Articles | Volume 14, issue 8
https://doi.org/10.5194/nhess-14-2249-2014
https://doi.org/10.5194/nhess-14-2249-2014
Research article
 | 
28 Aug 2014
Research article |  | 28 Aug 2014

Modelling wildland fire propagation by tracking random fronts

G. Pagnini and A. Mentrelli

Related authors

RandomFront 2.3: a physical parameterisation of fire spotting for operational fire spread models – implementation in WRF-SFIRE and response analysis with LSFire+
Andrea Trucchia, Vera Egorova, Anton Butenko, Inderpreet Kaur, and Gianni Pagnini
Geosci. Model Dev., 12, 69–87, https://doi.org/10.5194/gmd-12-69-2019,https://doi.org/10.5194/gmd-12-69-2019, 2019
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024,https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024,https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary

Cited articles

Alexander, M. E.: Calculating and interpreting forest fire intensities, Can. J. Bot., 60, 349–357, 1982.
Almeida, R. M. and Macau, E. E. N.: Stochastic cellular automata model for wildland fire spread dynamics, J. Phys. Conf. Ser., 285, 012038, https://doi.org/10.1088/1742-6596/285/1/012038, 2011.
Asensio, M. I. and Ferragut, L.: On a wildland fire model with radiation, Int. J. Numer. Meth. Engng., 54, 137–157, 2002.
Babak, P., Bourlioux, A., and Hillen, T.: The effect of wind on the propagation of an idealized forest fire, SIAM J. Appl. Math., 70, 1364–1388, 2009.
Balbi, J. H., Rossi, J. L., Marcelli, T., and Santoni, P. A.: A 3D physical real-time model of surface fires across fuel beds, Combust. Sci. Technol., 179, 2511–2537, 2007.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Altmetrics
Final-revised paper
Preprint