Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-183-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-183-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
Sanja Bernat Gazibara
Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
Mauro Rossi
Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, 06128 Perugia, Italy
Snježana Mihalić Arbanas
Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
Related authors
No articles found.
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025, https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Short summary
This study proposes a novel systematic workflow that integrates source area identification, deterministic runout modelling, the classification of runout outputs to derive susceptibility zonation, and robust procedures for validation and comparison. The proposed approach enables the integration and comparison of different modelling, introducing a robust and consistent workflow/methodology that allows us to derive and verify rockfall susceptibility zonation, considering different steps.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022, https://doi.org/10.5194/gmd-15-5651-2022, 2022
Short summary
Short summary
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The software integrates, extends, and completes LAND-SE (Rossi et al., 2010; Rossi and Reichenbach, 2016). The software is implemented in R, a free software environment for statistical computing and graphics, and gives expert users the possibility to perform easier, more flexible, and more informed statistically based landslide susceptibility applications and zonations.
Cited articles
Ballabio, C. and Sterlacchini, S.: Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy, Math. Geosci., 44, 47–70, https://doi.org/10.1007/s11004-011-9379-9, 2012.
Bernat, S., Mihalić Arbanas, S., and Krkač, M.: Landslides triggered in the continental part of Croatia by extreme precipitation in 2013, in: Engineering geology for society and territory, Landslide Process., 2, 1599–1603, 2014a.
Bernat, S., Mihalić Arbanas, S., and Krkač, M.: Inventory of precipitation triggered landslides in the winter of 2013 in Zagreb (Croatia, Europe), in: Proceedings of the 3rd World Landslide Forum, Landslide Science for a Safer Geoenvironment: Volume 2: Methods of Landslide Studies, 3rd World Landslide Forum, Beijing, China, 2–6 June 2014, 829–836, 2014b
Bernat Gazibara, S., Krkač, M., Sečanj, M., and Mihalić Arbanas, S.: Identification and Mapping of Shallow Landslides in the City of Zagreb (Croatia) Using the LiDAR–Based Terrain Model, in: Advancing Culture of Living with Landslides, Springer International Publishing, Cham, 1093–1100, https://doi.org/10.1007/978-3-319-53498-5_124, 2017.
Bernat Gazibara, S., Krkač, M., and Mihalić Arbanas, S.: Verification of historical landslide inventory maps for the Podsljeme area in the City of Zagreb using LiDAR-based landslide inventory, The Mining-Geology-Petroleum Engineering Bulletin, 34, 45–58, https://doi.org/10.17794/rgn.2019.1.5, 2019a.
Bernat Gazibara, S., Krkač, M., and Mihalić Arbanas, S.: Landslide inventory mapping using LiDAR data in the City of Zagreb (Croatia), J. Maps, 15, 773–779, https://doi.org/10.1080/17445647.2019.1671906, 2019b.
Bernat Gazibara, S., Mihalić Arbanas, S., Sinčić, M., Krkač, M., Lukačić, H., Jagodnik, P., and Arbanas, Ž.: LandSlidePlan -Scientific research project on landslide susceptibility assessment in large scale, in: Proceedings of the 5th regional symposium on landslides in Adriatic – Balkan Region, 5th regional symposium on landslides in Adriatic – Balkan Region, Rijeka, Croatia, 23–26 March, 99–106, 2022.
Bernat Gazibara, S., Sinčić, M., Krkač, M., Lukačić, H., and Mihalić Arbanas, S.: Landslide susceptibility assessment on a large scale in the Podsljeme area, City of Zagreb (Croatia), J. Maps, 19, 1–11, https://doi.org/10.1080/17445647.2022.2163197, 2023.
Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W.: Discrete Multivariate Analysis: Theory and Practice, 557 pp., https://doi.org/10.1177/014662167700100218, 1975.
Bonham-Carter, G. F., Agterberg, F. P., and Wright, D. F.: Weights of evidence modelling: a new approach to mapping mineral potential, Geological Survey of Canada, 89-9, https://doi.org/10.4095/128059, 1990.
Bonham-Carter, G. F.: Geographic Information Systems for Geoscientists: Modelling with GIS, Pergamon, Ottawa, ISBN 0080424201, 1994.
Bornaetxea, T., Rossi, M., Marchesini, I., and Alvioli, M.: Effective surveyed area and its role in statistical landslide susceptibility assessments, Nat. Hazards Earth Syst. Sci., 18, 2455–2469, https://doi.org/10.5194/nhess-18-2455-2018, 2018.
Brabb, E. E.: Innovative Approaches to Landslide Hazard Mapping, in: Proceedings of 4th International Symposium on Landslides, 307–324, 1984.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Catani, F., Lagomarsino, D., Segoni, S., and Tofani, V.: Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues, Nat. Hazards Earth Syst. Sci., 13, 2815–2831, https://doi.org/10.5194/nhess-13-2815-2013, 2013.
Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., and Ma, J.: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility, Catena (Amst), 151, 147–160, https://doi.org/10.1016/j.catena.2016.11.032, 2017.
Chung, C. J. F. and Fabbri, A. G.: Probabilistic Prediction Models for Landslide Hazard Mapping, Photogramm. Eng. Remote Sens., 65, 1389–1399, 1999.
Chung, C.-J. F. and Fabbri, A. G.: Validation of Spatial Prediction Models for Landslide Hazard Mapping, Nat. Hazards, 30, 451–472, https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b, 2003.
City of Zagreb: Land use map of City of Zagreb, https://registri.nipp.hr/izvori/view.php?id=68 (last access: 10 December 2024), 2011.
Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., and Smith, J. T.: Recommendations for the quantitative analysis of landslide risk, B. Eng. Geol. Environ., 73, 209–263, https://doi.org/10.1007/s10064-013-0538-8, 2014.
Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn., 20, 273–297, https://doi.org/10.1007/BF00994018, 1995.
Cox, D. R.: The Regression Analysis of Binary Sequences, J. Roy. Stat. Soc., 20, 215–242, 1958.
Cui, K., Lu, D., and Li, W.: Comparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence and evidential belief function models, Geocarto Int., 32, 935–955, https://doi.org/10.1080/10106049.2016.1195886, 2017.
Donati, L. and Turrini, M. C.: An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia, Italy), Eng. Geol., 63, 277–289, https://doi.org/10.1016/S0013-7952(01)00087-4, 2002.
Dou, J., Tien Bui, D., P. Yunus, A., Jia, K., Song, X., Revhaug, I., Xia, H., and Zhu, Z.: Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan, PLoS One, 10, e0133262, https://doi.org/10.1371/journal.pone.0133262, 2015.
Evans, J. S., Oakleaf, J., Cushman, S. A., and Theobald, D.: An arc gis toolbox for surface gradient and geo-morphometric modeling, version 2.0-0., https://evansmurphy.wixsite.com/evansspatial/arcgis-gradient-metrics-toolbox (last access: 6 February 2024), 2014.
Farooq, S. and Akram, M. S.: Landslide susceptibility mapping using information value method in Jhelum Valley of the Himalayas, Arab. J. Geosci., 14, 824, https://doi.org/10.1007/s12517-021-07147-7, 2021.
Fawcett, T.: An introduction to ROC analysis, Pattern Recognit. Lett., 27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006.
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage, W. Z.: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning, Eng. Geol., 102, 85–98, https://doi.org/10.1016/j.enggeo.2008.03.022, 2008a.
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage, W. Z.: Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning, Eng. Geol., 102, 99–111, https://doi.org/10.1016/j.enggeo.2008.03.014, 2008b.
Fressard, M., Thiery, Y., and Maquaire, O.: Which data for quantitative landslide susceptibility mapping at operational scale? Case study of the Pays d'Auge plateau hillslopes (Normandy, France), Nat. Hazards Earth Syst. Sci., 14, 569–588, https://doi.org/10.5194/nhess-14-569-2014, 2014.
Gaidzik, K. and Ramírez-Herrera, M. T.: The importance of input data on landslide susceptibility mapping, Sci. Rep., 11, 19334, https://doi.org/10.1038/s41598-021-98830-y, 2021.
Gorsevski, P. V., Gessler, P. E., Foltz, R. B., and Elliot, W. J.: Spatial Prediction of Landslide Hazard Using Logistic Regression and ROC Analysis, T. GIS, 10, 395–415, https://doi.org/10.1111/j.1467-9671.2006.01004.x, 2006.
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181–216, https://doi.org/10.1016/S0169-555X(99)00078-1, 1999.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M.: Estimating the quality of landslide susceptibility models, Geomorphology, 81, 166–184, https://doi.org/10.1016/j.geomorph.2006.04.007, 2006a.
Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., and Cardinali, M.: Landslide hazard assessment in the Collazzone area, Umbria, Central Italy, Nat. Hazards Earth Syst. Sci., 6, 115–131, https://doi.org/10.5194/nhess-6-115-2006, 2006b.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K.-T.: Landslide inventory maps: New tools for an old problem, Earth Sci. Rev., 112, 42–66, https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.
Habumugisha, J. M., Chen, N., Rahman, M., Islam, M. M., Ahmad, H., Elbeltagi, A., Sharma, G., Liza, S. N., and Dewan, A.: Landslide Susceptibility Mapping with Deep Learning Algorithms, Sustainability, 14, 1734, https://doi.org/10.3390/su14031734, 2022.
Hastie, T., Tibshirani, R., and Friendman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, 745, https://doi.org/10.1007/b94608, 2009.
Hemasinghe, H., Rangali, R. S. S., Deshapriya, N. L., and Samarakoon, L.: Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka), Procedia Eng., 212, 1046–1053, https://doi.org/10.1016/j.proeng.2018.01.135, 2018.
Ho, T. K.: Random decision forests, in: Proceedings of 3rd International Conference on Document Analysis and Recognition, 278–282, https://doi.org/10.1109/ICDAR.1995.598994, 1995.
Huang, F., Zhang, J., Zhou, C., Wang, Y., Huang, J., and Zhu, L.: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction, Landslides, 17, 217–229, https://doi.org/10.1007/s10346-019-01274-9, 2020a.
Huang, F., Cao, Z., Guo, J., Jiang, S.-H., Li, S., and Guo, Z.: Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping, Catena (Amst), 191, 104580, https://doi.org/10.1016/j.catena.2020.104580, 2020b.
Huang, F., Tao, S., Li, D., Lian, Z., Catani, F., Huang, J., Li, K., and Zhang, C.: Landslide Susceptibility Prediction Considering Neighborhood Characteristics of Landslide Spatial Datasets and Hydrological Slope Units Using Remote Sensing and GIS Technologies, Remote Sens. (Basel), 14, 4436, https://doi.org/10.3390/rs14184436, 2022.
Jacobs, L., Kervyn, M., Reichenbach, P., Rossi, M., Marchesini, I., Alvioli, M., and Dewitte, O.: Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach, Geomorphology, 356, 107084, https://doi.org/10.1016/j.geomorph.2020.107084, 2020.
James, G., Witten, D., Hastie, T., and Tibshirani, R.: An Introduction to Statistical Learning, Springer, New York, 606 pp., https://doi.org/10.1007/978-1-4614-7138-7, 2013.
Jebur, M. N., Pradhan, B., and Tehrany, M. S.: Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale, Remote Sens. Environ., 152, 150–165, https://doi.org/10.1016/j.rse.2014.05.013, 2014.
Jurak, V., Ivan Matković, Miklin, Ž., and Snježana Mihalić: Data analysis of the landslides in the Republic of Croatia: Present state and perspectives, in: Landslides, 1923–1929, 1996.
Jurak, V., Ortolan, Ž., Ivšić, T., Herak, M., Šumanovac, F., Vukelić, I., Jukić, M., and Šurina, Z.: Geotehničko i seizmičko mikrozoniranje grada Zagreba – pokušaji i ostvarenje (Geotechnical and seizmological microzonation of Zagreb City - attempts and accomplishments), in: Zbornik radova s konferencije razvitak Zagreba, Razvitak Zagreba, Zagreb, Croatia, 1–2 February 2008, 99–108, 2008 (in Croatian).
Kavzoglu, T., Sahin, E. K., and Colkesen, I.: Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression, Landslides, 11, 425–439, https://doi.org/10.1007/s10346-013-0391-7, 2014.
Krkač, M., Bernat Gazibara, S., Sinčić, M., Lukačić, H., Šarić, G., and Snježana, M. A.: Impact of input dana on the quality of the landslide susceptibility large-scale maps: A case study from NW Croatia, in: Progress in Landslide Research and Technology, edited by: Alcántara-Ayala, I., Arbanas, Ž., Cuomo, S., Huntley D., Konagai, K., Mihalić Arbanas, S., Mikoš, M., Sassa, K., Tang, H., and Tiwari, B., https://doi.org/10.1007/978-94-007-2162-3_36, 2023.
Landis, J. R. and Koch, G. G.: The measurement of observer agreement for categorical dana, Biometrics, 33, 159–174, 1977
Lee, S.: Landslide susceptibility mapping using an artificial neural network in the Gangneung area, Korea, Int. J. Remote Sens., 28, 4763–4783, https://doi.org/10.1080/01431160701264227, 2007.
Mathew, J., Jha, V. K., and Rawat, G. S.: Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand, Curr. Sci., 95, 628–638, 2007.
Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R., and Abderrahmane, B.: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance, Earth Sci. Rev., 207, 103225, https://doi.org/10.1016/j.earscirev.2020.103225, 2020
Mihalić, S.: Recommendations for Landslide Hazard and Risk Mapping in Croatia, Geol. Croatica, 51, 195–204, https://doi.org/10.4154/GC.1998.15, 1988
Mihalić Arbanas, S., Bernat, S., Fabijanović, S., and Arbanas, Ž.: The analysis of historical landslide information from the area of the City of Zagreb and Primorsko-Goranska County, in: Proceedings of the 1st Regional Symposium on Landslides in the Adriatic-Balkan Region – Landslide and Flood Hazard Assessment, 91–96, https://www.researchgate.net/publication/271908916_Analysis_of_Historical_Landslide_Information_from_the_Area_of_the_City_of_Zagreb_and_Primorsko-Goranska_County (last access: 10 December 2024), 2014.
Mihalić Arbanas, S., Krkač, M., Bernat Gazibara, S.: Application of advanced technologies in landslide research in the area of the City of Zagreb (Croatia, Europe), Geol. Croatica, 69, 179–192, https://doi.org/10.4154/gc.2016.18, 2016.
Mihalić Arbanas, S., Bernat Gazibara, S., Krkač, M., Sinčić, M., Lukačić, H., Jagodnik, P., and Arbanas, Ž.: Landslide Detection and Spatial Prediction: Application of Data and Information from Landslide Maps, in: Progress in Landslide Research and Technology, Volume 1, edited by: Alcantara-Ayala, I., Arbanas, Ž., Huntley, D., Konagai, K., Mikoš, M., Sassa, K., Sassa, S., Tang, H., and Tiwari, B., Fullerton, CA, USA, 195–212, https://doi.org/10.1007/978-3-031-18471-0_16, 2023.
Miklin, Ž., Mlinar, Ž., Brkić, Ž., Hečimović, I., and Dolić, M.: Detailed engineering geological map of Podsljeme urbanised zone at a scale of 1:5000 (DIGK-Phase I), 2007.
Nefeslioglu, H. A., Gokceoglu, C., and Sonmez, H.: An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps, Eng. Geol., 97, 171–191, https://doi.org/10.1016/j.enggeo.2008.01.004, 2008.
Neuhäuser, B. and Terhorst, B.: Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany), Geomorphology, 86, 12–24, https://doi.org/10.1016/j.geomorph.2006.08.002, 2007.
Neuhäuser, B., Damm, B., and Terhorst, B.: GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model, Landslides, 9, 511–528, https://doi.org/10.1007/s10346-011-0305-5, 2012.
Pascale, S., Parisi, S., Mancini, A., Schiattarella, M., Conforti, M., Sole, A., Murgante, B., and Sdao, F.: Landslide Susceptibility Mapping Using Artificial Neural Network in the Urban Area of Senise and San Costantino Albanese (Basilicata, Southern Italy), 473–488, https://doi.org/10.1007/978-3-642-39649-6_34, 2013.
Polak, K., Klemar, M., Nejkova, M., Radošević, N., Stepan, Z., Miroslav, M., and Križanić, Z.: Lithological analysis and categorisation of terrain according to soil stability of Medvednica slopes in the area of the City of Zagreb, Geotehnika-Geoexpert, Zagreb, 102 pp., 1979 (in Croatian).
Petschko, H., Bell, R., and Glade, T.: Effectiveness of visually analyzing LiDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modeling, Landslides, 13, 857–872, https://doi.org/10.1007/s10346-015-0622-1, 2016.
Pourghasemi, H. R., Sadhasivam, N., Amiri, M., Eskandari, S., and Santosh, M.: Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques, Nat. Hazards, 108, 1291–1316, https://doi.org/10.1007/s11069-021-04732-7, 2021.
Pradhan, B.: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Comput. Geosci., 51, 350–365, https://doi.org/10.1016/j.cageo.2012.08.023, 2013.
Ray, R.L., Lazzari, M., and Olutimehin, T.: Remote Sensing Approaches and Related Techniques to Map and Study Landslides, in: Landslides – Investigation and Monitoring, IntechOpen, https://doi.org/10.5772/intechopen.93681, 2020.
Razak, K. A., Santangelo, M., Van Westen, C. J., Straatsma, M. W., and de Jong, S. M.: Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment, Geomorphology, 190, 112–125, https://doi.org/10.1016/j.geomorph.2013.02.021, 2013.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically-based landslide susceptibility models, Earth Sci. Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C., and Peruccacci, S.: Optimal landslide susceptibility zonation based on multiple forecasts, Geomorphology, 114, 129–142, https://doi.org/10.1016/j.geomorph.2009.06.020, 2010.
Rossi, M., Bornaetxea, T., and Reichenbach, P.: LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation, Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022, 2022.
Sandić, C., Marjanović, M., Abolmasov, B., and Tošić, R.: Integrating landslide magnitude in the susceptibility assessment of the City of Doboj, using machine learning and heuristic approach, J. Maps, 19, https://doi.org/10.1080/17445647.2022.2163199, 2023.
Sarkar, S., Roy, A. K., and Martha, T. R.: Landslide susceptibility assessment using Information Value Method in parts of the Darjeeling Himalayas, J. Geol. Soc. India, 82, 351–362, https://doi.org/10.1007/s12594-013-0162-z, 2013.
Scaioni, M., Longoni, L., Melillo, V., and Papini, M.: Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives, Remote Sens. (Basel), 6, 9600–9652, https://doi.org/10.3390/rs6109600, 2014.
Shirvani, Z.: A Holistic Analysis for Landslide Susceptibility Mapping Applying Geographic Object-Based Random Forest: A Comparison between Protected and Non-Protected Forests, Remote Sens. (Basel), 12, 434, https://doi.org/10.3390/rs12030434, 2020.
Sinčić, M., Bernat Gazibara, S., Krkač, M., Lukačić, H., and Mihalić Arbanas, S.: The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments, Land (Basel), 11, 1360, https://doi.org/10.3390/land11081360, 2022a.
Sinčić, M., Bernat Gazibara, S., Krkač, M., and Mihalić Arbanas, S.: Landslide susceptibility assessment of the City of Karlovac using the bivariate statistical analysis, Rudarsko-geološko-naftni zbornik, 37, 149–170, https://doi.org/10.17794/rgn.2022.2.13, 2022b.
Soeters, R. and van Westen, C. J.: Slope Instability Recognition Analysis and Zonation, in: Landslides: Investigation and Mitigation, edited by: Turner, K. T. and Schuster, R. L., Washington DC, 129–177, https://www.researchgate.net/publication/209803184_Slope_instability_Recognition_analysis_and_zonation (last access: 10 December 2024), 1996.
State Geodetic Administration: WMS server, topographic map: https://geoportal.dgu.hr/services/tk/wms (last access: 6 February 2024), 2024.
Šikić, V.: Engineering geology of Zagreb – north and south, 1967.
Šikić, K., Basch, O., and Šimunić, A.: Basic Geological Map, scale 1:100 000, Zagreb sheet, 1972.
Šikić, K., Basch, O., and Šimunić, A.: Geological notes for Basic geological map, scale 1:100 000, Zagreb sheet, 75 pp., 1979.
Tehrany, M. S., Pradhan, B., and Jebur, M. N.: Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS, J. Hydrol. (Amst), 504, 69–79, https://doi.org/10.1016/j.jhydrol.2013.09.034, 2013.
Tehrany, M. S., Pradhan, B., and Jebur, M. N.: Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS, J. Hydrol. (Amst), 512, 332–343, https://doi.org/10.1016/j.jhydrol.2014.03.008, 2014.
Tyagi, A., Tiwari, R. K., and James, N.: Mapping the landslide susceptibility considering future land-use land-cover scenario, Landslides, 20, 65–76, https://doi.org/10.1007/s10346-022-01968-7, 2023.
Vakhshoori, V. and Zare, M.: Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps?, Geomatics, Nat. Hazard. Risk, 9, 249–266, https://doi.org/10.1080/19475705.2018.1424043, 2018.
van Westen, C. J.: Use of weights of evidence modeling for landslide susceptibility mapping, 23 pp., https://filetransfer.itc.nl/pub/westen/GISSIZ/Chapter 6 - Exercises/GIS exercises/Data driven models/Exercise data_driven models 2002.pdf (last access: 10 December 2024), 2002.
van Westen, C. J., van Duren, I., Kruse, H. M. G., and Terlien, M. T. J.: Training Package for Geographic Information Systems in Slope Stability Zonation, Part 1: Theory, ITC Publication, Eeschede, 245 pp., 1993.
van Westen, C. J., Rengers, N., and Soeters, R.: Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment, Nat. Hazards, 30, 399–419, https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e, 2003.
van Westen, C. J., Castellanos, E., and Kuriakose, S. L.: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview, Eng. Geol., 102, 112–131, https://doi.org/10.1016/j.enggeo.2008.03.010, 2008.
Vapnik, V. N.: The Nature of Statistical Learning Theory, Springer New York, New York, NY, https://doi.org/10.1007/978-1-4757-2440-0, 1995.
Vojteková, J. and Vojtek, M.: Assessment of landslide susceptibility at a local spatial scale applying the multi-criteria analysis and GIS: a case study from Slovakia, Geomatics, Nat. Hazard. Risk, 11, 131–148, https://doi.org/10.1080/19475705.2020.1713233, 2020.
Wang, L.-J., Guo, M., Sawada, K., Lin, J., and Zhang, J.: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network, Geosci. J., 20, 117–136, https://doi.org/10.1007/s12303-015-0026-1, 2016a.
Wang, Q., Li, W., Wi, Y., Pei, Y., Xing, M., and Yang, D.: A comparative study on the landslide susceptibility mapping using evidential belief function and weights of evidence models, J. Earth Syst. Sci., 125, 645–662, https://doi.org/10.1007/s12040-016-0686-x, 2016b.
Wang, G., Chen, X., and Chen, W.: Spatial Prediction of Landslide Susceptibility Based on GIS and Discriminant Functions, ISPRS Int. J. Geoinf., 9, 144, https://doi.org/10.3390/ijgi9030144, 2020.
Wang, H., Zhang, L., Luo, H., He, J., and Cheung, R. W. M.: AI-powered landslide susceptibility assessment in Hong Kong, Eng. Geol., 288, 106103, https://doi.org/10.1016/j.enggeo.2021.106103, 2021.
Xiao, T., Yu, L., Tian, W., Zhou, C., and Wang, L.: Reducing Local Correlations Among Causal Factor Classifications as a Strategy to Improve Landslide Susceptibility Mapping, Front. Earth Sci. (Lausanne), 9, 781674, https://doi.org/10.3389/feart.2021.781674, 2021.
Xing, Y., Yue, J., Guo, Z., Chen, Y., Hu, J., and Travé, A.: Large-Scale Landslide Susceptibility Mapping Using an Integrated Machine Learning Model: A Case Study in the Lvliang Mountains of China, Front. Earth Sci. (Lausanne), 9, 722491, https://doi.org/10.3389/feart.2021.722491, 2021.
Yan, G., Liang, S., Gui, X., Xie, Y., and Zhao, H.: Optimizing landslide susceptibility mapping in the Kongtong District, NW China: comparing the subdivision criteria of factors, Geocarto. Int., 34, 1408–1426, https://doi.org/10.1080/10106049.2018.1499816, 2019.
Yao, X., Tham, L. G., and Dai, F. C.: Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China, Geomorphology, 101, 572–582, https://doi.org/10.1016/j.geomorph.2008.02.011, 2008.
Yin, K. L. and Yan, T. Z.: Statistical prediction model for slope instability of methamorphosed rocks, in: Proceedings of Fifth International Symposium on Landslides, 1269–1272, 1988.
Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., and Yusoff, Z.: Spatial landslide hazard assessment along the Jelapang Corridor of the North-South Expressway in Malaysia using high resolution airborne LiDAR data, Arab. J. Geosci., 8, 9789–9800, https://doi.org/10.1007/s12517-015-1937-x, 2015.
Zêzere, J. L., Pereira, S., Melo, R., Oliveira, S. C., and Garcia, R. A. C.: Mapping landslide susceptibility using data-driven methods, Sci. Total Environ., 589, 250–267, https://doi.org/10.1016/j.scitotenv.2017.02.188, 2017.
Zhao, X. and Chen, W.: Optimization of Computational Intelligence Models for Landslide Susceptibility Evaluation, Remote Sens. (Basel), 12, 2180, https://doi.org/10.3390/rs12142180, 2020.
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with 5 statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
The paper focuses on classifying continuous landslide conditioning factors for susceptibility...
Altmetrics
Final-revised paper
Preprint