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Abstract. Geomorphological field mapping is a conventional
method used to prepare landslide inventories. The approach
is typically hampered by the accessibility and visibility, dur-
ing field campaigns for landslide mapping, of the different
portions of the study area. Statistical significance of land-
slide susceptibility maps can be significantly reduced if the
classification algorithm is trained in unsurveyed regions of
the study area, for which landslide absence is typically as-
sumed, while ignorance about landslide presence should ac-
tually be acknowledged. We compare different landslide sus-
ceptibility zonations obtained by training the classification
model either in the entire study area or in the only portion of
the area that was actually surveyed, which we name effective
surveyed area. The latter was delineated by an automatic pro-
cedure specifically devised for the purpose, which uses infor-
mation gathered during surveys, along with landslide loca-
tions. The method was tested in Gipuzkoa Province (Basque
Country), north of the Iberian Peninsula, where digital the-
matic maps were available and a landslide survey was per-
formed. We prepared the landslide susceptibility maps and
the associated uncertainty within a logistic regression model,
using both slope units and regular grid cells as the reference
mapping unit. Results indicate that the use of effective sur-
veyed area for landslide susceptibility zonation is a valid ap-
proach that minimises the limitations stemming from unsur-
veyed regions at landslide mapping time. Use of slope units
as mapping units, instead of grid cells, mitigates the uncer-
tainties introduced by training the automatic classifier within
the entire study area. Our method pertains to data preparation
and, as such, the relevance of our conclusions is not limited

to the logistic regression but are valid for virtually all the ex-
isting multivariate landslide susceptibility models.

1 Introduction

Landslide susceptibility is defined as the likelihood of a
landslide occurring in an area on the basis of the local ter-
rain and environmental conditions (Brabb, 1984; Guzzetti
et al., 2005). Landslide susceptibility zonation (LSZ) is im-
portant for landslide mitigation plans, since it supplies plan-
ners and decision makers with essential information (Van
Den Eeckhaut et al., 2012). A large number of LSZ studies
based on statistical methodologies (Reichenbach et al., 2018)
and comparative studies (Cascini, 2008; Das et al., 2010;
Schicker, 2010; Amorim, 2012; Blais-Stevens et al., 2012;
Trigila et al., 2015; Wang et al., 2015) were published in the
last decades. Many statistical methods, aimed at estimating
the propensity of a territory to experience slope failures, rely
on landslide inventory maps and spatial thematic layers as
predisposing factors (Ermini et al., 2005; Van Den Eeckhaut
et al., 2006; Camilo et al., 2017).

In statistical landslide susceptibility models, such as the
logistic regression (LR) model adopted in this work, the
preparation of the training data set is a fundamental and crit-
ical step. Commonly, this requires the selection of a sample
of stable (without landslides) and unstable (with landslides)
mapping units. While ensuring the presence of a landslide
is straightforward and can be supported by the geomorpho-
logical signatures on the slope or by direct observation of
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the events, the selection of landslide-free areas is more criti-
cal. Assuming as landslide-free the locations of a study area
where no landslides were reported in a field survey is correct
only in the unlikely circumstance that the landslide inventory
has been prepared by surveying every single site of the study
area and following homogeneous criteria. In other words, any
landslide-free location in an inventory map should have been
explicitly checked to be free from landslides.

Nowadays, there are methods based on the visual interpre-
tation of aerial photographs or digital processing of remotely
acquired optical and radar imagery (Catani et al., 2005; Her-
rera et al., 2009; Fiorucci et al., 2011, 2018; Casagli et al.,
2017; Mondini, 2017; Alvioli et al., 2018b), which allow his-
torical and event landslide inventories to be prepared. How-
ever, the adoption of such methods can be hampered by the
lack of imagery or image interpretation expertise, low perfor-
mance of automatic classification and other factors. Alterna-
tively, bibliographic sources like newspapers and news feeds,
administrative reports or scientific literature can be used for
obtaining landslide information. Nevertheless, the downside
of these type of data is that they are rarely as accurate as
required by LSZ studies. As a consequence, sometimes the
best option for obtaining a reliable landslide inventory is a
straightforward geomorphological field mapping. A detailed
discussion about the characteristics, advantages and limita-
tions of different approaches for landslide mapping can be
found in Guzzetti et al. (2012) Santangelo et al. (2015) and
Fiorucci et al. (2018).

An operational disadvantage of field-based landslide map-
ping is the difficulty in surveying the whole area where the
LSZ must be carried out, since some places can be inacces-
sible or not visible from the accessible places. Difficulties
in surveying the landscape affect the completeness and the
spatial representativeness of the landslide inventory and, as
a result, inclusion of non-visible areas within a landslide in-
ventory introduces a bias, since the presence or absence of
landslides cannot be ascertained in portions of the landscape.
This uncertainty has hardly been considered in existing stud-
ies that use field-based landslide inventories (Yesilnacar and
Topal, 2005; Murillo-García et al., 2015; Wang et al., 2017).

On the other hand, selection of an appropriate terrain sub-
division is also a critical step in LSZ analysis. The land
surface can be divided into portions following geomorpho-
logic features using terrain units, topographic units, geo-
hydrological units or slope units but also considering the-
matic layers resulting in unique condition units or admin-
istrative units, as well as regular grid cells partitions (Van
Den Eeckhaut et al., 2006; Reichenbach et al., 2018). Se-
lection of different mapping units can result in consider-
able differences in the susceptibility assessment (Carrara
et al., 2008). In this work, we considered grid cells and
slope units (Carrara et al., 1991, 1995; Guzzetti et al., 2006;
Alvioli et al., 2016; Zêzere et al., 2017; Rosi et al., 2018;
Ba et al., 2018) and investigated the effect of the different

ways of training LSZ models within both types of mapping
units.

We propose an automatic and reproducible procedure to
delineate the actual area which was explicitly surveyed in
preparing a landslide inventory by geomorphological field
mapping, i.e. the effective surveyed area (ESA), and to use
such relevant information in statistical analyses. The pro-
cedure allows us to carry out the calibration of a statistical
model within the ESA and then to apply the resulting sus-
ceptibility model to the whole area (WA) under investiga-
tion. Moreover, we implemented an automatic approach for
the delineation of the ESA in a newly developed GRASS GIS
module named r.survey.py. The software delineates the the-
oretical visible areas from the points of view recorded dur-
ing a field campaign by the GPS tracks. Most importantly,
the ESA delineated by r.survey.py is an objective and repro-
ducible portion of the study area directly observed by the ge-
omorphologists, thus allowing us to avoid arbitrary assump-
tions about which sites were actually surveyed and which
ones were not.

This work aims at demonstrating that the calibration of a
landslide susceptibility model within the ESA, instead of the
WA (the whole study area, encompassing the ESA), enhances
the performance of model itself. In a test study area, we cali-
brated the multivariate logistic regression model for landslide
susceptibility in four different ways, combining two different
calibration areas (ESA and WA) with two different mapping
unit types: (i) a regular grid cell partition with a ground reso-
lution of 5 m× 5 m and (ii) a slope unit (SU) partition (con-
sisting of irregular terrain subdivisions bounded by drainage
and divided lines).

The paper is organised as follows. Section 2 provides an
overview of the study area. Section 3 shows the details about
data acquisition, in particular the r.survey is described in
Sect. 3.3 and SU delineation in Sect. 3.4. Section 4 contains
a general description about the multivariate method applied
to model landslide susceptibility and the approach followed
to validate model results, as well as a detailed description
about the set-up of the different model assessments. Results
are described in Sect. 5 and are further discussed in Sect. 6.
Eventually, our conclusions are drawn in Sect. 7.

2 Study area

The Gipuzkoa Province was selected as test study area. It is
located in the north of the Iberian Peninsula along the west-
ern end of the Pyrenees and covers an area of 1980 km2, with
altitude ranging from the sea level to 1528 m a.s.l. Six wa-
tersheds of different size drain the study area and reach the
Cantabrian Sea (Fig. 1). The province is characterised by a
steep morphology with 55 % of its surface having a slope
larger than 15◦.

The investigated area is lithologically heterogeneous
(Fig. 1), with materials ranging from Paleozoic rocks to Qua-
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Figure 1. Location of the Gipuzkoa Province study area and simplified lithological map developed according to the original map of the
spatial data service of the Basque Country. Coordinates in degrees, Universal Transversal Mercator (UTM) Zone 30N, European Datum
ETRS 1989.

ternary deposits (EVE, 2010), and it corresponds to a hilly
and mountainous Atlantic landscape (Mücher et al., 2010).
The average annual precipitation is 1597 mm (González-
Hidalgo et al., 2011) with two maximum periods: 34 % in
November–January and 10 % in April. Even though rainfall
is the primary triggering factor of shallow landslides (Pet-
ley et al., 2005; Alvioli et al., 2018a), anthropogenic slope
modifications such as slope clearings and forest extraction
activities also strongly affect landslide occurrence (Coromi-
nas et al., 2017) in the area.

3 Data preparation

3.1 Landslide inventory

We prepared a landslide inventory by a direct geomorpholog-
ical field survey, during the period from June to August 2016.
We collected information about the location of each observed
landslide, four GPS points (crown, toe and two flanks), pho-
tographs, features of the surrounding area and information
about the landslide type, according to the Cruden and Varnes
(1960) classification. Each documented landslide was drawn
and digitised using its four recorded GPS waypoints and
photographs as a reference. The QGIS software and Google
Earth satellite imagery were used for the purpose. Moreover,
and most importantly to define the ESA, we digitised the
route followed during the field survey. This information was
then elaborated using a GRASS GIS module developed for
the purpose and included in this work as the Supplement.

As a result of several field trips, 793 individual land-
slides were collected; 746 of them were classified as shal-
low movements (Fig. 2a). Our observations together with

the existing literature (INGEMISA, 1995; IDE de Euskadi,
2014; Gipuzkoako Foru Aldundia, unpublished data) con-
firmed that shallow slides are the most frequent type of land-
slide in the study area. Consequently, in order to consider
only landslides triggered by the same mechanisms, only shal-
low movements were used to determine landslide presence
when defining the dependent variable in the susceptibility as-
sessment. Figure 2b and c show the distribution of landslide
sizes, highlighting that a difference of 5 orders of magnitude
exists between the smallest and the largest inventoried shal-
low slide.

3.2 Explanatory variables

The selection of the appropriate explanatory variables to
build a landslide susceptibility model is an important step
(Ayalew and Yamagishi, 2005; Schlögel et al., 2018), and no
universal criteria nor guidelines exist for the purpose.

We obtained relevant environmental digital layers from
the Spatial Data Service of the Basque Country1 and cre-
ated 13 maps describing the different explanatory variables
(see Table 2). To produce derived morphometric continuous
variables, such as slope, sinusoidal slope, surface area ra-
tio (SAR), terrain wetness index (TWI), curvature, plan cur-
vature and profile curvature, we used a DEM raster layer
with 5 m× 5 m spatial resolution. sinusoidal slope is a de-
rived morphometric variable proposed by Santacana Quin-
tas (2001) and Amorim (2012) to emphasise the fact that
shallow slides typically occur in medium slope areas, while
they seldom occur on slopes steeper than 45◦. For categorical
variables, such as lithology, permeability, regolith thickness,

1http://www.geo.euskadi.eus (last access: 23 January 2017)
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Figure 2. (a) Distribution of the shallow slides inventory along the study area and extension of the effective surveyed area (ESA). (b) Prob-
ability density plot of the shallow landslide size (area in m2) distribution. (c) Box plot of the same distribution.

land use, vegetation and aspect, we computed frequency ratio
(FR) values for each class and used them as relative values
for their transformation into continuous variables (Lee and
Min, 2001; Yilmaz, 2009; Trigila et al., 2015). We acknowl-
edge that the FR values can vary depending on the portion of
the territory considered to be the total area (ESA or WA). In
order to perform a direct comparison, we decided to main-
tain the same FR values (calculated considering the WA) in
all regular grid-cell-based susceptibility analyses.

In this work, we first adopted grid cells as mapping units,
and we applied a simplified and statistically oriented work-
flow that ensured that only significant variables were taken
into account as well as the non-redundancy of the con-
tributed information by each covariate (Ayalew and Yamag-
ishi, 2005). To do this, the whole set of 13 variables was con-
sidered within the LR analysis, and correlation coefficients
were computed. We considered two variables to be collinear
when their correlation coefficient is greater than 0.5 with a
significance level of 0.01. In such a case, as an objective cri-
terion for variable selection, the variable with the highest p
value between the two (see Sect. 4.1) was not taken into con-
sideration in the final run of the susceptibility LR model. Ad-
ditionally, variables with a p value higher than the threshold
of 0.05 were rejected.

Then, considering the variables actually used for the ap-
plication of the statistical models with grid cells, we have
further restricted the set of variables to be used with slope
units (see Sect. 5.2).

3.3 Definition of the effective surveyed area

In this work we suggest the concept of ESA and training of
statistical models therein, as an approach to be used to train
a landslide susceptibility model, avoiding assumptions about

the presence or absence of landslides in areas not explicitly
observed. We delineated the ESA by means of the newly de-
veloped GRASS GIS python module r.survey.py (see Sup-
plement). Input data that define the visible area (i.e. ESA
in our case) are (i) a sample of points to be considered the
points of view, (ii) a DEM of the area and (iii) the maximum
visible distance. The sample of points of view, in our case,
was defined resampling a given number of points along the
recorded path during the field campaigns. This number of
points depends on the maximum distance set between them,
and together with the selected DEM resolution the results can
be directly affected. In a 10 km2 subset of the study area, we
tested the software output using (i) the maximum distance
between sampled points of 50, 100, 200 and 500 m; (ii) the
original DEM at 5 m resolution and resampled versions of
the DEM at 20, 50 and 100 m resolution; and (iii) maxi-
mum visible distance of 500 m (the later was dictated by the
largest distance between the digitised field path and the far-
thest landslide pixel in the subset of the study area). Results
of the test are summarised in Table 1.

We considered that the best setting was the one which al-
lows the totality of the landslides to be covered using the
smallest number of points (larger Dmax value) and the lower
DEM resolution in order to optimise the calculation time. In
our case, considering the whole study area, the maximum
visible distance was set to 1100 m, in view that the largest
distance between the digitised field path and the farthest
landslide pixel was 1092 m. Then, and according to the re-
sults of Table 1, we set the maximum sampling distance to
200 m and adopted a DEM resolution of 100 m.

We can make sense of the numerical values of the parame-
ters used in the r.survey.py module considering that the min-
imum size A of an object visible from a distance 1 is given
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Table 1. Results of the setting test of r.survey in a 10 km2 subset
of the study area. The best combination of settings is highlighted in
bold.

Name Resolution Dmax Percentage of
(m) landslides within (%)

Survey 5 5 50 35
Survey 6 20 50 70
Survey 7 50 50 95
Survey 8 100 50 100
Survey 9 5 100 30
Survey 10 20 100 60
Survey 11 50 100 95
Survey 12 100 100 100
Survey 13 5 200 30
Survey 14 20 200 55
Survey 15 50 200 85
Survey 16 100 200 100
Survey 17 5 500 0
Survey 18 20 500 35
Survey 19 50 500 60
Survey 20 100 500 95

by Rodrigues et al. (2010) and Minelli et al. (2014):

A =
2512

c
, (1)

where c is a steradian to square minutes conversion factor,
c ' 1.18× 107. Using 1= 1100 m in Eq. (1), we get A=
2.6 m2, meaning that the smallest landslide in our inventory,
with size 7.3 m2, would actually be identifiable from at least
one point along the route if the landslide sits within the ESA.
The resulting ESA covers 44.24 % of the entire study area
and it is shown in Fig. 2a.

3.4 Slope unit delineation

For SU delineation we have adopted the r.slopeunits software
described in Alvioli et al. (2016). The software is a GRASS
GIS module, as is the r.survey.py code presented in this work,
and it was designed for the automatic and adaptive delin-
eation of SUs given a DEM and a set of user-defined input
parameters. The code can be used to produce several SU par-
titions, using different combinations of the input parameters,
which can thus be tuned according to user-defined criteria.
We partially followed Alvioli et al. (2016), in that we se-
lected the best SU partition considering the quality of terrain
aspect segmentation. In addition, we performed preliminary
tests using the LR susceptibility model, showing that the use
of very small SUs provides unrealistic results, which can be
understood considering the limited variability of variables
within such small SU polygons. We concluded that, in the
case of the Gipuzkoa Province the most suitable SU partition
for landslide susceptibility zonation should be obtained with
the following r.slopeunits input parameters: flow accumula-

tion area threshold t = 1 km2, minimum SU planimetric area
a = 0.15 km2, minimum circular variance of terrain aspect
within each SU c = 0.2, reduction factor r = 5 and threshold
value for the cleaning procedure cleansize= 0.025 km2. As
a result, we obtained a set of SUs which range in size from
0.026 to 3.6 km2 with an average of 0.28 km2. A discussion
of SU delineation and optimisation of input parameters can
be found in Alvioli et al. (2016) and Schlögel et al. (2018),
and it is beyond the scope of this work.

4 Modelling framework

We prepared four landslide susceptibility maps (LS maps),
by means of a multivariate LR model. Classification perfor-
mances were measured by means of a set of validation tests
explained in the following sections. We prepared the first two
maps using 5 m× 5 m regular grid cells as mapping units.
The two maps differ because in one case the LR model was
calibrated within the WA, and in the other case within the
ESA (described in Sect. 3.3). The third and fourth LS maps,
instead, were prepared with different mapping units, namely
with SUs (described in Sect. 3.4) instead of grid cells, where
calibration data were also changed considering data within
WA in one case and within ESA in the other. We end up with
four maps, which we name as follows: WA-PM (whole-area
pixel map), ESA-PM (effective surveyed area pixel map),
WA-SUM (whole area of the slope units map) and ESA-
SUM (effective surveyed area of slope units map).

4.1 Logistic regression

We used logistic regression (Hosmer Jr. et al., 2013), one
of the multivariate statistical approaches available in the
LAND-SE software (Rossi and Reichenbach, 2016), to build
the landslide susceptibility model in the test study area. The
method is the most used in the scientific literature (Reichen-
bach et al., 2018) and proved to be useful and reliable in
several studies (Nefeslioglu et al., 2008; Van Den Eeckhaut
et al., 2012; Trigila et al., 2015). The LR model works with
either continuous or categorical independent variables, or a
combination of the two types, regardless of whether they are
normally distributed or not (Costanzo et al., 2014).

The mathematical relationship between the dependent di-
chotomous variable (presence or absence of a landslide in
the mapping unit; Y in the following) and the n independent
variables (e.g. slope, lithology; X1, . . .,Xn), within the LR
model, reads as follows:

Y = β0 + β1X1 + . . . + βnXn , (2)

where β0 is the intercept of the model and β1, . . .,βn the
linear regression estimate coefficients. The independent (ex-
planatory) variables, X1, . . .,Xn, included in our case both
continuous and categorical layers (the latter were previ-
ously transformed into continuous variables, as described in
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Table 2. Set of environmental variables introduced for the whole-area pixel-based (WA-PM) and effective surveyed-area pixel-based (ESA-
PM) model calculation, together with the significant p-value estimate corresponding to each explanatory variable (cf. Sect. 4.1). The best
predictors were labelled with an asterisk.

Name Description Significant p value

Continuous WA-PM ESA-PM

Slope The slope gradient in degrees. 1.17× 10−189 1.06× 10−111

Sinusoidal slope The sinusoidal mathematical transformation applied to the slope
variable (Amorim, 2012)

1.00× 10−155 7.57× 10−134*

Surface area ratio The relation between the theoretical volume and the surface of
each pixel.

3.743× 10−203* 1.89× 10−99

Terrain wetness index The spatial distribution of soil moisture or saturation (Yilmaz,
2009)

9.864× 10−10* 0.126807342

Curvature The spatial variation of the slope gradient. 0.909592654 0.525989188
Plan curvature The curvature of the surface perpendicular to the direction of

the maximum slope.
0.9094261 0.525836679

Profile curvature The curvature of the surface in the direction of the maximum
slope.

0.909605174 0.526032985

Categorical

Lithology The original categories have been reclassified by expert criteria
(Geoeuskadi).

0* 0*

Permeability The original categories have been reclassified by expert criteria
(Geoeuskadi).

1.496× 10−33* 7.632× 10−72*

Regolith thickness The layer for the study area has been obtained from the litho-
logical map (Geoeuskadi).

0* 0*

Land use The original categories have been reclassified by expert criteria
(Geoeuskadi).

5.14× 10−291 1.42× 10−87

Vegetation The original categories have been reclassified by expert criteria
(Geoeuskadi).

0* 1.596× 10−173*

Aspect It represents the downslope direction measured in degrees clas-
sified in nine classes.

0* 0*

Sect. 3.2); see Table 2 for the full list of variables used in
this work. Calibrating an LR model amounts to selecting
numerical values for the {βi}i=ni=1 coefficients in Eq. (2) that
maximise the agreement between model output, i.e. landslide
probability:

P =
1

1 + e−Y
, (3)

and empirical landslide data, in a training area. The same val-
ues of the coefficients can then be used to validate the model
prediction skills in a different area, where landslide condi-
tions are unknown to the model but the same explanatory
variables layers exist.

In addition to the β coefficients, the LR method offers a
significant p value for each explanatory variable. The imple-
mentation of the glm function of the R programming lan-
guage library2, used in the LAND-SE software, is such that
it is possible to investigate the estimated standard error of a t
statistic for the null hypothesis of each of the coefficients of
the linear model. The p value represents the probability for

2https://www.r-project.org/ (last access: 6 March 2017)

the parameter to be zero: for p values smaller than 0.05 the
null hypothesis (vanishing coefficient) is rejected; thus the
associated variable is significant for the final result. So, the p
value can be considered an objective indicator for the selec-
tion of the most relevant variables to be used in the statistical
model (Schlögel et al., 2018).

4.2 Evaluation of model performance

The performance of statistical susceptibility models, i.e. of
multivariate binary classifiers, can be evaluated by compar-
ing their predictions with the landslide data used in the model
calibration/training step (i.e. model fitting performance) or
with independent landslide data (i.e. model prediction perfor-
mance). The definition of training and validation input sam-
ples is crucial to detect how well each model fits input data
but also how good the model is at predicting new data.

The statistical metrics commonly used in the literature
(Corominas and Mavrouli, 2011; Van Den Eeckhaut et al.,
2006; Lombardo et al., 2015; Reichenbach et al., 2018) for
that purpose are (i) confusion matrices (contingency tables)
and their graphical representation (four-fold or contingency

Nat. Hazards Earth Syst. Sci., 18, 2455–2469, 2018 www.nat-hazards-earth-syst-sci.net/18/2455/2018/
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plots), (ii) receiver operating characteristic (ROC) curves and
their associated area under curve (AUC) value, (iii) classifi-
cation error plots and (iv) Cohen’s kappa index.

Four-fold (or contingency) plots are visual representations
of the confusion matrices reporting the percentages of the
true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN). ROC curves are a more complex
representation of the classification performance based on dif-
ferent probabilistic threshold values. The area under the ROC
curve (AUC) is an indicator of the model performance in pre-
dicting landslide susceptibility. AUC values vary between 0
and 1, with higher values indicating better prediction skills
(Fawcett, 2006).

To estimate the uncertainty associated with the landslide
susceptibility value assigned to each mapping unit, it is pos-
sible to run multiple instances of the LR model varying,
randomly, the input data. In each run, the input is prepared
by sampling the original training data set with a bootstrap
technique, consisting of a random sampling with replace-
ment (Efron, 1992; Davison and Hinkley, 1997; Rossi et al.,
2010; Rossi and Reichenbach, 2016). Classification error
plots summarise the distribution of multiple results and show
the mean probability estimate of landslide spatial occurrence
for each mapping unit (x axis), ranked from low (left) to
high (right) values, related to the variation of the model esti-
mate (y axis), measured by 2 standard deviations (2σ ) of the
probability estimates obtained by the different model runs
(Guzzetti et al., 2006). The parabolic model fitting equation
resulting from the point cloud (i.e. using a non-linear least
square method), analytically describes the overall model pre-
diction performance variability. Cohen’s kappa index (κ) is
an additional measure of the reliability of a classification
model (Cohen, 1960; Rossi et al., 2010), with higher values
that also indicate a more accurate prediction skill.

In this study the probability of landslide occurrence result-
ing from each model estimate (trained either within the ESA
or within the WA) and for each considered mapping unit (ei-
ther grid cells or slope units) was reclassified in five land-
slide susceptibility classes, which were labelled as very low
(for susceptibility values in the range 0–0.2), low (0.2–0.45),
medium (0.45–0.55), high (0.55–0.8) and very high (0.8–1).

Moreover, in order to spatially identify the pairwise
matching degree between different model estimates, we ad-
ditionally adopted a simplified classification of the landslide
susceptibility. Each mapping unit was reclassified as stable
or unstable considering a threshold value of 0.5. The differ-
ent maps, all of which were prepared with the same mapping
unit partition, were overlapped. Then, the mismatch degree
between grid cell and SU susceptibility maps was quantified
in terms of number of mismatched mapping units and overall
mismatched area.

4.3 Data selection for landslide susceptibility

The DEM available for the study area consists of 7.91× 107

cells with 5 m resolution. For landslide susceptibility assess-
ment, both using grid cells (i.e. pixels) and SUs, we pre-
pared raster layers corresponding to each available explana-
tory variable, aligned to the DEM grid cells.

We devised a rigorous sampling procedure to minimise
possible statistical biases during training/validation partition.
The procedure is slightly different for the grid cell and SU
mapping units.

In the first case, a grid cell is considered unstable if it is
located within any landslide polygon and stable if it is out-
side the landslide boundaries. In the second case, an SU was
considered unstable depending on the percentage of landslide
area present within it. In any case, the 75 % of the unstable
mapping units together with a similar number of stable map-
ping units were used to train the LR model, and the remaining
25 %, also together with a similar number of stable mapping
units for validation. The choice of an equal number of sta-
ble and unstable mapping units was done on purpose, and
it is the standard procedure required by the LAND-SE soft-
ware for landslide susceptibility assessment, because the LR
model requires a balanced data set, in which the number of
stable and unstable cases are similar (Felicísimo et al., 2013;
Costanzo et al., 2014).

For regular grid-cell-based models, we selected at random
558 landslides (75 %) for model training and converted them
into raster layers (84 623 unstable pixels). The remaining 188
landslides (25 %) used for validation were also rasterised
(29 247 unstable pixels). This is at variance with the usual
random selection of unstable pixels, in which a given per-
centage of grid cells are sampled within landslide polygons.
Here we select whole landslides and consider all the pixels
encompassed by the landslide bodies as training/validation
samples. We ran the experiment with three different train-
ing/validation random sets, containing the above percent-
ages. This exercise allowed us to confirm that the random
selection of the landslide inventory does not affect the model
results in a relevant way, because in all the cases the model
classification performances were very similar. In order to
choose one single data set for further comparative analyses,
the data set with the best classification result was selected.
Then, training sets were selected as follows: 84 623 unstable
pixels and an equal number of stable pixels were selected as
training sets. Two different sets were selected at random, first
within WA and then within ESA. We made sure that unstable
pixels were exactly the same in the two cases, because we
wanted the only difference to be that the stable pixels were
sampled within the WA in the first case and within the ESA in
the second case. Finally, in order to guarantee the compara-
bility of the prediction performances, one unique validation
sample was created as follows: the remaining 29 247 unstable
pixels together with an equal number of stable pixels selected
at random within the remaining stable pixels within the ESA.
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Concerning the SU-based models, we first partitioned the
study area into 6907 SUs with the technique outlined in
Sect. 3.4. SU boundaries do not match those of the depen-
dent or explanatory variables layers, allowing the presence
of different classes or values inside each SU. Moreover, the
presence of one single landslide pixel within a slope unit was
not considered enough to label this SU as unstable. There-
fore, instead of arbitrarily defining a given threshold value in
order to consider an SU as unstable, we decided to use the
overall landslide density in the WA. For this reason, we con-
sidered to be unstable those SUs containing 0.15 % or more
unstable pixels and stable otherwise. We used as explanatory
variables the mean and the standard deviation of the morpho-
metric variables for each SU and the percentage of the area
covered by each class of the categorical layers. In 304 cases
the SU contained 0.15 % or more unstable pixels, so we se-
lected at random 228 of them (75 %) for training, and the
remaining 76 (25 %) were used for validation. Like in grid
cell approaches, we created two different training samples
where unstable SUs were exactly the same, and only the sta-
ble SUs vary in each case. The first training sample includes
228 stable SUs selected at random along the WA. The sec-
ond training sample includes an equal number of stable SU
units selected at random among those that at least partially
overlap the ESA. Additionally, 76 SUs labelled as unstable
were selected from the whole set for validation. The valida-
tion sample was completed by adding a random selection of
the same number of SUs labelled as stable and which at least
partially overlap the ESA. Thus, the validation sample con-
tained 152 SUs (76 unstable and 76 stable).

Eventually, since the ESA is an approximation of the real
surveyed area, we stress that we always selected stable map-
ping units for validation only if they are fully or partially
within the ESA, because no evidence exists that a mapping
unit falling entirely outside the ESA is actually free from
landslides. Moreover, if a portion of an SU falls within the
ESA, it implies that at least one part of the SU was observed.
Therefore, using this approach, we can remove at least those
SUs that were not surveyed at all.

5 Results

5.1 Susceptibility maps using grid cells

We ran the LR model using the pixel-based data sets twice:
once using the entire training pixel sample and once using the
effective training pixel sample as dependent variables. We
defined the obtained results as whole-area pixel map (WA-
PM) and effective surveyed-area pixel map (ESA-PM).

In both WA-PM and ESA-PM, we first used the same
13 explanatory variables listed in Table 2, and then we se-
lected for each model assessment the most relevant explana-
tory variables considering the collinearity between each pair
of variables and the significance (p value) of the regression

estimates (see Sect. 3.2). As a result, for each case, only the
variables marked with an asterisk in Table 2 were introduced
in the final LR analysis.

Using the validation pixel sample, we evaluated the pre-
diction skills of the pixel susceptibility maps. Inspection of
the four-fold or contingency plots (Fig. 3a, d) reveals that
WA-PM correctly predicted the 63.58 % (TP+TN) of the ob-
served unstable and stable mapping units, whereas ESA-PM
was capable of correctly predicting a higher number of map-
ping units (65.45 %). The ROC curves (Fig. 3b, e) also indi-
cate better prediction skills in ESA-PM (AUC= 0.7) than in
WA-PM (AUC= 0.68) and the same happens for the Cohen’s
kappa index (Fig. 3; k = 0.309 versus k = 0.272). Moreover,
the classification error plots (Fig. 3c, f) provide an estimate
of the error associated with the predicted susceptibility val-
ues, which do not exceed 0.1 standard deviations in any case,
highlighting the reliability of the results. And finally, the mu-
tual mismatch map (Fig. 5e) shows that 14.8 % (correspond-
ing to an extension of 293 km2) of the mapping units flipped
their landslide susceptibility class in WA-PM and ESA-PM.

5.2 Susceptibility maps using slope units

Due to the subdivision of categorical variables in classes and
to the use of mean and standard deviation of morphomet-
ric variables, the introduction of the original 13 explanatory
variables would result in 56 new variables in which many
of them (all those classes belonging to the same categori-
cal variable) would be highly correlated. For this reason, the
variable selection approach used in the pixel-based case is
not viable when working with SUs and a specific variable
selection approach for SU models would require further in-
vestigation. Thus, for this work, the most appropriate set of
explanatory variables, among those considered to be the most
relevant in pixel-based model assessment, was selected by
expert criteria. Considering this set of variables as a starting
point, we selected new sets of explanatory variables to eval-
uate landslide susceptibility using SUs, i.e. to calculate the
whole-area slope unit map (WA-SUM) and the effective area
slope unit map (ESA-SUM). Taking into account that the au-
tomatic procedure for the SU definition already included the
flow accumulation calculation, used for TWI estimation, and
the aspect component, we rejected aspect and TWI to avoid
spurious correlations. We selected the following set of vari-
ables used to produce both pixel-based maps such as lithol-
ogy, permeability, regolith thickness and vegetation, and we
added slope. The reason for choosing slope over sinusoidal
slope or SAR is due to the fact that these two are derivative
variables of the former. Moreover, we consider slope more
suitable feature to describe the average morphology within
SU than sinusoidal slope or SAR, so we decided to select it
in order to simplify our interpretation of the results.

Using the validation SU sample, we assessed the predic-
tion skills of the SU maps. For the WA-SUM the 65.13 %
of the 152 validation mapping units were correctly classified
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Figure 3. Pixel-based LR models prediction performance results: summary tables of the Cohen’s kappa index, area under the ROC curve
(AUC), overall accuracy ((TP+TN)/(TP+TN+FP+FN)) and overall error rate ((FP+FN)/(TP+TN+FP+FN)). (a, d) Four-fold or contin-
gency plots; (b, e) ROC curves; (c, f) classification error plots and the quadratic regression fit curves (red line).

(TP+TN) (Fig. 4a). The ROC curve provides AUC= 0.69,
and the corresponding Cohen’s kappa is k = 0.302 (Fig. 4b).
Concerning the classification error plot (Fig. 4c), it can be
observed that in the SUs with high and low landslide sus-
ceptibility probability (probability> 0.8 and < 0.2) the 2σ
value stays below 0.2, but variability in the estimates be-
comes larger for intermediate susceptibilities. This reveals a
considerable variation in the stable/unstable classification of
the territory, which implies low reliability, at least for the in-
termediate probabilities (Guzzetti et al., 2006). For the ESA-
SUM, 63.82 % of the 152 validation mapping units were
correctly classified (TP+TN) (Fig. 4d) with AUC= 0.71,
slightly larger with respect to the other SU model assessment,
whereas the Cohen’s kappa index performed slightly worse,
being k = 0.276 (Fig. 4). The classification error plot shows a
considerable variation in intermediate probabilities (Fig. 4f),
while the uncertainty is lower for high and low probabilities.

Nevertheless, the quadratic fit curves indicate a lower overall
variability for ESA-SUM than for WA-SUM.

Visual inspection of the SU susceptibility maps (Fig. 5b,
d) shows similarities between WA-SUM and ESA-SUM. The
difference is graphically presented through the mismatch
map (Fig. 5f), where 12.6 % of the mapping units (corre-
sponding to an extension of 247 km2) change their landslide
susceptibility class, between WA-SUM and ESA-SUM.

6 Discussion

The number of scientific publications focusing on landslide
susceptibility zonation has notably increased over the last
decades (Gutiérrez et al., 2010; Rossi and Reichenbach,
2016; Liberatoscioli et al., 2017; Valagussa et al., 2017; Zhou
et al., 2018; Reichenbach et al., 2018) and, nowadays, there
is a huge variety of applications and comparisons which pro-
vide an enormous range of approaches with which to prepare
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Figure 4. SU-based LR models prediction performance results: summary tables of the Cohen’s kappa index, area under the ROC curve
(AUC), overall accuracy ((TP+TN)/(TP+TN+FP+FN)) and overall error rate ((FP+FN)/(TP+TN+FP+FN)). (a, d) Four-fold or contin-
gency plots; (b, e) ROC curves; (c, f) classification error plots and the quadratic regression fit curves (red line).

a landslide susceptibility map. Differences between these ap-
proaches can be summarised in (i) the type of landslide in-
ventory, (ii) the environmental variables used, (iii) the map-
ping unit partition, (iv) the method used to prepare suscep-
tibility maps and (v) the scale of application. The existence
of such a big production of papers investigating these aspects
is proof that no fully consolidated standard exists for all the
steps involved in landslide susceptibility analysis.

In this work, we showed that the information contained in
a field-based landslide inventory for landslide susceptibility
analysis should be critically examined, also in combination
with the mapping unit of choice.

A fieldwork-based landslide inventory is by definition a
source of uncertainty in statistical analysis, owing to various
reasons, including mapping errors, accuracy, subjectivity and
others. The focus of this work is the analysis of an additional
uncertainty due to use of field mapping, namely the fact that
it is impossible to ensure that the study area was surveyed in a

homogeneous way. An objective delimitation of the surveyed
area by means of the ESA, proposed in this paper along with
a module to objectively delineate the ESA (see Supplement),
is one way to reduce this uncertainty.

The hypothesis tested in this work is that any statistical
landslide susceptibility model trained inside the ESA is by
definition more correct than considering the entire study area
for training the model. The statement was borne out by the re-
sults of multivariate LR model calculations. We acknowledge
that the ESA is only an approximation of the real surveyed
area, though much more realistic than usage of the whole
study area. Our definition of the ESA depends on the maxi-
mum distance between points along the field trips paths and
the selected resolution of the DEM. Preliminary tests in a re-
duced portion of the territory provided the most suitable set-
tings for a satisfactory definition of the ESA in the particular
case of Gipuzkoa Province (Sect. 3.3).
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Figure 5. (a–d) Landslide susceptibility maps represented in five classes for WA-PM, WA-SUM, ESA-PM and ESA-SUM. (e, f) Mismatch
maps representing the spatial distribution of the mapping units differently classified using ESA between pixel models and slope unit models.

In the case of the pixel-based susceptibility maps, the met-
rics of model prediction performances are in agreement with
our main statement about the relevance of ESA. As a matter
of fact, all the validation performance tests (confusion matrix
metrics, the area under the ROC curve and Cohen’s kappa
index) present an improvement if the stable pixels used for

training the LR model are selected within the ESA (like in
ESA-PM; Fig. 3a) than if they are taken from the WA (like
in WA-PM; Fig. 3b). In addition, the almost flat classifica-
tion error plots in both cases (Fig. 3c, f) show high stability
of model results. The spatial distribution of the susceptibil-
ity classes are different as well between ESA-PM and WA-
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PM (see Fig. 5a, c), and these differences are highlighted in
the mutual mismatch map (Fig. 5e). Another difference be-
tween the two pixel maps is the set of explanatory variables
selected as predictors. The variable selection approach pre-
sented in this paper and previously adopted in a similar way
in Schlögel et al. (2018) demonstrated its effectiveness and
capability in detecting the presence of redundant informa-
tion, as well as offering an objective way of choosing be-
tween collinear explanatory variables.

In the case of SU-based susceptibility maps, validation
metrics do not present us with clear-cut results as in the
pixel-based maps. As a matter of fact, AUC performs bet-
ter in ESA-SUM, while the confusion matrix and Cohen’s
kappa index present higher prediction performance in WA-
SUM (Fig. 4). The classification error plots show consider-
able variation in intermediate susceptibility probability val-
ues, but the quadratic fit curves suggest a slightly lower vari-
ability in ESA-SUM (Fig. 4c, f). We interpret these results
as an indication of a smaller effect that proper usage of the
ESA can have in SU-based susceptibility maps with respect
to pixel-based maps. Despite the small difference in model
prediction performance between WA-SUM and ESA-SUM,
the reduction of the mismatch degree (Fig. 5f) suggests that
usage of the ESA is equally recommendable for SU suscep-
tibility maps carried out by fieldwork landslide inventories.

The pixel- and SU-based maps obtained within the method
presented in this work are inherently different from a con-
ceptual point of view. We maintain that an SU-based map
probably represents a better option, because SUs bear a clear
relation with topography, reduce mapping errors and are
more useful for practical (planning) purposes. Nevertheless,
for the sake of completeness and to show differences be-
tween the two approaches, we discussed pixel-based and SU-
based maps independently. The uncertainty introduced by a
fieldwork-based landslide inventory can be mitigated by us-
ing SUs, resulting in more similar susceptibility maps and
validation performances in WA-SUM and ESA-SUM than in
pixel models.

Moreover, since the threshold value for distinguishing sta-
ble and unstable SUs could affect the LR model perfor-
mances, we performed a sensitivity test to evaluate the LR
models for both the WA and ESA, using the presence or ab-
sence of different thresholds. We carried out calculations us-
ing as a threshold the 5th percentile (P5, threshold 0.013 %),
the 50th percentile (P50, threshold 0.265 %) and the 90th per-
centile (P90, threshold 4.5 %) of areal landslide distribution,
along with the average landslide density calculated within the
ESA, i.e. 0.33 %. We observed that, for all the cases except
P90, the model tests showed better performance for ESA-
SUM than for WA-SUM, which is proof that the conclusions
obtained following any approach were indistinguishable. We
note that, because of the high threshold defined in P90, the
model was trained with a very small sample of unstable SUs,
which gives the result a very poor reliability. On the other
hand, in the P5 case, the imbalance does not take place, since

each SU with at least one landslide pixel belongs to the un-
stable class, resulting in a minimum yet relevant number of
unstable SUs. Therefore, we maintain that the results of the
test confirm that SUs mitigate the relevance of the calibration
area (ESA versus WA) when building an SU-based suscepti-
bility model with a field-based landslide inventory, indepen-
dently of the landslide presence threshold value. However,
we acknowledge that the search of an optimal threshold value
that ensures a balanced sample is a relevant point, though it
is beyond the scope of this work.

7 Conclusions

We explored the effects of training an LR classifier (Rossi
and Reichenbach, 2016) for landslide susceptibility zonation
within the area that was actually surveyed at landslide map-
ping time, the ESA and the extended study area, WA, en-
compassing the ESA. We prepared four susceptibility maps
combining variables (cf. Eq. 2 and Table 2) sampled strictly
within the ESA or from the WA with two different mapping
unit partitions, i.e. 5 m× 5 m grid cells and slope units (Alvi-
oli et al., 2016), delineated for the purpose.

A straightforward comparative analysis using standard
prediction performance metrics revealed that the ESA-based
approach is better than the WA-based approach, at least
in grid-cell mapping-unit-based approaches for the training
area (i.e. within the ESA or WA). By introducing different
mapping units in the comparison, we further found that using
slope units slightly reduces the gap between results obtained
training a statistical model within the ESA versus WA. Thus,
the capacity of the slope-unit-mapping subdivision to miti-
gate this error was demonstrated to be a suitable alternative
to the conventional pixel-based approaches.

The results illustrated above support the following state-
ments:

i. Working with pixel mapping units and training a statis-
tical classifier for LSZ within the ESA is the correct ap-
proach for reducing the uncertainty inherent to the land-
slide inventory.

ii. By working with slope unit terrain partition this uncer-
tainty can be mitigated, even though it is still advanta-
geous to train the LS model within the ESA.

iii. Use of the ESA should be considered if sufficient infor-
mation is available in preparing landslide susceptibility
maps with any multivariate statistical model.

iv. Collecting information about the path followed during
field campaigns for landslide mapping is a meaning-
ful procedure for estimating the ESA at model assess-
ment time using the GRASS GIS module r.survey.py
presented in this work.
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We acknowledge that the overall performances of the land-
slide susceptibility maps presented in this paper are of mod-
erate to low prediction capacity, with AUC values ranging
between 0.68 and 0.71 and an overall accuracy which hardly
overcomes 65 % in the best case (Figs. 3 and 4). This could
be due to (i) the lack of a more complete landslide inventory
(Guzzetti et al., 2012; Malamud et al., 2004) or (ii) the use
of not up-to-date thematic layers. Nevertheless, the prepara-
tion of a definitive landslide susceptibility map for the study
area was beyond the scope of our investigation. Instead, we
performed pairwise comparative analyses in which we only
changed, across the compared model assessments, the region
of logistic regression training.

Code availability. – The software developed in this work to de-
lineate the effective surveyed area, r.survey.py, is contained in
the Supplement

– The software developed in Alvioli et al. (2016) to para-
metrically delineate slope units, r.slopeunits, is available at
http://geomorphology.irpi.cnr.it/tools/slope-units (last access:
17 April 2017)

– The software developed in Rossi and Reichenbach (2016)
for the statistical assessment of landslide susceptibility zona-
tion, LAND-SE, is available at https://github.com/maurorossi/
LAND-SE (last access: 15 December 2016)

The Supplement related to this article is available
online at https://doi.org/10.5194/nhess-18-2455-2018-
supplement.
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D.: Recent advances in landslide investigation: is-
sues and perspectives, Geomorphology, 124, 95–101,
https://doi.org/10.1016/j.geomorph.2010.10.020, 2010.

Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M.,
and Ardizzone, F.: Probabilistic landslide hazard assess-
ment at the basin scale, Geomorphology, 72, 272–299,
https://doi.org/10.1016/j.geomorph.2005.06.002, 2005.

Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali,
M., and Galli, M.: Estimating the quality of landslide
susceptibility models, Geomorphology, 81, 166–184,
https://doi.org/10.1016/j.geomorph.2006.04.007, 2006.

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., San-
tangelo, M., and Chang, K. T.: Landslide inventory maps:
New tools for an old problem, Earth-Sci. Rev., 112, 42–66,
https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.

Herrera, G., Fernández-Merodo, J., Mulas, J., Pastor, M., Luzi, G.,
and Monserrat, O.: A landslide forecasting model using ground
based SAR data: The Portalet case study, Eng. Geol., 105, 220–
230, https://doi.org/10.1016/j.enggeo.2009.02.009, 2009.

Hosmer Jr., D. W., Lemeshow, S., and Sturdivant, R. X.: Applied
logistic regression, vol. 398, John Wiley & Sons, 2013.

IDE de Euskadi: Mapa geomorfológico de Euskadi, available at:
www.geo.euskadi.eus (last access: 23 January 2017), 2014.

INGEMISA: Inventario y Análisis de las Áreas sometidas a Riesgo
de Inestabilidades del Terreno de la C.A.P.V., Tech. rep., Eusko
Jaurlaritza, 1995.

Lee, S. and Min, K.: Statistical analysis of landslide suscep-
tibility at Yongin, Korea, Environ. Geol., 40, 1095–1113,
https://doi.org/10.1007/s002540100310, 2001.

Liberatoscioli, E., van Westen, C. J., and Soldati, M.: Assessment of
landslide susceptibility for civil protection purposes by means of
GIS and statistical analysis: lessons from the Province of Mod-
ena, Italy, Revista de Geomorfologie, 19, 29–43, 2017.

Lombardo, L., Cama, M., Conoscenti, C., Märker, M., and
Rotigliano, E.: Binary logistic regression versus stochastic gra-
dient boosted decision trees in assessing landslide susceptibility
for multiple-occurring landslide events: application to the 2009
storm event in Messina (Sicily, southern Italy), Nat. Hazards, 79,
1621–1648, 2015.

Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.:
Landslide inventories and their statistical properties, Earth Surf.

Nat. Hazards Earth Syst. Sci., 18, 2455–2469, 2018 www.nat-hazards-earth-syst-sci.net/18/2455/2018/

https://doi.org/10.1016/j.geomorph.2006.10.033
https://doi.org/10.1186/s40677-017-0073-1
https://doi.org/10.1186/s40677-017-0073-1
https://doi.org/10.1016/j.enggeo.2008.03.016
https://doi.org/10.1016/j.geomorph.2004.08.012
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1007/s10346-013-0415-3
https://doi.org/10.1016/j.geomorph.2009.09.023
https://doi.org/10.1016/j.geomorph.2004.09.025
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1007/s10346-012-0320-1
https://doi.org/10.1016/j.geomorph.2011.01.013
https://doi.org/10.5194/nhess-18-405-2018
https://doi.org/10.5194/nhess-18-405-2018
https://doi.org/10.1002/joc.2115
https://doi.org/10.1016/j.geomorph.2010.10.020
https://doi.org/10.1016/j.geomorph.2005.06.002
https://doi.org/10.1016/j.geomorph.2006.04.007
https://doi.org/10.1016/j.earscirev.2012.02.001
https://doi.org/10.1016/j.enggeo.2009.02.009
www.geo.euskadi.eus
https://doi.org/10.1007/s002540100310


T. Bornaetxea et al.: Effective surveyed area and its role in statistical landslide susceptibility assessments 2469

Proc. Land., 29, 687–711, https://doi.org/10.1002/esp.1064,
2004.

Minelli, A., Marchesini, I., Taylor, F. E., De Rosa, P.,
Casagrande, L., and Cenci, M.: An open source GIS
tool to quantify the visual impact of wind turbines and
photovoltaic panels, Environ. Impact. Assess., 49, 70–78,
https://doi.org/10.1016/j.eiar.2014.07.002, 2014.

Mondini, A. C.: Measures of Spatial Autocorrelation Changes in
Multitemporal SAR Images for Event Landslides Detection, Re-
mote Sensing, 9, 554, https://doi.org/10.3390/rs9060554, 2017.

Mücher, C. A., Klijn, J. A., Wascher, D. M., and Scham-
inée, J. H.: A new European Landscape Classification (LAN-
MAP): A transparent, flexible and user-oriented method-
ology to distinguish landscapes, Ecol. Indic., 10, 87–103,
https://doi.org/10.1016/j.ecolind.2009.03.018, 2010.

Murillo-García, F. G., Alcántara-Ayala, I., Ardizzone, F., Cardi-
nali, M., Fiourucci, F., and Guzzetti, F.: Satellite stereoscopic
pair images of very high resolution: a step forward for the de-
velopment of landslide inventories, Landslides, 12, 277–291,
https://doi.org/10.1007/s10346-014-0473-1, 2015.

Nefeslioglu, H., Gokceoglu, C., and Sonmez, H.: An assess-
ment on the use of logistic regression and artificial neural
networks with different sampling strategies for the prepara-
tion of landslide susceptibility maps, Eng. Geol., 97, 171–191,
https://doi.org/10.1016/j.enggeo.2008.01.004, 2008.

Petley, D., Dunning, S., Rosser, N., and Hungr, O.: The analysis of
global landslide risk through the creation of a database of world-
wide landslide fatalities, Landslide risk management, Balkema,
Amsterdam, 367–374, 2005.

Reichenbach, P., Rossi, M., Malamud, B., Mihir, M.,
and Guzzetti, F.: A review of statistically-based land-
slide susceptibility models, Earth-Sci. Rev., 180, 60–91,
https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.

Rodrigues, M., Montañés, C., and Fueyo, N.: A method for the as-
sessment of the visual impact caused by the large-scale deploy-
ment of renewable-energy facilities, Environ. Impact Asses., 30,
240–246, https://doi.org/10.1016/j.eiar.2009.10.004, 2010.

Rosi, A., Tofani, V., Tanteri, L., Stefanelli, C. T., Agostini, A.,
Catani, F., and Casagli, N.: The new landslide inventory of Tus-
cany (Italy) updated with PS-InSAR: geomorphological features
and landslide distribution, Landslides, 15, 5–19, 2018.

Rossi, M. and Reichenbach, P.: LAND-SE: a software for statisti-
cally based landslide susceptibility zonation, version 1.0, Geosci.
Model Dev., 9, 3533–3543, https://doi.org/10.5194/gmd-9-3533-
2016, 2016.

Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C.,
and Peruccacci, S.: Optimal landslide susceptibility zonation
based on multiple forecasts, Geomorphology, 114, 129–142,
https://doi.org/10.1016/j.geomorph.2009.06.020, 2010.

Santacana Quintas, N.: Análisis de la susceptibilidad del terreno a
la formación de deslizamientos superficiales y grandes desliza-
mientos mediante el uso de sistemas de información geográfica,
Aplicación a la cuenca alta del río Llobregat, PhD thesis, Uni-
versitat Politècnica de Catalunya, Barcelona, available at: https:
//www.tdx.cat/handle/10803/6213 (last access: 15 July 2015),
2001.

Santangelo, M., Marchesini, I., Bucci, F., Cardinali, M., Fiorucci,
F., and Guzzetti, F.: An approach to reduce mapping errors
in the production of landslide inventory maps, Nat. Hazards

Earth Syst. Sci., 15, 2111–2126, https://doi.org/10.5194/nhess-
15-2111-2015, 2015.

Schicker, R. D.: Quantitative landslide susceptibility assessment of
the Waikato region using GIS, PhD thesis, The University of
Waikato, 2010.

Schlögel, R., Marchesini, I., Alvioli, M., Reichenbach, P., Rossi,
M., and Malet, J. P.: Optimizing landslide susceptibility zona-
tion: Effects of DEM spatial resolution and slope unit delin-
eation on logistic regression models, Geomorphology, 301, 10–
20, https://doi.org/10.1016/j.geomorph.2017.10.018, 2018.

Trigila, A., Iadanza, C., Esposito, C., and Scarascia-Mugnozza,
G.: Comparison of Logistic Regression and Random Forests
techniques for shallow landslide susceptibility assessment in
Giampilieri (NE Sicily, Italy), Geomorphology, 249, 119–136,
https://doi.org/10.1016/j.geomorph.2015.06.001, 2015.

Valagussa, A., Frattini, P., Crosta, G. B., Valbuzzi, E., and Gam-
bini, S.: Regional landslide susceptibility analysis following the
2015 Nepal Earthquake, in: Workshop on World Landslide Fo-
rum, Springer, 1035–1042, 2017.

Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G.,
Verstraeten, G., and Vandekerckhove, L.: Prediction of landslide
susceptibility using rare events logistic regression: a case-study
in the Flemish Ardennes (Belgium), Geomorphology, 76, 392–
410, https://doi.org/10.1016/j.geomorph.2005.12.003, 2006.

Van Den Eeckhaut, M., Hervás, J., Jaedicke, C., Malet, J. P., Mon-
tanarella, L., and Nadim, F.: Statistical modelling of Europe-
wide landslide susceptibility using limited landslide inventory
data, Landslides, 9, 357–369, https://doi.org/10.1007/s10346-
011-0299-z, 2012.

Wang, F., Xu, P., Wang, C., Wang, N., and Jiang, N.: Applica-
tion of a GIS-Based Slope Unit Method for Landslide Sus-
ceptibility Mapping along the Longzi River, Southeastern Ti-
betan Plateau, China, ISPRS Int. J. Geo-Inf., 6, 172 pp.,
https://doi.org/10.3390/ijgi6060172, 2017.

Wang, Y. T., Seijmonsbergen, A. C., Bouten, W., and Chen, Q. T.:
Using statistical learning algorithms in regional landslide suscep-
tibility zonation with limited landslide field data, J. Mt. Sci., 12,
268–288, https://doi.org/10.1007/s11629-014-3134-x, 2015.

Yesilnacar, E. and Topal, T.: Landslide susceptibility mapping: a
comparison of logistic regression and neural networks methods
in a medium scale study, Hendek region (Turkey), Eng. Geol., 79,
251–266, https://doi.org/10.1016/j.enggeo.2005.02.002, 2005.

Yilmaz, I.: Landslide susceptibility mapping using fre-
quency ratio, logistic regression, artificial neural net-
works and their comparison: a case study from Kat land-
slides (Tokat–Turkey), Comput. Geosci., 35, 1125–1138,
https://doi.org/10.1016/j.cageo.2008.08.007, 2009.

Zêzere, J., Pereira, S., Melo, R., Oliveira, S., and Gar-
cia, R.: Mapping landslide susceptibility using data-
driven methods, Sci. Total Environ., 589, 250–267,
https://doi.org/10.1016/j.scitotenv.2017.02.188, 2017.

Zhou, C., Yin, K., Cao, Y., Ahmed, B., Li, Y., Catani, F., and
Pourghasemi, H. R.: Landslide susceptibility modeling apply-
ing machine learning methods: A case study from Longju in the
Three Gorges Reservoir area, China, Comput. Geosci., 112, 23–
37, https://doi.org/10.1016/j.cageo.2017.11.019, 2018.

www.nat-hazards-earth-syst-sci.net/18/2455/2018/ Nat. Hazards Earth Syst. Sci., 18, 2455–2469, 2018

https://doi.org/10.1002/esp.1064
https://doi.org/10.1016/j.eiar.2014.07.002
https://doi.org/10.3390/rs9060554
https://doi.org/10.1016/j.ecolind.2009.03.018
https://doi.org/10.1007/s10346-014-0473-1
https://doi.org/10.1016/j.enggeo.2008.01.004
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1016/j.eiar.2009.10.004
https://doi.org/10.5194/gmd-9-3533-2016
https://doi.org/10.5194/gmd-9-3533-2016
https://doi.org/10.1016/j.geomorph.2009.06.020
https://www.tdx.cat/handle/10803/6213
https://www.tdx.cat/handle/10803/6213
https://doi.org/10.5194/nhess-15-2111-2015
https://doi.org/10.5194/nhess-15-2111-2015
https://doi.org/10.1016/j.geomorph.2017.10.018
https://doi.org/10.1016/j.geomorph.2015.06.001
https://doi.org/10.1016/j.geomorph.2005.12.003
https://doi.org/10.1007/s10346-011-0299-z
https://doi.org/10.1007/s10346-011-0299-z
https://doi.org/10.3390/ijgi6060172
https://doi.org/10.1007/s11629-014-3134-x
https://doi.org/10.1016/j.enggeo.2005.02.002
https://doi.org/10.1016/j.cageo.2008.08.007
https://doi.org/10.1016/j.scitotenv.2017.02.188
https://doi.org/10.1016/j.cageo.2017.11.019

	Abstract
	Introduction
	Study area
	Data preparation
	Landslide inventory
	Explanatory variables
	Definition of the effective surveyed area
	Slope unit delineation

	Modelling framework
	Logistic regression
	Evaluation of model performance
	Data  selection for landslide susceptibility

	Results
	Susceptibility maps using grid cells
	Susceptibility maps using slope units

	Discussion
	Conclusions
	Code availability
	Author contributions
	Competing interests
	Acknowledgements
	References

