Articles | Volume 15, issue 6
https://doi.org/10.5194/nhess-15-1399-2015
https://doi.org/10.5194/nhess-15-1399-2015
Research article
 | 
30 Jun 2015
Research article |  | 30 Jun 2015

Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides

C. Lissak, O. Maquaire, J.-P. Malet, F. Lavigne, C. Virmoux, C. Gomez, and R. Davidson

Related authors

Surface dynamics and history of the calving cycle of Astrolabe Glacier (Adélie Coast, Antarctica) derived from satellite imagery
Floriane Provost, Dimitri Zigone, Emmanuel Le Meur, Jean-Philippe Malet, and Clément Hibert
The Cryosphere, 18, 3067–3079, https://doi.org/10.5194/tc-18-3067-2024,https://doi.org/10.5194/tc-18-3067-2024, 2024
Short summary
Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate
Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff
Earth Surf. Dynam., 12, 641–656, https://doi.org/10.5194/esurf-12-641-2024,https://doi.org/10.5194/esurf-12-641-2024, 2024
Short summary
Timing landslide and flash flood events from SAR satellite: a regionally applicable methodology illustrated in African cloud-covered tropical environments
Axel A. J. Deijns, Olivier Dewitte, Wim Thiery, Nicolas d'Oreye, Jean-Philippe Malet, and François Kervyn
Nat. Hazards Earth Syst. Sci., 22, 3679–3700, https://doi.org/10.5194/nhess-22-3679-2022,https://doi.org/10.5194/nhess-22-3679-2022, 2022
Short summary
Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022,https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
CLIFF CHANGE DETECTION USING SIAMESE KPCONV DEEP NETWORK ON 3D POINT CLOUDS
I. de Gélis, Z. Bessin, P. Letortu, M. Jaud, C. Delacourt, S. Costa, O. Maquaire, R. Davidson, T. Corpetti, and S. Lefèvre
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 649–656, https://doi.org/10.5194/isprs-annals-V-3-2022-649-2022,https://doi.org/10.5194/isprs-annals-V-3-2022-649-2022, 2022

Related subject area

Landslides and Debris Flows Hazards
An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas
Chenchen Qiu and Xueyu Geng
Nat. Hazards Earth Syst. Sci., 25, 709–726, https://doi.org/10.5194/nhess-25-709-2025,https://doi.org/10.5194/nhess-25-709-2025, 2025
Short summary
Identifying unrecognised risks to life from debris flows
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
Nat. Hazards Earth Syst. Sci., 25, 647–656, https://doi.org/10.5194/nhess-25-647-2025,https://doi.org/10.5194/nhess-25-647-2025, 2025
Short summary
Predicting the thickness of shallow landslides in Switzerland using machine learning
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025,https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary
Unraveling landslide failure mechanisms with seismic signal analysis for enhanced pre-survey understanding
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
Nat. Hazards Earth Syst. Sci., 25, 451–466, https://doi.org/10.5194/nhess-25-451-2025,https://doi.org/10.5194/nhess-25-451-2025, 2025
Short summary
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary

Cited articles

Annan, A. P.: GPR methods for hydrogeological studies, in: Hydrogeophysics, edited by: Rubin, Y. and Hubbard, S. S., Water and Science Technology Library, Springer, the Netherlands, 185–213, 2005.
Baldi, P., Cenni, N., Fabris, M., and Zanutta, A.: Kinematics of a landslide derived from archival photogrammetry and GPS data, Geomorphology, 102, 435–444, 2008.
Ballais, J.-L., Maquaire, O., and Ballais, H.: Esquisse d'une histoire des mouvements de terrain dans le Calvados depuis 2 siècles, in: Actes du Colloque "Mouvements de terrain", Documents du BRGM, 83, BRGM, Orléans, 476–483, 1984.
Bichler, A., Bobrowsky, P., Best, M., Douma, M., Hunter, J., Calvert, T., and Burns, R.: Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide, Landslide, 1, 29–40, 2004.
Carpentier, S., Konz, M., Fischer, R., Anagnostopoulos, G., Meusburger, K., and Schoeck, K.: Geophysical imaging of shallow subsurface topography and its implication for shallow landslide susceptibility in the Urseren Valley, Switzerland, J. Appl. Geophys., 83, 46–56, 2012.
Download
Short summary
The objective of this paper is to demonstrate the applicability of ground-penetrating radar (GPR) for monitoring the displacement of permanent slow-moving landslides affected by seasonal kinematic pattern and acceleration events. GPR data are used here to estimate the vertical movement of two rotational slides, since 1982, in combination with other surveying techniques.
Share
Altmetrics
Final-revised paper
Preprint