Articles | Volume 18, issue 9
https://doi.org/10.5194/nhess-18-2455-2018
https://doi.org/10.5194/nhess-18-2455-2018
Research article
 | 
14 Sep 2018
Research article |  | 14 Sep 2018

Effective surveyed area and its role in statistical landslide susceptibility assessments

Txomin Bornaetxea, Mauro Rossi, Ivan Marchesini, and Massimiliano Alvioli

Related authors

Terrain visibility impact on the preparation of landslide inventories: a practical example in Darjeeling district (India)
Txomin Bornaetxea, Ivan Marchesini, Sumit Kumar, Rabisankar Karmakar, and Alessandro Mondini
Nat. Hazards Earth Syst. Sci., 22, 2929–2941, https://doi.org/10.5194/nhess-22-2929-2022,https://doi.org/10.5194/nhess-22-2929-2022, 2022
Short summary
LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022,https://doi.org/10.5194/gmd-15-5651-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024,https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary
A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024,https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024,https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary

Cited articles

Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F., and Guzzetti, F.: Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling, Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, 2016.
Alvioli, M., Melillo, M., Guzzetti, F., Rossi, M., Palazzi, E., von Hardenberg, J., Brunetti, M. T., and Peruccacci, S.: Implications of climate change on landslide hazard in Central Italy, Sci. Total Environ., 630, 1528–1543, https://doi.org/10.1016/j.scitotenv.2018.02.315, 2018a.
Alvioli, M., Mondini, A. C., Fiorucci, F., Cardinali, M., and Marchesini, I.: Topography-driven satellite imagery analysis for landslide mapping, Geomat. Nat. Haz. Risk, 9, 544–567, https://doi.org/10.1080/19475705.2018.1458050, 2018b.
Amorim, S. F.: Estudio comparativo de métodos para la evaluación de la susceptibilidad del terreno a la formacion de deslizamientos superficiales: Aplicación al Pirineo Oriental, PhD thesis, Universidad Politécnica de Catalunya, available at: http://futur.upc.edu/10953986 (last access: 15 July 2015), 2012.
Ayalew, L. and Yamagishi, H.: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology, 65, 15–31, https://doi.org/10.1016/j.geomorph.2004.06.010, 2005.
Download
Short summary
While producing a landslide susceptibility map using a fieldwork-based landslide inventory and a logistic regression model, two crucial questions came to our minds. (i) Shall we consider unsurveyed regions of the study area, for which landslide absence is typically assumed? (ii) Which reference mapping unit should be used in our model? So we compared four maps and found that rejecting unsurveyed regions together with slope units as reference mapping unit should be the best option.
Altmetrics
Final-revised paper
Preprint