Articles | Volume 13, issue 12
https://doi.org/10.5194/nhess-13-3395-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-13-3395-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Toward a possible next geomagnetic transition?
A. De Santis
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 2, Roma, Italy
Università "G. D'Annunzio", Campus Universitario, Chieti, Italy
E. Qamili
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 2, Roma, Italy
Northeastern University, Shenyang, China
China University of Mining and Technology, Xuzhou, China
Related authors
No articles found.
Jiateng Guo, Xuechuang Xu, Luyuan Wang, Xulei Wang, Lixin Wu, Mark Jessell, Vitaliy Ogarko, Zhibin Liu, and Yufei Zheng
Geosci. Model Dev., 17, 957–973, https://doi.org/10.5194/gmd-17-957-2024, https://doi.org/10.5194/gmd-17-957-2024, 2024
Short summary
Short summary
This study proposes a semi-supervised learning algorithm using pseudo-labels for 3D geological modelling. We establish a 3D geological model using borehole data from a complex real urban local survey area in Shenyang and make an uncertainty analysis of this model. The method effectively expands the sample space, which is suitable for geomodelling and uncertainty analysis from boreholes. The modelling results perform well in terms of spatial morphology and geological semantics.
Jiateng Guo, Zhibin Liu, Xulei Wang, Lixin Wu, Shanjun Liu, and Yunqiang Li
Geosci. Model Dev., 17, 847–864, https://doi.org/10.5194/gmd-17-847-2024, https://doi.org/10.5194/gmd-17-847-2024, 2024
Short summary
Short summary
This study proposes a 3D and temporally dynamic (4D) geological modeling method. Several simulation and actual cases show that the 4D spatial and temporal evolution of regional geological formations can be modeled easily using this method with smooth boundaries. The 4D modeling system can dynamically present the regional geological evolution process under the timeline, which will be helpful to the research and teaching on the formation of typical and complex geological features.
Filomena Catapano, Stephan Buchert, Enkelejda Qamili, Thomas Nilsson, Jerome Bouffard, Christian Siemes, Igino Coco, Raffaella D'Amicis, Lars Tøffner-Clausen, Lorenzo Trenchi, Poul Erik Holmdahl Olsen, and Anja Stromme
Geosci. Instrum. Method. Data Syst., 11, 149–162, https://doi.org/10.5194/gi-11-149-2022, https://doi.org/10.5194/gi-11-149-2022, 2022
Short summary
Short summary
The quality control and validation activities performed by the Swarm data quality team reveal the good-quality LPs. The analysis demonstrated that the current baseline plasma data products are improved with respect to previous baseline. The LPs have captured the ionospheric plasma variability over more than half of a solar cycle, revealing the data quality dependence on the solar activity. The quality of the LP data will further improve promotion of their application to a broad range of studies.
Cited articles
Amit, H., Leonhardt, R., and Wicht, J.: Polarity reversals from paleomagnetic observations and numerical dynamo simulations, Space Sci. Rev., 155, 293–335, 2010.
Aubert, J., Aurnou, J., and J. Wicht, J.: The magnetic structure of convection-driven numerical dynamos, Geophys. J. Int., 172, 945–956, 2008.
Bowman, D. D., Ouillon, G., Sammis, C. G., Sornette, A., and Sornette, D.: An observational test of the critical earthquake concept, J. Geophys. Res., 103, 24359–24372, 1998.
Brée, D. S. and Joseph, N. L.: Testing for financial crashes using the log periodic power law model, International Review Financial Analysis, 30, 287–297, 2013.
Bufe, C. G. and Varnes, D. J.: Predictive modelling of the seismic cycle of the Greater San Francisco Bay region, J. Geophys. Res., 98, 9871–9883, 1993.
Bunde, A., Kropp, J., and Schellnhuber, H. J.: The Science of Disasters. Climate disruptions, heart attacks, and market crashes, Springer Berlin, 2002.
Cande, S. C. and Ken, D. V.: Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic, J. Geophys. Res., 100, 6093–6095, 1995.
Christensen, U. R.: Geodynamo models: Tools for understanding properties of the Earth's magnetic field, Phys. Earth Planet. Int., 187, 157–169, 2011.
Church, J. A. and White, N. J.: Sea-level rise from the late 19th to the early 21st century, Surv. Geophys., 32, 585–602, 2011.
Constable, C. G.: Modelling the geomagnetic field from syntheses of paleomagnetic data, Phys. Earth Planet. Int., 187, 109–117, 2011.
Constable, C. G. and Korte, M.: Is Earth's magnetic field reversing?, Earth Planet. Sci. Lett., 246, 1–16, 2006.
Courtillot V. and Besse J.: Magnetic Field Reversals, Polar Wander, and Core-Mantle Coupling, Science, 237, 1140–1145, 1987.
Dakos, V., Carpenter, S. R., Brock, W. A., Ellison, A. M., Guttal, V., Ives, A. R., Kéfi, S., Livina, V., Seekell, D. A., van Nes, E. H., and Scheffer, M.: Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data, PLoS One, 7, e41010, https://doi.org/10.1371/journal.pone.0041010, 2012.
De Santis, A.: How persistent is the present trend of the geomagnetic field to decay and, possibly, to reverse?, Phys. Earth Planet. Int., 162, 217–226, 2007.
De Santis, A.: Erratum to "How persistent is the present trend of the geomagnetic field to decay and, possibly, to reverse?", Phys. Earth Plan. Int., 170, p. 149, 2008.
De Santis, A. and Qamili, E.: Are we going towards a global planetary magnetic change? 1st WSEAS International Conference on Environmental and Geological Science and Engineering (EG'08), 149–152, 2008.
De Santis, A. and Qamili, E.: Shannon information of the geomagnetic field of the past 7000 years, Nonlin. Proc. Geophys., 17, 77–84, 2010a.
De Santis, A. and Qamili, E.: Equivalent monopole source of the geomagnetic South Atlantic Anomaly, Pure Appl. Geophys., 167, 339–347, 2010b.
De Santis, A., Tozzi, R., and Gaya-Piqué, L.R.: Information content and K-Entropy of the present geomagnetic field, Earth Planet. Sci. Lett., 218, 269–275, 2004.
De Santis, A., Cianchini, G., Qamili, E., and Frepoli, A.: The 2009 L'Aquila (Central Italy) seismic sequence as a chaotic process, Tectonophysics, 496, 44–52, 2010.
De Santis, A., Qamili, E., Spada, G., and Gasperini, P.: Geomagnetic South Atlantic Anomaly and global sea level rise: a direct connection?, J. Atmos. Sol. Terr. Phys., 74, 129–135, 2012.
Finlay, C. C.: Historical variation of the geomagnetic axial dipole, Phys. Earth Planet. Int., 170, 1–14, 2008.
Finlay, C. C., Maus, S., Beggan, C. D., Hamoudi, M., Lowes, F. J., Olsen, N., and Thebault, E.: Evaluation of candidate geomagnetic field models for IGRF-11, Earth Planets Space, 62, 787–804, 2010.
Glatzmaier, G. A. and Roberts, P. H.: A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, 377, 203–209, 1995.
Gross, S. and Rundle, J.: A systematic test of time-to-failure analysis, Geophys. J. Int., 133, 57–64, 1998.
Gubbins, D.: Mechanism for geomagnetic polarity reversals, Nature, 326, 167–169, 1987.
Gubbins, D., Jones, A. L., and Finlay, C. C.: Fall in Earth's Magnetic Field is erratic, Science, 312, 900–902, 2006.
Hulot, G., Eymin, C., Langlais, B., Mandea, M., and Olsen, N.: Small-scale structure of the geodynamo inferred from Øersted and Magsat satellite data, Nature, 416, 620–623, 2002.
Hulot, G., Lhuillier, F., and Aubert, J.: Earth's dynamo limit of predictability, Geophys. Res. Lett., 37, L06305, https://doi.org/10.1029/2009GL041869, 2010.
Jackson, A., Jonkers, A. R. T., and Walker, M. R.: Four centuries of geomagnetic secular variation from historical records, Philos. Trans. R. Soc. Lond. A, 358, 957–990, 2000.
Jacobs, J. A.: Reversals of the Earth's magnetic field, 2nd Edition, Cambridge University Press, Cambridge, UK, 346 pp., 1994.
Jevrejeva, S., Moore, J. C., Grinsted, A., and Woodworth, P. L.: Recent global sea level acceleration started over 200 years ago?, Geophys. Res. Lett., 35, L08715, https://doi.org/10.1029/2008GL033611, 2008.
Leonhardt, R. and Fabian, K.: Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: iterative Bayesian inversion and independent verification, Earth Planet. Sci. Lett., 253, 172–195, 2007.
Leonhardt, R., Fabian, K. Winklhofer, M. Ferk, A. Kissel, C., and Laj, C.: Geomagnetic field evolution during the Laschamp excursion, Earth Planet. Sci. Lett., 278, 87–95, 2009.
Lowes, F. J.: Spatial power spectrum of the main geomagnetic field, and extrapolation to the core, Geoph. J. R. Astr. Soc., 36, 717–730, 1974.
Malin, S. R. C.: Sesquicentenary of Gauss's first measurement of the absolute value of magnetic intensity, Philos. Trans. R. Soc. Lond. A, 306, 5–8, 1982.
May, R. M., Levin, S. A., and Sugihara, G.: Ecology for bankers, Nature, 451, 893–895, 2008.
Merrill, R. T. and McElhinny, M. W.: The Earth's Magnetic Field (Its History, Origin and Planetary Perspective), Academic Press, San Diego, 1983.
Mignan, A.: Retrospective on the Accelerating Seismic Release (ASR) hypothesis: controversy and new horizons, Tectonophysics, 505, 1–16, 2011.
Mörner, N.-A.: Estimating future sea level changes from past records, Global Planet. Change, 40, 49–54, 2004.
Mörner, N.-A.: Some problems in reconstruction of mean sea and its changes with time, Quatern. Int., 221, 3–8, 2010.
Nowaczyk, N. R., Arz, H. W., Frank, H. W., Kind, J., and Plessen, B.: Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments, Earth Planet. Sci. Lett., 351, 54–69, 2012.
Olson, P. and Amit, H.: Changes in earth's dipole, Naturwissenschaften, 93, 519–542, 2006.
Olson, P., Driscoll, P., and Amit, H.: Dipole collapse and reversal precursors in a numerical dynamo, Phys. Earth Planet. Int., 173, 121–140, 2009.
Raup D. M.: Magnetic Reversals and Mass extinctions, Nature, 314, 341–343, 1985.
Scheffer, M.: Critical Transitions in Nature and Society. Princeton Univ. Press, 2009.
Scheffer, M., Bascompte, J., Brock, W., Brokvin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., and Sugihara, G.: Early-warning signals for critical transitions, Nature, 461, 53–59, 2009.
Sornette, D.: Why stock markets crash. Critical events in complex financial systems, Princeton Univ. Press, Oxford, 2003.
Sornette, D.: Critical Phenomena in Natural Sciences, Second Ed. Springer, Berlin, 2006.
Sornette, D. and Sammis, C.: Complex critical exponents from renormalization group theory of earthquakes: implications for earthquake predictions, J. Phys. I France, 5, 607–619, 1995.
Stanley, H. E.: Phase transition and critical phenomena, Clarendon Press, New York, 1971.
Takahashi, F., Matsushima, M., and Honkura, Y.: Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth simulator, Science, 309, 459–461, 2005.
Vandewalle, N., Ausolos, M., Boveraus, P., and Minguet, A.: How the financial crash of October 1997 could have been predicted, Eur. Phys. J. B., 4, 139–141, 1998.
Wicht, J. and Christensen, U. R.: Torsional oscillations in dynamo simulations, Geophys. J. Int., 181, 1367–1380, 2010.
Wicht, J. and Olson P.: A detailed study of the polarity reversal mechanism in a numerical dynamo model, Geochem. Geophys. Geosyst., 5, Q03H10, https://doi.org/10.1029/2003GC000602, 2004.
Wicht, J., Stellmach, S., and Harder, H.: Numerical models of the geodynamo: from fundamental Cartesian models to 3-D simulations of field reversals, edited by: Glassmeier, K. H., Soffel, H., and Negendank, J. F. W., Geomagnetic field variations. Springer, Berlin, 107–158, 2009.
Woo, G.: Calculating Catastrophe, Imperial College Press, 355 pp., 2011.