Articles | Volume 16, issue 11
https://doi.org/10.5194/nhess-16-2303-2016
https://doi.org/10.5194/nhess-16-2303-2016
Research article
 | 
02 Nov 2016
Research article |  | 02 Nov 2016

Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes

Cesar Vera Valero, Nander Wever, Yves Bühler, Lukas Stoffel, Stefan Margreth, and Perry Bartelt

Related authors

Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout
Cesar Vera Valero, Nander Wever, Marc Christen, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 18, 869–887, https://doi.org/10.5194/nhess-18-869-2018,https://doi.org/10.5194/nhess-18-869-2018, 2018
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Glide-snow avalanches: a mechanical, threshold-based release area model
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024,https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024,https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary

Cited articles

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002.
Bartelt, P. and McArdell, B.: Granulometric investigations of snow avalanches, J. Glaciol., 55, 829–833, 2009.
Bartelt, P., Buser, O., and Kern, M.: Dissipated work, stability and the internal flow structure of granular snow avalanches, J.  Glaciol., 51, 125–138, 2005.
Bartelt, P., Buser, O., and Platzer, K.: Fluctuation-dissipation relations for granular snow avalanches, J. Glaciol., 52, 631–643, 2006.
Bartelt, P., Feistl, T., Bühler, Y., and Buser, O.: Overcoming the stauchwall: Viscoelastic stress redistribution and the start of full-depth gliding snow avalanches, Geophys. Res. Lett., 39, L16501, https://doi.org/10.1029/2012GL052479, 2012c.
Download
Short summary
Simulating medium–small avalanches operationally on a mine service road allows avalanche hazard to be assessed on the mine transportation route. Using accurate data from the snow cover and the avalanche paths, the avalanche dynamic model developed can calculate the avalanche runout distances and snow volumes of the deposits. The model does not predict whether the avalanche is coming or not, but if it comes, the model will predict runout distances and mass of the deposits.
Altmetrics
Final-revised paper
Preprint