefer-
able probabilistic distributions of six genesis parameters at
the first time step, the position of the first track dot (α0),
heading direction (θT0), central pressure difference (1P0),
translation speed (VT0), Rmax,s0 and Bs0 were determined be-
fore performing the correlation analyses. Site-specific recur-
sive models of translation speed as well as of Rmax,s0 and
Bs0 were developed using the track information within the
circular subregion. Finally, 10 000-year Monte Carlo simula-
tions were conducted to investigate the TC wind hazard for
10 coastal cities of China.

2 Statistical characteristics of TC tracks

2.1 JMA best-track dataset

In the western Pacific basin (0–60◦ N, 100–180◦ E), the
Japan Meteorological Agency (JMA) serves as the Re-
gional Specialized Meteorological Center (RSMC Tokyo-
Typhoon Center, 2018), as specified by the World Mete-
orological Organization (WMO). As such, it is responsi-

Nat. Hazards Earth Syst. Sci., 20, 1617–1637, 2020 https://doi.org/10.5194/nhess-20-1617-2020



G. Fang et al.: Estimation of tropical cyclone wind hazards in coastal regions of China 1619

Figure 1. Overview of circular subregion method used in this study.

ble for forecasting, naming, tracking, distributing warnings
of and issuing advisories on TCs. Accordingly, the JMA
has been publicly releasing best-track datasets of TCs in
the western Pacific basin since 1951. These datasets con-
tain not only some basic track information of TCs in terms
of latitude and longitude of TC eye centers as well as
dates and times but also some wind speed information in-
cluding minimum surface central pressure (Pcs), maximum
sustained surface wind speed (Vmax,s) and 50- or 30-knot
(1 knot= 0.514 m s−1) wind radii estimated from surface
observation, ASCAT observation and low-level cloud mo-
tion satellite images. Although some other organizations is-
sue their own track dataset of TCs for the western Pa-
cific basin (Ying et al., 2014), such as the China Mete-
orological Administration (CMA), Joint Typhoon Warning
Center (JTWC), Hong Kong Observatory (HKO) and Inter-
national Best Track Archive for Climate Stewardship (IB-
TrACS) project, there are some inconsistencies among these
datasets that should be carefully considered. In addition to
differences in TC track information and annual TC frequen-
cies, two typical TC intensity representations, i.e. Pcs and
Vmax,s, show inconsistency from agency to agency, as dis-
cussed by Song et al. (2010). Generally, a remarkable differ-
ence was found, i.e., that Vmax,s(JTWC) > Vmax,s(CMA) >
Vmax,s(JMA) and Pc(JTWC) < Pc(CMA) < Pc(JMA) when
TCs reach typhoon level, and this trend becomes apparent
along with storm intensification (Song et al., 2010). It could
be attributed to time interval differences since the JMA uses
10 min and the CMA uses 2 min, while the JTWC uses 1 min.
The differences among estimation techniques and algorithms
for determining Vmax,s and Pcs based on the Dvorak tech-
nique (Dvorak, 1984; Velden et al., 2006) with satellite cloud

images could also contribute to this inconsistency. However,
the 10 min time duration employed by the JMA is consistent
with most design codes or standards and is also suggested by
the WMO (Fang et al., 2019a). Furthermore, the 50-knot or
30-knot radii information provided by the JMA dataset is a
supplement of great importance in facilitating the estimation
of TC wind field parameters. As a result, the JMA best-track
dataset was selected as the basic information for the follow-
ing TC hazards studies in the southeast China region.

2.2 Statistical correlations

In order to examine the statistical characteristics of histor-
ical track information around a site of interest, track seg-
ments that intersect and are within a circular subregion en-
tered at the target location are usually extracted from the
best-track dataset. The size of the subregion directly affects
the data sampling as well as the final design wind speed pre-
diction (Georgiou, 1985; Xiao et al., 2011; Li and Hong,
2015). A suitable circle size should enable the TC tracks
and wind field parameters to be less sensitive and to cover
as many high-wind-speed samples as possible. Three radii,
500, 1000 and 250 km, were employed by Vickery and Twis-
dale (1995), Xiao et al. (2011), and Li and Hong (2015), re-
spectively. The use of 1000 km could overestimate the effects
of high winds on a site of interest since some extremely vi-
olent typhoons over distant sea would be circled and used to
model the central pressure before landfall. However, these
typhoons have little chance of maintaining an extremely
high intensity until landfall on mainland China. Based on
the JMA dataset from 1951 to 2015, only seven violent
typhoons (Pcs ≤ 935 hPa or Vmax,s ≥ 54 m s−1, 105 knots),
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Figure 2. Track segments within a circular region centered on Hong
Kong with a radius of 500 km.

Nina (195307), Wanda (195606), Grace (195819), Saomai
(200608), Hagupit (200814), Usagi (201319) and Ramma-
sun (201409) directly landed on mainland China. Moreover,
the largest Rmax,s0, illustrated in Figs. 8 and 16, range from
500 to 600 km if the size of subregion R = 500 km is em-
ployed. And as mentioned by Yuan et al. (2007), about 50 %
of the radii of historical storms associated with a wind speed
of 15.4 m s−1 range from 222 to 463 km and only 10 % are
larger than 555 km. In fact, we can show experimentally that
at the outer regions of a typhoon, 500 km or more away from
the storm center, there is only a slight influence on the spe-
cific region. Accordingly, R = 500 km, which is consistent
with Vickery and Twisdale (1995) and will be used in this
study, allows as many high wind speeds as possible to be
considered and avoids the overuse of some extremely violent
typhoons.

Taking the example of the Hong Kong region (centered
on 22.3186◦ N, 114.1678◦ E), which is severely affected by
TCs, 412 segments of track data within a circle of R =
500 km were captured from the JMA dataset (1951–2015), as
shown in Fig. 2. Although few TCs originate in this circular
region, they only reach the strongest level of a severe tropical
storm, with Pcs larger than 980 hPa belonging to a normal-
intensity storm. Their genesis locations are also close to the
circular boundary. Accordingly, all simulated tracks can be
assumed to originate from the circular boundary by consid-
ering the location distribution of historical tracks in terms of
origin angle α0, which is the direction relative to the site of
interest and clockwise positive from the north.

The annual storm rate (storms per year) is usually modeled
by negative binomial (Li and Hong, 2016) or Poisson (Xiao
et al., 2011; Li and Hong, 2015) distributions. However, the
mean of the storm genesis within the circular region around

Figure 3. CDF of annual storm rate.

Hong Kong is 6.339, which is larger than the variance of
2.280. It does not satisfy the prerequisite of the negative bi-
nomial distribution. The Poisson distribution was employed
to model the annual storm rate (λa), as shown in Fig. 3.
Based on the circular subregion method, the position of the
first track dot (α0) and its heading direction (θT0) determine
the location of the simulated track line, while the transla-
tion speed (VT0) is used to estimate the TC center location at
each time step. First values of the central pressure difference
(1P0) for each segment are applied for the TC intensity mod-
eling before landfall. Based on the statistical characteristics
of historical data, the probabilistic distributions of these four
parameters are fitted with several commonly used models us-
ing a maximum likelihood method before achieving the most
suitable choices by the K–S (Kolmogorov–Smirnov) distri-
bution test. The preferable distribution models, i.e., Weibull,
lognormal, bimodal normal and Burr type XII, for all gene-
sis parameters and their probability density functions (PDFs)
together with fitted coefficients are listed in Table 1. Corre-
spondingly, Fig. 4 compares the observed and modeled cu-
mulative distribution functions (CDFs) for these parameters.
The critical value of the K–S test for the historical data sam-
ple (n= 204) is 0.0952 at a 5 % significance level larger
than all the modeled results (values of k in Fig. 4), which
proves that we have enough evidence to simulate the virtual
TC tracks by adopting these distribution models. It notewor-
thy that all observed 1P and θT values within the circle of
interest are employed to model the distribution of 1P0 and
θT0 due to the inherent drawback of the circular subregion
method, which assumes for simplicity in the simulation that
1P remains unchanged before the storm’s landfall and θT is
a constant for each TC track. All information of 1P and θT
can be taken into account to some extent when it is applied
for modeling the distribution of 1P0 and θT0.
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Table 1. Distribution models and coefficients for TC track genesis parameters.

Parameter Model Probability density function (PDF) Coefficient
(Hong Kong)

λa Poisson f (x;λ)= λx

x!
e−λ, x = 0,1,2, . . .,∞ λ= 6.339

α0 Weibull f (x;k,γ )= k
γ

(
x
γ

)k−1
e−(x/γ )

k
, x ≥ 0 k = 3.134;

γ = 156.991

1P0 Lognormal f (x;µ,σ)= 1
xσ
√

2π
exp

{
−(lnx−µ)2

2σ 2

}
, x > 0 µ= 3.062;

σ = 0.576

θT0 Bimodal
normal

f (x;p,µ1,σ1,µ2,σ2)= p
1

σ1
√

2π
exp

{
−(x−µ1)

2

2σ 2
1

}
+(1−p) 1

σ2
√

2π
exp

{
−(x−µ2)

2

2σ 2
2

} p = 0.475;
µ1 =−73.282;
σ1 = 25.607;
µ2 = 0.002;
σ2 = 68.030

VT0 Burr type
XII

f (x;α,c,k)=
kc
α

(
x
α

)c−1(
1+
(
x
a

)c)k+1 ,

x > 0, α > 0, c > 0, k > 0

α = 16.151;
c = 2.540;
k = 15.028

Note that x denotes the argument or the input of the function.

Figure 4. CDFs of track genesis parameters: (a) α0; (b) 1P0; (c) θT0; (d) VT0.

2.3 Translation speed

The translation speed is used for determining the TC eye
locations at every time step and contributes slightly to the
TC wind speed field. Traditionally, it was randomly sampled
from a historical data-based probability distribution (Xiao et
al., 2011; Li and Hong, 2015). In reality, the translation speed
of the next step should be correlated with previous steps,
which is also the statistical basis for empirical full-track
modeling (Vickery et al., 2000b; Li and Hong, 2016). As the
real data (historical observations) illustrate in Fig. 6a–c, the
TC translation speed in the Hong Kong region is strongly
dependent on the previous two steps with correlation coef-
ficients of 0.7729 and 0.6281, while a weak correlation is
observed with the heading angles. Accordingly, given the ini-
tial storm forward speed, the new speed for next steps can be
modeled as a recursive formula

lnVT (i+ 1)= v1+ v2 · lnVT (i)+ v3 · lnVT (i− 1)

+ v4 · θT (i+ 1)+ εlnVT , (1)

in which vj (j = 1–4) are model coefficients obtained from
the least-squares regression analysis for historical data, VT(i)

is the translation speed at time step i, and εlnVT is the er-
ror term accounting for modeling differences between the re-
gression models and the real observations.

Based on the JMA dataset, the values of vj (j = 1–4) are
extracted as 0.3089, 0.6338, 0.1504 and 0.0001 for the circu-
lar Hong Kong region. Model errors, as illustrated in Fig. 5a,
are randomly distributed with a mean and standard deviation
of 0 and 0.38, respectively, which indicates that the model
is unbiased and has no obvious trend. These errors are then
statistically fitted with two types of probability distribution
models, i.e., normal distribution and t location-scale distri-
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Figure 5. Logarithmic modeling errors for translation speed: (a) scatterplot; (b) CDF.

Figure 6. Comparison of translation speed between model and real observations: (a–c) relations between lnVT(i), lnVT(i− 1), θ(i+ 1)
and lnVT(i+ 1) without errors; (d–f) relations between lnVT(i), lnVT(i− 1), θ(i+ 1) and lnVT(i+ 1) with errors; (ρreal is the correlation
coefficient for real observation data).

bution, which are formulated by the PDFs as

f (x;µ,σ)=
1

σ
√

2π
exp

{
−(x−µ)2

2σ 2

}
, (2)

f (x;µ,σ,ν)=
0
(
ν+1

2

)
σ
√
νπ0

(
ν
2

)[ν+ ( x−µσ )2
ν

]− ν+1
2

, (3)

in which µσ and ν are location, scale and shape parame-
ters. 0(·) is the gamma function. As shown in Fig. 5b, the
normal and t location-scale distributions are separately ap-
plied to fit the model errors using the maximum likelihood
method. Although the fitting results for both distributions
look good, the critical value of the K–S test for the obser-
vation data sample (n= 1060) is 0.0418 at the 5 % signif-
icance level, which is smaller than the K–S value fitted by
normal distribution (µ= 0, σ = 0.38) but larger than that fit-
ted by t location-scale distribution (µ= 0.0105, σ = 0.2686,

ν = 3.5871). Consequently, t location-scale distribution is
the preferable distribution for this case and will be used for
error sampling.

As shown in Fig. 6, the forward speeds for next steps
are modeled by Eq. (1) by introducing the historical track
information and compared with observations. The first row
(Fig. 6a–c) only considers the mean terms of Eq. (1), which
indicates that the forward speed significantly depends on the
previous steps using the linearly concentrated modeled mean
values. The modeled mean values are more scattered with
variation in translation speeds than with the previous second
step and heading directions, but they are still within the scat-
ter range of historical data. The second row, i.e., Fig. 6d–f,
introduces the error term (εlnVT ) modeled by t location-scale
distribution (Eq. 3) as mentioned before, which shows good
agreement with the JMA observations. That is, the transla-
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tion wind speeds can be well generated using the recursive
model of Eq. (1).

3 Wind field model

3.1 TC wind field solutions

A height-resolving TC boundary layer model developed by
Meng et al. (1995) and enhanced by Fang et al. (2018a) is
adopted in this study. It is also used to extract two typical
TC wind field parameters: radius of maximum wind speed
(Rmax,s) and radial pressure profile shape parameter (Bs) at
surface level. It is then used to estimate the TC wind speed.
Like most parametric TC wind field models, the surface pres-
sure distribution in the radial direction is always prescribed
and formulated by the Holland (1980) model, which is em-
pirically determined by the location parameter (Rmax,s) and
the shape parameter (Bs) to solve the air pressure term in
the Navier–Stokes equation. By extending the Holland pres-
sure model in the vertical direction using the gas state equa-
tion, accounting for the effects of temperature and moisture,
a height-resolving parametric TC pressure field model (Fang
et al., 2018a) is developed as

Prz =

{
Pcs+1Ps · exp

[
−

(
Rmax,s

r

)Bs
]}

·

(
1−

gkz

Rdθv

) 1
k

, (4)

in which subscripts r , z and s denote values at radius r , height
z and surface (nominal height 10 m), respectively. Prz = air
pressure at height z and radius r from the TC’s axis (hPa);
Pcs = surface central pressure (hPa); 1Ps = Pns−Pcs is the
central pressure difference (hPa), where Pns is the periph-
eral pressure (usually taken as the pressure associated with
the outermost closed isobar, 1013 hPa in this study); g =
9.8 N kg−1 is gravitational acceleration; Rd = 287 J (kg K)−1

is the specific gas constant of dry air; θv = virtual potential
temperature (K), and k = R/cp is the ratio of the gas con-
stant of moist air (R) to specific heat at constant pressure
(cp). After that, the wind speed in free atmospheric air can be
readily solved. The wind field solutions in the TC boundary
layer based on the linearization of Navier–Stokes equations
can be expressed as the sum of gradient wind speed (Vg) and
decay wind speeds (udvd) due to frictional effects. More de-
tails regarding the wind field solutions are available in Fang
et al. (2018a), which are omitted herein for brevity. One im-
provement is that the mixing length for determining the eddy
viscosity is no longer a linear equation with height, but an
upper bound l∞ of one-third of the boundary layer depth is
introduced as suggested by Apsley (1995). That is, the mix-
ing length is modeled as

lv =

[
1

κ (z+ z0)
+

1
l∞

]−1

, (5)

in which z0 is the equivalent roughness length (m) and κ ≈
0.4 is the von Kármán constant.

3.2 Wind field parameters

Two typical parameters,Rmax,s andBs, are always predefined
to model the surface pressure field before solving the wind
speed. The JMA best-track dataset is a preferable option for
TC hazard assessments in the western Pacific. Its wind speed
information in terms of maximum sustained surface wind
speed (Vmax,s) and 50 or 30-knot wind radii is of great help
in extracting Rmax,s and Bs. Although the JTWC also pro-
vides information on Vmax,s as well as the wind radii with re-
spect to 34, 50 and 64 knots and radius of maximum winds,
the time-averaging issue should be carefully taken into ac-
count. Moreover, this wind information in the JTWC dataset
is only available from 2001, while JMA documents extend
over a longer record from 1977, so they are more reliable for
developing the parent distribution for use in a Monte Carlo
simulation. Accordingly, Rmax,s and Bs used in this study
were extracted from the JMA best-track dataset (from 1977
to present) by using 50- or 30-knot radii information as well
as the maximum sustained surface wind speeds. These wind
data are applied to the aforementioned wind speed model to
derive optimal pairs of Rmax,s and Bs by minimizing errors
between the model and observations. For example, in Fig. 7,
three radial wind profiles modeled by the optimally fitted
Rmax,s and Bs closely match the JMA observation winds. It
is noteworthy that the fitted values of Bs are slightly higher
than traditional results, i.e., Vickery et al. (2000b) and Vick-
ery and Wadhera (2008), while those of Rmax,s are almost
unchanged. This is mainly attributed to the use of surface
wind data and an analytical wind field model in this study
(Fang et al., 2018a, 2019b). To fit a specific real wind speed,
a higher value of Bs is required due to the decrease in central
pressure difference from the surface to gradient layer when
compared to no consideration of height-resolving character-
istics of pressure field. Moreover, the analytical boundary
layer model disregards some nonlinear terms and neglects the
nonaxisymmetric effects (Fang et al., 2018a); a larger Bs is
usually fitted to compensate for the deficiency of the model.

Then, the values of Rmax,s0 and Bs0 associated with the
track genesis are determined from their probability distri-
butions considering correlations with other parameters. As
shown in Fig. 8, Rmax,s0 and Bs0 are modeled by lognor-
mal (µ= 4.822; σ = 0.571) and Burr type XII (α = 1.974,
c = 6.362, k = 2.001) distributions, respectively. The criti-
cal value of the K–S test (n= 161) at a 5 % significance level,
say 0.1059, is larger than the test statistics (k values in Fig. 8),
which fails to reject the null hypothesis. The correlations of
Rmax,s0 and Bs0 with other parameters are also introduced
and discussed in the next section.

By using the fitted results from the JMA dataset, the au-
tocorrelations of Rmax,s as well as Bs between different time
steps are simply taken into account using the recursive mod-
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Figure 7. Radial wind speed profiles (a) Saomai (9 August 2006, 15:00 UTC), (b) Parma (1 October 2009, 06:00 UTC) and (c) Rammasun
(18 July 2014, 12:00 UTC).

Figure 8. CDFs of wind field parameters at first step: (a) Rmax,s0;
(b) Bs0.

els as

lnRmax,s (i+ 1)= r1+ r2 · lnRmax,s (i)

+ r3 · lnRmax,s (i− 1)+ r4 ·1Ps (i+ 1)
+ εlnRmax,s , (6)

Bs (i+ 1)= b1+ b2 ·Bs (i)+ b3 ·Bs (i− 1)

+ b4 · lnRmax,s (i+ 1)+ b5 ·1Ps (i+ 1)
+ εBs , (7)

in which rj (j = 1–4) and bj (j = 1–5) are model coef-
ficients that can be fitted with the least-squares regression
method, lnRmax,s(i) and Bs(i) are values at time step i, and
εlnRmax and εBs are error terms accounting for modeling dif-
ferences between the models and observations. Using the
data within the Hong Kong region from 1977 to 2015, the
values of rj (j = 1–4) and bj (j = 1–5) are extracted as
0.7039, 0.8341, 0.0282 and −0.0016 and −0.6647, 0.5432,
−0.0112, 0.2950 and 0.0013. As illustrated in Fig. 9a and
c, there is no obvious bias or potential trend for the error
terms of lnRmax,s and Bs with a mean (µ) and standard de-
viation (σ ) of 0 and 0 and 0.29 and 0.20, respectively. Like
the translation speed modeled in Sect. 2.3, the error terms of
lnRmax,s and Bs are both fitted with normal and t location-
scale distributions (Fig. 9b, d). It can be noted that both dis-
tributions are good candidates for reconstructing the errors,

but t location-scale distribution performs better with smaller
K–S values (0.029 and 0.028 for εlnRmax,s and εBs ), while
the critical value of the K–S test for the observation data
sample (n= 799) is 0.0478 at a 5 % significance level. The
fitted parameters for εlnRmax,s and εBs with t location-scale
distribution are µ= 0.0107, σ = 0.1470 and ν = 2.0340 and
µ= 0.0054, σ = 0.1461 and ν = 4.1558, respectively.

As shown in Figs. 10–11, Rmax,s0 and Bs0 modeled by
Eqs. (6) and (7) using the JMA historical data for previous
steps are also compared with real observations for next steps.
Similarly, the first rows in these two figures ignore the error
terms, which are taken into account in the second rows. The
values of previous first steps are observed to dominate the
model results with linearly concentrated predictions, while
previous second steps and other parameters have weaker ef-
fects with more scattered model values. After introducing the
error terms, model values are able to successfully capture the
historical data.

3.3 Decay model

Once the storm makes landfall, the central pressure deficit
will witness a sudden decrease due to the cutoff of warm
and moist air from the underlying oceanic environment, after
which the TC intensity decay model or filling-rate model is
adopted. The modeling of storm decay is of great importance
for accurately estimating the TC design wind speed at the site
of interest since the maximum winds normally occur during
storm landfall in most cases. Georgiou (1985) modeled the
decay of central pressure as a function of distance after land-
fall for four regions of the United States based on historical
data. The other commonly used filling-rate model (Vickery,
2005) assumes that the central pressure deficit decays expo-
nentially with time after landfall in the form of

1P (t)=1P0 · exp(−at) , (8)

in which t is the time after landfall (hour),1P0 is the central
pressure difference at landfall (hPa), and a is called the decay
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Figure 9. Model errors for lnRmax,s and Bs: (a) scatterplot (εlnRmax,s ); (b) CDF (εlnRmax,s ); (c) scatterplot (εBs ); (d) CDF (εBs ).

Figure 10. Comparison of lnRmax,s between model and real observations: (a–c) relations between lnRmax,s(i), lnRmax,s(i−1),1P(i+1)
and lnRmax,s(i+ 1) without errors; (d–f) relations between lnRmax,s(i), lnRmax,s(i− 1), 1P(i+ 1) and lnRmax,s(i+ 1) with errors (ρreal
is the correlation coefficient for real observation data).
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Figure 11. Comparison of Bs between model and real observations: (a–d) relations between Bs(i), Bs(i− 1), lnRmax,s(i+ 1), 1P(i+ 1)
and Bs(i+ 1) without errors; (e–h) relations between Bs(i), Bs(i− 1), lnRmax,s(i+ 1), 1P(i+ 1) and Bs(i+ 1) with errors (ρreal is the
correlation coefficient for real observation data).

rate, which is correlated with 1P0 and modeled as

a = a1+ a21P0+ εa, (9)

where a1 and a2 are two region- and topographic-dependent
coefficients, and εa is a zero-mean normally distributed er-
ror term. As shown in Fig. 12a, the decay information of the
ratio of central pressure deficit was extracted from the land-
fall TCs in the circular region around Hong Kong (Fig. 2)
and fitted with the decay model of Eq. (8) using a least-
squares analysis. Generally, the decay model is well behaved
although it is unable to capture the unchanged central pres-
sures with time after landfall. This is also discussed in de-
tail by Vickery (2005). Furthermore, the correlation between
decay rate and central pressure difference at landfall is plot-
ted in Fig. 12b with the correlation coefficient ρ = 0.3019,
which is also modeled by the linear function of Eq. (9). Then
the residual error is unbiased and can be modeled by a nor-
mal distribution with a mean and standard deviation of 0 and
0.0227, respectively.

4 TC design wind speed prediction

4.1 Parameter correlations

As shown by the scatterplots in Fig. 13, the observed (red tri-
angles) genesis (at first time step) parameters show some cor-
relations, especially between θ0 and α0 and between Rmax,s0
and Bs0 with correlation coefficients larger than 0.5. This
means that the heading direction at the first time step is de-
pendent on genesis location and two wind field parameters

are strongly correlated with each other. Accordingly, the cor-
relations between these genesis parameters, i.e., α0,1P0, θ0,
VT0, Rmax,s0 and Bs0, should be considered when utilizing
the Cholesky decomposition method, which is a distribution-
free approach introduced by Iman and Conover (1982). The
randomly generated independent variables can be written
into a matrix of size N × 6 (N is the number of simulation
samples) as

X=
[
α0,1P0,θ0,VT0,Rmax,s0,Bs0

]
. (10)

The correlation coefficients of real data are assembled into a
positive definite and symmetric matrix of C. It can be alter-
natively expressed as C= AAT using the Cholesky decom-
position method, in which A is a lower triangular matrix. If
the correlation matrix of X is Q, it can also be decomposed
into the product of a lower triangular matrix P and its trans-
pose PT; i.e., Q= PPT. A matrix S= AP−1 can be deter-
mined such that SQST

= C. After that, the final transformed
correlated matrix Xc = XST can be obtained, which has the
desired correlation matrix C. It is noteworthy that the values
in each column of the inputN×6 matrix X can be rearranged
to have the same rank order as the target matrix.

The correlated genesis samples for 100 years for Hong
Kong are generated by Monte Carlo simulations coupled
with parameter correlation analysis, as shown in Fig. 13. As
can been seen, the observed JMA data points are scattered
around the simulated results. And the correlation coefficients
of the simulated variables (ρsim) are almost identical to those
of the original observations (ρobs). It is worth mentioning that
the historical data for α0, 1P0, θ0 and VT0 are more than
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Figure 12. Decay model in circular subregion around Hong Kong: (a) curve fitting of decay model; (b) decay rate versus 1P0.

Figure 13. Simulated and observed genesis parameters (red triangles: observations; grey dots: simulations; upper numbers: ρsim; lower
numbers in parentheses: ρobs).

those for Rmax,s0 and Bs0 since the wind speed information
is only available from 1977 and the wind data estimations
are usually not provided during the first and last several time
steps of a TC track due to its weak intensity. As a result, the
scatterplots for historical observations in Fig. 13 associated
with Rmax,s0 and Bs0 contain fewer data than others. Corre-
spondingly, the correlation coefficients associated with these
two parameters would also be derived from fewer data.

4.2 Design wind speed prediction

After generating the virtual tracks as well as the wind field
parameters, the TC wind speed at the site of interest can be
readily solved using the wind speed field model. Then, our

final objective is to investigate the design wind speeds with
various return intervals or TC wind hazard curves for the
site of interest. For each site, 10 000-year simulations should
be conducted to achieve adequate TC samples. The under-
lying terrain exposure is assumed to be consistent with the
standard condition specified by the Load Code for the De-
sign of Building Structures (GB-50009 2012; China National
Standard, 2012), i.e., flat, open and low-density residential
area of terrain category B with equivalent roughness length
z0 = 0.05 m. These simulated tracks can also be employed
to estimate the wind speed with respect to other underlying
exposures by simply using a desired input of z0. And all sim-
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ulated tracks can be interpolated into 15 min so as to capture
every potential maximum wind speed.

By assuming that the number of TCs occurring in a given
season is independent of any other season, the occurrence
probability PT(n) of n TCs over the time period T can be
assumed to follow the Poisson distribution. Then, the proba-
bility that the extreme wind speed vi is larger than a certain
wind speed V within a time period T can be determined as

PT (vi > V )= 1−
∞∑
n=0

P (vi ≤ V |n)PT (n)

= 1− exp
(
−
N

Y
T

)
, (11)

in which P(vi ≤ V |n) is the probability that the peak wind
speed vi of a given TC is less than or equal to V , N is the
total number of TCs of which each has a peak wind vi larger
than V , and Y is total simulation years. Defining T = 1 year,
the annual probability of exceeding a given wind speed V is

PT = 1 year(vi > V )= 1− exp[−λP (vi > V )]

= 1− exp
(
−
N

Y

)
, (12)

in which λ is the annual storm occurrence rate within the
region of interest. The mean recurrence interval (MRI) or re-
turn period (RP) of a given wind speed V at a specific site
can be estimated using the inverse of the result of Eq. (12)
with the form

RP(vi > V )=
1

λP (vi > V )
=
Y

N
. (13)

Figure 14 illustrates the empirical distribution of the annual
maximum TC mean wind speeds (10 min duration at 10 m
height) curve as well as the return period curve of design
mean wind speed in Hong Kong. Although the lognormal
distribution is adopted for 1P0 in this study, a similar distri-
bution trend of annual maximum TC mean wind speed can
be observed in this study and Li and Hong (2015) when 1P
is modeled by a Weibull distribution (Fig. 14a). A Weibull
distribution was also preferred to the lognormal distribution
in their study. However, the lognormal distribution is the pre-
ferred distribution in this study. This is mainly attributed to
the use of different historical track datasets and a different
subregion size. Li and Hong (2015) adopted the best-track
dataset from the China Meteorological Agency and a radius
of 250 km for the subregion circle. Thus, modeling the his-
torical data with preferable probabilistic distributions is es-
sentially important before the estimation of TC design wind
speed can be regarded as a site-specific issue.

Moreover, Fig. 14b compares the predicted design mean
wind speeds with the recommended values in Wind-resistant
Design Specification for Highway Bridges (JTG/T D60-01-
2004, code hereafter; China Trade Standard, 2004) for dif-
ferent return periods. It can be noted that the code’s values

are larger than those obtained in this study and the difference
seems to decrease with an increase in return period. This is
because the values recommended in the code are developed
by statistical approaches based on both TC and non-TC ob-
servations over 30–40 years. Some strong non-TC winds cap-
tured by meteorological stations could dominate the design
values for short return periods, while strong TC winds would
control the higher design wind speed corresponding to longer
return periods.

As mentioned in the explanatory materials to the Hong
Kong Code (Buildings Department, 2004a, b), the 50-year
MRI hourly mean wind speed of 46.9 m s−1 at 90 m above
mean sea level with the underlying exposure of open sea
was selected as the reference. In this case, the 10 m wind
speed is estimated as 36.83 m s−1 using the power wind pro-
file with the suggested exponent of 0.11 (0.12 for terrain ex-
posure A in the Chinese code, 1/9 for terrain exposure D
in ASCE 7-16). The estimated 10 min mean wind speed is
roughly 39.04 m s−1 if the conversion factor is 1.06 from 1 h
to 10 min. However, in order to be consistent with the ref-
erence exposure in this study (z0 = 0.05), the gradient wind
speed can be determined as 56.64 m s−1 at 500 m and is as-
sumed to be the same as other exposures. Then, the 10 min
wind speed at a height of 10 m associated with open flat ter-
rain can be calculated as 33.39 m s−1 if the power exponent is
0.15 (0.16 for terrain exposure B in the Chinese code, 1/6.5
for terrain exposure C in ASCE 7-16) and the same gradi-
ent height is employed. This value is about 2 m s−1 smaller
than the result of this study (35.16 m s−1). Similar results can
be found from Kwok et al. (2006), who summarized that
the over-sea wind speed at a height of 500 m with an MRI
of 50 years was within the range of 54–57 m s−1 based on
the historical TC records and recommended a slightly higher
value of 59.5 m s−1 for design purposes. The corresponding
10 min mean wind speed associated with z0 = 0.05 is esti-
mated to be 35.07 m s−1 by following the same algorithm,
which compares favorably to the result in the present study.
Accordingly, the predicted design wind speed in Hong Kong
in this study has an expected level of confidence for engi-
neering applications.

4.3 TC wind hazards at selected coastal cities in China

For comparison with other studies (Xiao et al., 2011; Li and
Hong, 2015), nine other coastal cities (Fig. 15), i.e., Shang-
hai, Ningbo, Wenzhou, Fuzhou, Xiamen, Guangzhou, Shen-
zhen, Zhanjiang and Haikou, were selected for Monte Carlo
simulations following the aforementioned algorithm. Be-
cause the Burr distribution fails to fit the empirical Bs0 in
Shanghai, Ningbo and Wenzhou, the generalized extreme
value (GEV) distribution was employed to model Bs0 of
these three cities. GEV distribution is a commonly used
distribution developed from extreme value theory to com-
bine the Gumbel, Fréchet and Weibull function families, also
known as types I, II and III extreme value distributions. Its
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Figure 14. Design mean wind speed in Hong Kong: (a) empirical distribution; (b) mean wind speed versus return periods.

PDF can be expressed as

f (x;µ,σ,γ )=
1
σ

exp

[
−

(
1+ γ ·

x−µ

σ

)− 1
γ

]
(

1+ γ ·
x−µ

σ

)−1− 1
γ

, γ 6= 0, (14)

f (x;µ,σ,0)=
1
σ

exp
[
− exp

(
−
x−µ

σ

)
−
x−µ

σ

]
, γ = 0, (15)

in which γ , σ and µ are called shape, scale and location pa-
rameters, respectively, and 1+γ (x−µ)/σ > 0. Correspond-
ingly, for γ = 0, γ > 0 and γ < 0 conditions, GEV distribu-
tions can be reduced to types I, II and III extreme value dis-
tributions. As shown in Tables 2–3, coefficients of each dis-
tribution for various input parameters in another nine coastal
cities of China were estimated using a maximum likelihood
method based on historical observation around the site of in-
terest within a radius of 500 km. The annual storm rate was
observed to gradually increase from north to south. The fit-
ted coefficients of recursive models of VT, Rmax,s and Bs as
well as the decay model coefficients are also listed in Table 3.
Correspondingly, the empirical and fitted preferred CDFs for
each parameter in nine cities are illustrated in Fig. 16 to-
gether with the K–S test statistics. It can be seen that the
distribution models successfully matched the empirical his-
torical samples.

Like Hong Kong, the 10 min mean design wind speeds at
a height of 10 m above the ground with a surface roughness
of 0.05 m with respect to various return periods were devel-
oped based on 10 000-year Monte Carlo simulations. Table 4
lists the simulation results for TC design wind speed at se-
lected cities with an MRI of 100 years and compares them
with two Chinese codes (JTG/T D60-01-2004; GB 50009-
2012) as well as other pioneering studies. The design wind
speeds in the two codes are consistent with each other, ex-

Figure 15. Locations of 10 selected coastal cities in China.

cept for a 2.5 m s−1 difference in Shanghai. It can be seen
that the predicted wind speeds in this study are close to the
code-recommended values, except for in Ningbo, Wenzhou,
Zhanjiang and Haikou. The estimated values for Ningbo and
Wenzhou are more than 4 m s−1 higher than those in the
codes, while those for Zhanjiang and Haikou are more than
about 4 m s−1 smaller. A similar trend can also be observed
from the differences between Li and Hong (2016), Chen and
Duan (2018), Wu and Huang (2019), and the codes. This is
mainly attributed to the limitations of the statistically short-
term data-based method used in the code development. As
mentioned before, the design wind speeds in the Chinese
codes are developed from short-term observations utilizing
both TC and non-TC winds (30–40 years). However, the se-
ries of largest annual wind speeds are, in most cases, not well
behaved (Simiu and Scanlan, 1996) when used for modeling
the probabilistic behavior of the extreme winds since most
of the largest annual winds are remarkably smaller than the
extreme winds associated with TCs. That is, the contribution
of each group of data used for characterizing the probabilis-
tic behavior of the largest annual winds is uneven, resulting
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Table 2. Coefficients of PDFs for TC track genesis parameters.

City Lat Long λa α0 1P0

(◦ N) (◦ E) λ k γ µ σ

Shanghai 31.233 121.483 3.139 4.160 182.519 3.119 0.668
Ningbo 29.867 121.517 3.662 3.901 180.383 3.204 0.691
Wenzhou 28.017 120.650 4.600 3.697 176.511 3.236 0.703
Fuzhou 26.083 119.300 4.923 3.121 172.821 3.201 0.634
Xiamen 24.483 118.100 5.615 3.301 170.379 3.177 0.650
Guangzhou 23.000 113.217 5.677 3.336 155.768 3.034 0.566
Shenzhen 22.550 114.117 6.154 3.220 157.946 3.062 0.581
Hong Kong 22.300 114.167 6.339 3.134 156.991 3.062 0.576
Zhanjiang 21.271 110.361 5.569 3.316 138.980 3.040 0.554
Haikou 20.367 110.333 5.862 3.291 132.367 3.049 0.563

City θT0 VT0

p µ1 σ1 µ2 σ2 α c k

Shanghai 0.201 −61.625 32.169 21.807 38.422 7.407 3.321 1.576
Ningbo 0.193 −68.056 36.079 11.396 44.951 6.879 3.738 1.531
Wenzhou 0.107 −68.363 19.573 −7.533 57.165 7.405 3.605 1.813
Fuzhou 0.190 −67.363 23.536 −8.797 23.536 7.988 3.284 2.788
Xiamen 0.267 −70.547 25.815 −4.259 59.630 7.774 3.167 2.969
Guangzhou 0.506 −72.845 28.000 0.002 66.048 9.651 2.765 4.777
Shenzhen 0.460 −73.308 25.226 −3.249 67.401 31.878 2.449 67.578
Hong Kong 0.475 −73.282 25.607 0.002 68.030 16.151 2.540 15.028
Zhanjiang 0.614 −74.773 25.304 −3.412 70.905 15.400 2.734 14.735
Haikou 0.620 −75.013 24.847 −5.740 s73.308 11.820 2.799 7.926

Table 3. Coefficients of PDFs and recursive models for wind field parameters.

City Rmax,s0 Bs0 VT

µ σ α(µ) c(σ ) k(k) v1 v2 v3 v4

Shanghai 5.062 0.665 1.850 0.501 −0.542 0.325 0.702 0.129 1.283× 10−3

Ningbo 5.064 0.640 1.839 0.479 −0.523 0.319 0.689 0.147 1.273× 10−3

Wenzhou 4.905 0.628 1.705 0.440 −0.368 0.273 0.644 0.209 9.689× 10−4

Fuzhou 4.831 0.567 2.055 6.439 2.247 0.344 0.602 0.201 8.444× 10−4

Xiamen 4.805 0.591 1.850 7.198 1.412 0.358 0.590 0.196 7.724× 10−4

Guangzhou 4.802 0.598 1.779 6.895 1.321 0.305 0.612 0.179 1.304× 10−4

Shenzhen 4.817 0.631 2.610 5.154 5.936 0.303 0.635 0.154 1.129× 10−4

Hong Kong 4.822 0.571 1.974 6.362 2.001 0.309 0.634 0.150 1.094× 10−4

Zhanjiang 4.830 0.571 1.545 8.526 0.765 0.276 0.610 0.181 −3.284× 10−4

Haikou 4.813 0.575 1.529 9.024 0.713 0.282 0.610 0.179 −3.499× 10−4

City Rmax,s Bs a

r1 r2 r3 r4 b1 b2 b3 b4 b5 a1 a2

Shanghai 0.544 0.866 0.037 −1.172× 10−3
−1.104 0.327 0.041 0.449 −1.172× 10−3 0.020 5.026× 10−4

Ningbo 0.510 0.856 0.056 −1.359× 10−3
−0.870 0.369 0.040 0.390 −1.359× 10−3 0.014 6.083× 10−4

Wenzhou 0.668 0.871 0.018 −1.886× 10−3
−0.918 0.420 −0.027 0.403 1.538× 10−3 0.024 4.430× 10−4

Fuzhou 0.637 0.899 −2.888× 10−3
−2.013× 10−3

−0.899 0.394 −0.020 0.404 1.770× 10−3 0.024 4.242× 10−4

Xiamen 0.657 0.910 −0.023 −1.592× 10−3
−0.804 0.469 −0.057 0.374 1.179× 10−3 0.024 4.787× 10−4

Guangzhou 0.727 0.824 0.032 −1.646× 10−3
−0.626 0.537 −0.022 0.298 4.951× 10−4 0.022 5.801× 10−4

Shenzhen 0.703 0.813 0.039 −3.815× 10−4
−0.603 0.574 0.001 0.269 6.182× 10−4 0.026 5.201× 10−4

Hong Kong 0.704 0.834 0.028 −1.630× 10−3
−0.665 0.543 −0.011 0.295 1.300× 10−3 0.022 5.654× 10−4

Zhanjiang 0.703 0.813 0.039 −3.815× 10−4
−0.603 0.574 0.001 0.269 6.182× 10−4 0.026 5.201× 10−4

Haikou 0.680 0.803 0.054 −4.531× 10−4
−0.642 0.558 0.011 0.275 1.167× 10−3 0.028 5.184× 10−4
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Figure 16.

in some unrealistically high or low predictions (Simiu and
Scanlan, 1996). Although some alternative approaches can
be adopted to better consider TC winds, such as the use of
maximum average monthly speed or mixed distributions of
TC and non-TC winds, to the authors’ knowledge, no pub-
lished literature clearly discusses the development of design
wind speed in the Chinese codes. Furthermore, the correction
of averaging time, height, station migration and surrounding

roughness to make the wind speed records meteorologically
homogeneous would introduce some unpredictable errors.

Moreover, as shown in Fig. 17, violent typhoons (Pcs ≤

935 hPa or Vmax,s ≥ 54 m s−1, 105 knots) as well as strong
typhoons (Pcs ≤ 960 hPa or Vmax,s ≥ 44 m s−1, 85 knots),
that affect Zhanjiang (close to Haikou), Hong Kong (close
to Shenzhen), Wenzhou and Ningbo within 500 km are ex-
tracted from the 65-year JMA dataset. It turns out that
only two TCs (200814 Hagupit and 201409 Rammasun)
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Figure 16. Empirical and preferable cumulative probability distributions for α0, 1P0, θ0, VT0, Rmax,s0 and Bs0.

Table 4. Comparison of TC design wind speed at selected cities (MRI= 100 years; T = 10 min; z= 10 m, z0 = 0.05 m; m s−1).

City JTG/T D60- GB 5009- Xiao et al. Li and Hong Chen and Wu and This
01-2004 2012 (2011) (2016) Duan (2018) Huang (2019) study

CSM FTM

Shanghai 33.8 31.30 48.27 32.2 31.7 31.7 32.2 34.35
Ningbo 31.3 31.30 44.93 33.3 33.0 34.5 33.9 35.33
Wenzhou 33.8 33.81 48.75 36.1 36.5 34.9 36.9 39.21
Fuzhou 37.4 37.25 48.47 37.8 35.1 33.6 36.5 37.41
Xiamen 39.7 39.38 46.70 39.1 38.9 37.7 37.6 39.18
Guangzhou 31.3 31.30 41.57 30.5 31.4 – 30.9 30.87
Shenzhen 38.4 38.33 43.79 36.4 36.8 36.4 34.7 37.34
Hong Kong 39.5 39.38 45.03 37.6 37.7 – 37.5 38.17
Zhanjiang 39.4 39.38 42.86 40.9 37.4 37.5 38.7 33.92
Haikou 38.4 38.33 42.94 – – 38.5 – 34.52
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Figure 17. Strong typhoon tracks affect Ningbo, Wenzhou, Hong Kong and Zhanjiang: (a) violent typhoons (Pc < 935 hPa or Vmax >
57 m s−1); (b) strong typhoons (Pc < 960 hPa or Vmax > 43 m s−1).

around Zhanjiang (or Haikou) and six TCs (195408 Ida,
197909 Hope, 200814 Hagupit, 201013 Megi, 201319 Us-
agi and 201409 Rammasun) around Hong Kong (or Shen-
zhen) reached the violent level. Comparatively, 25 and 13 vi-
olent typhoons were observed around Wenzhou and Ningbo,
respectively. Moreover, 40 and 52 strong typhoons affected
Zhanjiang and Hong Kong, respectively, while Wenzhou and
Ningbo suffered 89 and 55 strong typhoons over the past half
a century. This is thanks to the obstacle effects of several high
mountains in the Philippines so that the violent typhoons
making landfall in Hainan and Guangdong provinces usually
need to reintensify in the South China Sea or directly pass
through the Bashi Channel between Taiwan and the Philip-
pines, so not many violent typhoons were observed to af-
fect these two provinces. In addition, the maximum wind of
the rotating storm in the Northern Hemisphere always oc-
curs on its right side with respect to the heading direction
due to the Coriolis effect. Thus, westward-heading violent
typhoons seldom occur in Zhanjiang and Haikou before their
intensities decay due to the effect of Hainan island. Instead,
Hong Kong, Wenzhou or Ningbo have greater chances of be-
ing swept by a storm’s maximum wind. Accordingly, the pre-
diction results should be more reasonable with higher design
wind speeds in Wenzhou and Ningbo than in Zhanjiang and
Haikou. It is suggested that this trend should be validated in
a future study using more TC observation data.

The results in Xiao et al. (2011) are higher than those
in other studies or codes. There are three possible reasons
for this. The first is the use of the Holland (2008) method
in determining B values. This method was developed from
semiempirical relationships between the gradient and surface
layer as discussed by Fang et al. (2018a). Another reason is

the use of a 1000 km radius subregion, which would take into
account many extremely violent typhoons over the distant sea
before they are used for TC intensity modeling. The third one
is the use of a surface roughness of 0.02 m, which is smaller
than the code-specified value associated with the terrain ex-
posure B of 0.05 m.

The estimated wind speeds in Shanghai, Ningbo and
Wenzhou are 2–3 m s−1 higher than the equivalents in Li
and Hong (2016), while Zhanjiang showed about a 7 m s−1

smaller result. The other five cities show a satisfactory com-
parison between results of this study and those of Li and
Hong (2016). When they are compared with Chen and
Duan (2018), who used an improved full-track model, the
present estimations in Zhanjiang and Haikou are also about
4 m s−1 smaller, while the other cities show 1–4 m s−1 higher
values. Except for the potential reasons analyzed above,
it is worth mentioning that Li and Hong (2016) adopted
CMA track data with a 2 min duration while Chen and
Duan (2018) used a JTWC dataset with a 1 min duration.
Some errors could be introduced by the time duration gaps
for different datasets. The wind speeds predicted by Wu
and Huang (2019) are similar to those estimated by Li and
Hong (2016), which is mainly attributed to the use of the
same best-track dataset as well as Rmax and B models.

Figure 18 illustrates design wind speed versus return pe-
riod plots (hazard curves) based on simulations together with
the suggested values in Chinese codes (JTG/T D60-01-2004)
for nine coastal cities. It can be seen that the predicted curves
for Shanghai, Fuzhou, Xiamen, Guangzhou and Shenzhen
are in satisfactory agreement with code suggestions. But,
consistent with previous findings, this study shows higher
estimations for Ningbo and Wenzhou, while it shows smaller
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Figure 18. Predicted and code-suggested TC design wind speed versus return period of nine coastal cities in China.

estimations for Zhanjiang and Haikou than the code. It is also
found that the estimated hazard curves for Ningbo and Wen-
zhou have a similar trend to the code, but the design wind
speeds for Zhanjiang and Haikou increase more gently with
return period than the code provisions. This is closely related
to the portion of TC wind samples as well as their contri-
butions to the description of the probabilistic distribution of
extreme winds in a series of largest observed annual winds
as discussed above. The TC winds in Ningbo and Wenzhou
could dominate the probabilistic behavior of the yearly high-
est wind speed, while Zhanjiang and Haikou have lower por-
tions of TC winds compared to non-TC winds. However, the
contributions of strong TC winds will be overused in mod-
eling the hazard curve when they are combined with smaller
non-TC winds in the yearly largest wind series. More obser-
vations on TC winds and unique descriptions of the proba-

bilistic behavior of TC winds are necessary to model site-
specific TC hazards and validate the long-term hazard pre-
dictions in this study.

5 Conclusions

The statistical characteristics of TC track as well as wind
field parameters within a site-specific circular subregion ex-
tracted from the JMA best-track dataset were examined be-
fore developing TC wind speed hazard curves for 10 coastal
cities in China using a height-resolving wind field model and
a Monte Carlo technique. Some improvements and new find-
ings are summarized as follows:

1. Recursive models are applied for both track (transla-
tion speed) and wind field (Rmax,s and Bs) parameters,
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which enable the movement as well as the size and wind
field scale of a TC to vary smoothly. Rmax,s and Bs of
the historical dataset are determined from the present
height-resolving wind field model coupled with 10 min
duration wind information provided by the JMA. Thus,
the present study is self-adaptive, and no other statis-
tical models of wind field parameters, which are com-
monly used in combination in other studies, are adopted.
Meanwhile, the documentedRmax,s andBs dataset facil-
itates the completeness of correlation studies between
various parameters at first time steps before generating
statistically correlated parameters using the Cholesky
decomposition method.

2. The probabilistic behavior of TC track and wind model
parameters of the first time steps (genesis parameters)
within a 500 km circular subregion of 10 coastal cities
is investigated and modeled with some preferable prob-
ability distribution models. Then the coefficients of the
decay model as well as the recursive models for trans-
lation speed, Rmax,s and Bs in these 10 cities are also
fitted.

3. The TC design wind speed versus return period plots
(hazard curve) are developed from 10 000-year Monte
Carlo simulations and compared with code suggestions
as well as other studies. It is found that the predicted
wind speeds in northern cities (Ningbo and Wenzhou)
are higher than code suggestions, while those of south-
ern cities (Zhanjiang and Haikou) are smaller. The other
six cities show satisfactory agreement with code provi-
sions. Some potential reasons for this are discussed to
emphasize the importance of independently developing
hazard curves of TC and non-TC winds.
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