Articles | Volume 19, issue 5
https://doi.org/10.5194/nhess-19-1067-2019
https://doi.org/10.5194/nhess-19-1067-2019
Research article
 | 
21 May 2019
Research article |  | 21 May 2019

Atmospheric circulation changes and their impact on extreme sea levels around Australia

Frank Colberg, Kathleen L. McInnes, Julian O'Grady, and Ron Hoeke

Related authors

A systematic review of climate change science relevant to Australian design flood estimation
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024,https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study
Sally L. Lavender, Ron K. Hoeke, and Deborah J. Abbs
Nat. Hazards Earth Syst. Sci., 18, 795–805, https://doi.org/10.5194/nhess-18-795-2018,https://doi.org/10.5194/nhess-18-795-2018, 2018
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
An open-source radar-based hail damage model for buildings and cars
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024,https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Linkages between atmospheric rivers and humid heat across the United States
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024,https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024,https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024,https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
High-resolution projections of ambient heat for major European cities using different heat metrics
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024,https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary

Cited articles

Antony, C. and Unnikrishnan, A.: Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal, Estuarine, Coast. Shelf Sci., 131, 6–11, 2013. 
Arns, A., Wahl, T., Dangendorf, S., and Jensen, J.: The impact of sea level rise on storm surge water levels in the northern part of the German Bight, Coast. Eng., 96, 118–131, 2015. 
Chapman, D. C.: Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model, J. Phys. Oceanogr., 15, 1060–1075, 1985. 
Colberg, F. and McInnes, K. L.: The impact of future changes in weather patterns on extreme sea levels over southern Australia, J. Geophys. Res.-Oceans, 117, C08001, https://doi.org/10.1029/2012JC007919, 2012. 
Flather, R. A.: A tidal model of the north-west European continental shelf, Memoires de la societe Royale des Sciences de Liege, 10, 141–164, 1976. 
Download
Short summary
This study investigates coastal sea level variability and extremes around Australia, taking into account historical conditions and future atmospheric changes. Modelling suggests changes in future extreme sea levels may occur. A southward movement of the subtropical ridge leads to reduced sea level extremes in many areas, while changes over the Gulf of Carpentaria are largest and positive during austral summer in two of four simulations, likely associated with changes in the northwest monsoon.
Altmetrics
Final-revised paper
Preprint