Articles | Volume 14, issue 8
https://doi.org/10.5194/nhess-14-2249-2014
https://doi.org/10.5194/nhess-14-2249-2014
Research article
 | 
28 Aug 2014
Research article |  | 28 Aug 2014

Modelling wildland fire propagation by tracking random fronts

G. Pagnini and A. Mentrelli

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data
Adrián Cardíl, Victor M. Tapia, Santiago Monedero, Tomás Quiñones, Kerryn Little, Cathelijne R. Stoof, Joaquín Ramirez, and Sergio de-Miguel
Nat. Hazards Earth Syst. Sci., 23, 361–373, https://doi.org/10.5194/nhess-23-361-2023,https://doi.org/10.5194/nhess-23-361-2023, 2023
Short summary
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023,https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023,https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
A data-driven model for Fennoscandian wildfire danger
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023,https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Equivalent hazard magnitude scale
Yi Victor Wang and Antonia Sebastian
Nat. Hazards Earth Syst. Sci., 22, 4103–4118, https://doi.org/10.5194/nhess-22-4103-2022,https://doi.org/10.5194/nhess-22-4103-2022, 2022
Short summary

Cited articles

Alexander, M. E.: Calculating and interpreting forest fire intensities, Can. J. Bot., 60, 349–357, 1982.
Almeida, R. M. and Macau, E. E. N.: Stochastic cellular automata model for wildland fire spread dynamics, J. Phys. Conf. Ser., 285, 012038, https://doi.org/10.1088/1742-6596/285/1/012038, 2011.
Asensio, M. I. and Ferragut, L.: On a wildland fire model with radiation, Int. J. Numer. Meth. Engng., 54, 137–157, 2002.
Babak, P., Bourlioux, A., and Hillen, T.: The effect of wind on the propagation of an idealized forest fire, SIAM J. Appl. Math., 70, 1364–1388, 2009.
Balbi, J. H., Rossi, J. L., Marcelli, T., and Santoni, P. A.: A 3D physical real-time model of surface fires across fuel beds, Combust. Sci. Technol., 179, 2511–2537, 2007.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Altmetrics
Final-revised paper
Preprint