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Abstract. The large-scale landslide susceptibility assess-
ment (LSA) is an important tool for reducing landslide risk
through the application of resulting maps in spatial and urban
planning. The existing literature more often deals with LSA
modelling techniques, and the scientific research very rarely
focuses on acquiring relevant thematic and landslide data,
necessary to achieve reliable results. Therefore, the paper fo-
cuses on the crucial step of classifying continuous landslide
conditioning factors for susceptibility modelling by present-
ing an innovative comprehensive analysis that resulted in 54
landslide susceptibility models to test 11 classification cri-
teria (scenarios which vary from stretched values, partially
stretched classes, heuristic approach, classification based on
studentized contrast and landslide presence, and commonly
used classification criteria, such as natural neighbour, quan-
tiles and geometrical intervals) in combination with 5 statis-
tical methods. The large-scale landslide susceptibility mod-
els were derived for small and shallow landslides in the pilot
area (21 km2) located in the City of Zagreb (Croatia), which
occur mainly in soils and soft rocks. Some of the novelties
in LSA are the following: scenarios using stretched landslide
conditioning factor values or classification with more than
10 classes prove more reliable; certain statistical methods
are more sensitive to the landslide conditioning factor clas-
sification criteria than others; all the tested machine learn-
ing methods give the best landslide susceptibility model per-
formance using continuous stretched landslide conditioning
factors derived from high-resolution input data. The research
highlights the importance of qualitative assessments, along-
side commonly used quantitative metrics, to verify spatial ac-

curacy and to test the applicability of derived landslide sus-
ceptibility maps for spatial planning purposes.

1 Introduction

Addressing landslide hazard is commonly done by zoning,
i.e. deriving landslide susceptibility, hazard and risk zoning
maps (Corominas et al., 2014). Brabb (1984) defined land-
slide susceptibility as a “likelihood of a landslide occurring
in a given area”, indicating the spatial component exclu-
sively. Soeters and van Westen (1996), Guzzetti et al. (1999),
van Westen et al. (2008), Fell et al. (2008a, b), Coromi-
nas et al. (2014), and Reichenbach et al. (2018) represent
some of the most significant progress done in the field of re-
search considering landslide susceptibility. One of the most
popular approaches to derive landslide susceptibility models
(LSMs) is using statistical methods, where the most recent
and detailed review of statistically based landslide suscepti-
bility models is given in Reichenbach et al. (2018), whereas
Merghadi et al. (2020) emphasize only machine learning
methods by reviewing algorithm performance. The literature
(e.g. van Westen et al., 2008; Corominas et al., 2014) has
shown two main groups of data needed for applying statisti-
cal methods in landslide susceptibility assessments (LSAs),
i.e. landslide inventory maps and landslide conditioning fac-
tors (LCFs). Moreover, Reichenbach et al. (2018) identified
acquiring relevant landslide and thematic information (i.e.
LCF) as the first two steps for preparing a LSA. Many pa-
pers discuss different methods (e.g. Wang et al., 2016a; Chen
et al., 2017; Merghadi et al., 2020), mapping units (e.g. Bor-
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naetxea et al., 2018; Jacobs et al., 2020), inventory types (e.g.
Guzzetti et al., 2012; Petschko et al., 2016), and the impor-
tance and/or selection of LCFs (Donati and Turrini, 2002;
Jebur et al., 2014; Gaidzik and Ramírez, 2021), which are
all necessary steps in a LSA according to Reichenbach et
al. (2018).

This research is situated in the European Pannonian Basin,
i.e. in the City of Zagreb in the hilly region of the south-
ern foothills of Medvednica, which are susceptible to sliding.
Despite long-term investigation on landslide phenomena, Ju-
rak et al. (1996) and Mihalić (1998) identified the lack of sus-
tainable landslide inventories and landslide hazard maps as
the main issue in the landside risk management in the Repub-
lic of Croatia. As a result, a landslide inventory map (Bernat
Gazibara et al., 2019a) and a landslide susceptibility map
(Bernat Gazibara et al., 2023) were derived, followed by em-
phasizing the importance and necessity of large-scale land-
slide susceptibility maps in the system of spatial and urban
planning (Mihalić Arbanas et al., 2023). Regardless of the
degree of urbanization, landslide occurrence is commonly re-
lated to geomorphological, geological and climate settings,
as well as anthropogenic factors. Furthermore, Bernat Gaz-
ibara et al. (2017) indicate that the main landslide triggers in
the area are precipitation and snow melting, i.e. long con-
tinuous precipitation periods or short precipitation periods
of high intensity. The input data for LSA in this study were
successfully acquired during previous research investigations
in the study area (e.g. Bernat Gazibara et al., 2017, 2019a,
2023) and past large-scale assessment in Croatia (Sinčić et
al., 2022a), but their optimal application in landslide suscep-
tibility modelling has remained an open question. The rele-
vance and new insight into acquiring input data for preparing
LCFs on a large scale (i.e. 1 : 5000) were provided by Sinčić
et al. (2022a) and proved by analysing the predictive perfor-
mances of large-scale LSAs by Krkač et al. (2023).

This relevant aspect of LSA was addressed by Jebur et
al. (2014), which used weight of evidence (WoE), logistic
regression (LR) and support vector machine (SVM) methods
in a large-scale case study to compare a lidar LCF set with
a set containing additional LCFs such as land use and geol-
ogy. Area under the curve (AUC) comparison between the
two scenarios favoured lidar-only-derived LCFs, addressing
the number and type of LCFs used in the research but not
their classification criteria. Similarly, Dou et al. (2015) ap-
plied LR and statistical index methods to demonstrate that
six LCFs with high correlation to landslide occurrence result
in better success and prediction rate than a complete set of
15 LCFs. Donati and Turrini (2002) show that when using
categorical LCFs, only a few classes can significantly influ-
ence the LSA, confirming the importance of how LCFs are
classified. These studies showed the need for relevant LCF
acquisition and selection criteria, whereas the leave-one-out
test available in LAND-SUITE software (Rossi et al., 2022),
certainty factor models (Dou et al., 2015) and variable im-

portance (Shirvani, 2020) are some methods used for LCF
selection.

LCF classification issues were discussed by Yan et
al. (2019), who defined two classification criteria for LCFs
selected by reviewing classification criteria in different stud-
ies available in the literature. Specifically, the 2 classifica-
tion criteria for each of the 5 LCFs result with fewer or
more classes which were used to develop 32 LSM scenar-
ios to test all the combinations. From the 32 derived maps,
a low difference of 0.03 AUC between minimum and max-
imum AUC was identified. Namely, the best result was ob-
tained when all LCFs were used in a scenario that included
more classes in most LCFs. Xiao et al. (2021) implemented a
different strategy, aimed to reduce local correlations among
LCFs by reclassifying them to increase LSA accuracy. As
stated by Bonham-Carter et al. (1990) and Neuhäuser and
Terhorst (2007), contrast or studentized contrast (Cst) metrics
can be used to determine classification cut-off values in con-
tinuous LCFs when using a bivariate approach such as WoE
or information value (IV). Moreover, generalizing continu-
ous LCFs enables maximized spatial relations and statistical
robustness (Neuhäuser et al., 2012). Concretely, Mathew et
al. (2007) used the Cst curve maximum to split the distance
to roads, drainage and lineament LCFs into two classes. Fur-
thermore, Neuhäuser et al. (2012) applied the Cst curve in
the WoE method to convert continuous LCFs to categorical
by observing maximum and local maximum Cst values. Je-
bur et al. (2014) used mainly the quantile criteria to derive
10 classes for stretched rasters and a heuristic approach for
buffer zones from vector lines (i.e. proximities or distances).
On the other hand, Yusof et al. (2015) applied only the quan-
tile criteria to classify LCFs into 10 classes, based on the
approach by Tehrany et al. (2013, 2014) in flood susceptibil-
ity mapping. Huang et al. (2020a, b) and Huang et al. (2022)
applied the natural break classification criteria and defined
eight classes in each LCF. Wang et al. (2016b, 2020), Cui
et al. (2017), and Zhao and Chen (2020) used what seems
to be equal intervals defined heuristically without specifica-
tions, whereas Wang et al. (2021) did not classify continuous
LCFs and applied them as stretched rasters in the analysis.
Several papers dealing with large-scale LSAs (e.g. Vojteková
and Vojtek, 2020; Xing et al., 2021) also do not specify
the classification criteria but present the LCFs with popular
equal interval classes likely defined heuristically. Similarly,
Wang et al. (2016b) used equal intervals to classify slope and
buffer zones for LCFs, whereas a heuristic approach was se-
lected for stretched rasters. In most of the mentioned studies,
which applied a heuristic approach, a relatively low number
of classes in LCFs are often defined, i.e. from four to six
classes. A detailed comparison of all these criteria and tech-
niques is still missing, especially on large-scale assessments
and with adequate metrics. Based on the latter and as con-
firmed by Huang et al. (2020b) and Xing et al. (2021), there
is no uniform approach to classifying continuous LCFs. It
can be concluded that no systematic analysis to compare the
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criteria was done, as researchers are instead applying what
was already confirmed to be successful in various individual
case studies.

Few papers deal with LCF processing once they are se-
lected, i.e. discussing the process of classifying continuous
LCFs (e.g. Yan et al., 2019; Xiao et al., 2021), which is the
scope of this study. Therefore, this paper compares 11 cri-
teria used to define the processing of continuous LCFs, i.e.
transform relevant input data layers into LCFs suitable for
application in landslide susceptibility modelling. Unlike Yan
et al. (2019), who are more oriented to case study combina-
tions of LCFs with different derived LCF classes, we aim to
develop a uniform approach for classifying continuous LCFs,
leading to defining a first step for large-scale LSA methodol-
ogy. Besides testing the 11 scenarios where continuous LCFs
are categorized, each scenario is applied in 5 statistical land-
slide susceptibility methods, including IV, LR, neural net-
work (NN), random forest (RF) and SVM. Such methods
were considered to analyse the influence of LCF classifica-
tion criteria on LSA accuracy using different statistical mod-
elling approaches, and they were selected because they are
commonly used in LSAs (Reichenbach et al., 2018).

Remote sensing has proven helpful for LSAs, leading to
better landslide hazard mitigation strategies. Concretely, dif-
ferent remote sensing techniques are widely applied for data
acquisition when studying landslide hazard, as presented by
Scaioni et al. (2014) and Ray et al. (2020), whereas in this
paper, geomorphological and hydrological LCFs are based
on lidar (light detection and ranging) point cloud data ac-
quired by airborne laser scanning (ALS). Furthermore, the
landslide inventory map was derived by mapping on morpho-
metric maps derived from a high-resolution DTM (digital ter-
rain model), which shows a significant advantage compared
to other methods for mapping small landslides under vegeta-
tion (Razak et al., 2013; Bernat Gazibara et al., 2019a). Jebur
et al. (2014) argue that lidar-derived LCFs could be sufficient
for LSAs where geological LCFs (e.g. soil and geology) are
not available, whereas Sinčić et al. (2022a) were able to de-
rive a complete set of LCFs together with a set of elements at
risk of large-scale LSAs by exclusively using high-resolution
lidar and orthophoto data in combination with publicly avail-
able small-scale geological data.

Besides a study case presented by Yusof et al. (2015) us-
ing LR and an evidential belief function, comparison of LSA
methods on a large scale is not common in the literature.
Hence, one of the novelties of this paper is presenting a de-
tailed comparison, including the quantitative and qualitative
perspective of five popular LSA methods applied on a large
scale with relevant input data of high spatial accuracy. Zêzere
et al. (2017) point out that the best AUC metric values do not
necessarily define the best LSM. Similarly, Vakhshoori and
Zare (2018) emphasize that AUC values might be deceiving
or ineffective in detecting uncertainties in spatial prediction
and can only indicate general reliability. To address the is-
sue, Vakhshoori and Zare (2018) suggest studying additional

metrics, such as Cohen’s κ , to acquire additional information
about the LSM. Considering the susceptibility quality level
(SQL) introduced by Guzzetti et al. (2006a, b), Reichenbach
et al. (2018) identified a low number of papers published
with a high SQL rank. Addressing model fitting and predic-
tive performance and measuring uncertainties in the derived
models, 54 LSMs based on combinations of 5 methods (IV,
LR, RF, NN, SVM) and 11 LCF classification criteria derived
in this paper are considered high SQL, ensuring systemati-
cal and unbiased comparison. Moreover, researching the ap-
plication of LSMs in spatial planning (Mihalić Arbanas et
al., 2023), we qualitatively present derived LSMs in close-
up views and high resolution to measure the applicability of
the used zonation method, i.e. determine visually suscepti-
bility class area distribution. However, choosing the optimal
zonation method is out of the scope of this study, and the
one presented in this paper serves exclusively for uniform
comparison of derived LSMs. Moreover, it should be stated
that optimization of used statistical methods is a topic be-
yond the objective of this research. We argue that large-scale
LSAs using high-quality input data should also be measured
qualitatively as expert judgement by observing real environ-
mental conditions on high-resolution DTM derivatives. The
observation provides necessary insight into map quality and
applicability, which is not detected by commonly used quan-
titative approaches (e.g. AUC).

2 Materials

2.1 Study area

The study area is located in the City of Zagreb, the capital of
Croatia, in the northwest part of the country. It encompasses
21 km2 of the southern slopes of Medvednica, i.e. the west-
ern part of the Podsljeme area. The City of Zagreb belongs
to the European Pannonian Basin, whereas the Podsljeme
area encompassing the study area is depicted with hilly re-
lief, with 90 % of the study area steeper than 5° (Bernat
Gazibara et al., 2019b). Basic geological settings can be de-
scribed as Upper Miocene and Quaternary sediments mak-
ing up 92 % of the study area, described in detail in the geo-
logical map 1 : 100 000 and supplementary geological notes
developed by Šikić et al. (1972, 1979), respectively. With a
dense population and a high degree of urbanization, which
is increasing, the Podsljeme area has been under research
regarding landslide phenomena in the last 50 years, start-
ing with the first landslide inventory map by Šikić (1967)
and following geomorphological landslide maps from 1979
(Polak et al., 1979) and a geomorphological inventory from
2006 (Miklin et al., 2007). More recently, Bernat Gazibara et
al. (2014a, b) described landslide events triggered by inten-
sive rainfall. Moreover, Mihalić Arbanas et al. (2016) iden-
tified the lack of a suitable landslide inventory as one of the
critical issues in landslide risk management in the City of
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Zagreb. As a result, a lidar-based landslide inventory map
for the 21 km2 in this study area was derived (Bernat Gaz-
ibara et al., 2019a, b), followed by a susceptibility assessment
(Bernat Gazibara et al., 2023). Satisfactory results were ob-
tained, confirming the proposed methodology for large-scale
LSAs. Considering the highly urbanized environment, pop-
ulation density and a continuous increase of human-induced
landslides in the Podsljeme area (Jurak et al., 2008; Mihalić
Arbanas et al., 2014), a large-scale landslide susceptibility
assessment is necessary for adequate landslide management
in the study area.

2.2 Input data

The first landslide inventory map developed from lidar data
for the study area was completed by Bernat Gazibara et
al. (2019a, b) based on ALS, which was performed during
the leaf-off period in Croatia in 2013. Furthermore, another
lidar ALS was performed in 2020 (Bernat Gazibara et al.,
2022, 2023) to verify the existing landslide inventory map,
providing a multi-temporal insight into landslide occurrence.
Namely, the landslide inventory map consists of 702 mapped
polygons, with the most frequent landslide area being 400 m2

and a density of 33 landslides per square kilometre. The input
data layers needed to derive LCFs are prepared from source
data and are classified according to their origin into contin-
uous and categorical, as presented in Table 1. Furthermore,
continuous input data layers can be subdivided into vector
lines (e.g. geological contacts, faults, drainage network, all
streams) and stretched rasters (e.g. elevation, slope, terrain
wetness). On the other hand, lithology (rock type) and land
use made up the polygon group of categorical input data
layers, unlike aspect being the only categorical raster type.
Continuous stretched rasters are presented by edge values
(Fig. 1a, b, e), whereas categorical input data layers are de-
picted by their classes (Fig. 1c, d, g). Furthermore, the con-
tinuous line input data layers’ spatial presence is illustrated
in Fig. 1d–f.

We note that the used geological input data are on a small
scale, but considering preliminary analysis in the LCF selec-
tion process, they resulted in being more relevant to landslide
occurrences in terms of the leave-one-out test in comparison
to the alternative geological map on a 1 : 5000 scale. Fur-
thermore, the mentioned small-scale geological input data
were also applied in Bernat Gazibara et al. (2023), where
they yielded excellent results.

3 Methodology

3.1 Preparing input data

Categorical LCFs (aspect, lithology, land use) are equiva-
lent to input data layers presented in Table 1 and were used
equally in all 11 scenarios, an exception being aspect in sce-
nario S11, as explained further in the section. Classes in cat-

egorical LCFs were ordered according to frequency ratio val-
ues defined by the presence of an unstable training landslide
set. Continuous LCFs were derived differently from input
data layers (Table 1, Fig. 1) for 11 scenarios and are briefly
summarized in Table 2.

Continuous stretched rasters (elevation, slope, terrain wet-
ness) were reclassified into 100 equal classes for scenario
S1. Regarding continuous line vector LCFs (geological con-
tact, faults, drainage network, all streams), 100 equal mul-
tiple buffer ring zones were derived to finalize scenario S1
LCFs (Fig. 2a). Similarly to scenario S1, scenario S2 is de-
fined by 50 equal classes, as illustrated in Fig. 2b. The aim
of defining scenarios S1 and S2 is to simulate the continuous
input data layer to a high and low detailed extent, respec-
tively. In scenario S3, LCFs were defined by heuristically
classifying and defining buffer zones for continuous rasters
and line input data layers, respectively. The subjective ap-
proach was led by researchers’ experiences (e.g. Sinčić et
al., 2022b; Krkač et al., 2023) and previous work in the study
area (e.g. Bernat Gazibara et al., 2023).

For each of the 100 scenario S1 LCF classes, Cst values
were calculated based on the bivariate approach, i.e. observ-
ing class pixel size and landslide pixels presence in the class.
Namely,Cst is defined as a ratio of contrast (C) to its standard
deviation s(C) (Bonham-Carter, 1994):

Cst =
C

s(C)
, (1)

where

C =W+−W−, (2)

where W+ and W− indicate positive and negative weight
factors in the WoE method, respectively. Standard deviation
s (C) is defined as

s (C)=
√
S(W+)2+ S(W−)2, (3)

where S(W+)2 and S(W−)2 are variances of weights de-
fined by Bishop et al. (1975). The Cst curve was defined for
each LCF, followed by observing positive and negative Cst
trends throughout the 100 classes. Cut-off lines for scenario
S4 were determined by dividing the Cst curve into positive
and negative segments, as depicted in Fig. 2c. To define sce-
nario S5, each scenario S4 positive segment was split into
two by defining an additional cut-off line at the highest peak
point (Fig. 2d).

Similarly, scenario S6 was defined by an additional cut-off
line from scenario S5 at the lowest peak point of negative
segments (Fig. 2e). For the theoretical example in Fig. 2c–e,
the LCFs for scenarios S4, S5 and S6 would result in 3, 4 and
6 classes, respectively.

For scenario S7, the number of expected and mapped land-
slide pixels was determined for each of the 100 classes pre-
viously defined in scenario S1. For stretched rasters (e.g. el-
evation and slope), expected landslides are defined by the
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Table 1. Overview of source data used for derivation of input data layers.

Source data Scale Input data layer Obtained by Categorization

Elevation Interpolation Continuous stretched raster
Slope ArcGIS 10.8 slope tool Continuous stretched raster

Lidar point cloud 5 m resolution Aspect ArcGIS 10.8 aspect tool Categorical (classified) raster
Terrain wetness Evans et al. (2014) Continuous stretched raster
Drainage network ArcGIS 10.8 Spatial Continuous line (vector)

Analyst Toolbox

Croatian basic 1 : 100 000 Lithology (rock type) Digitization Categorical polygon (vector)
Geological map Geological contact Digitization Continuous line (vector)

Faults Digitization Continuous line (vector)

Topographic map 1 : 25 000 Streams Digitization Continuous line (vector)
of Croatia (State Geodetic

Administration, 2024)

Land use planning maps Large scale Land use City of Zagreb (2011) Categorical polygon (vector)

Table 2. Summary of 11 defined scenarios considering different categorization criteria.

Scenario Description of categorization criteria

Stretched rasters Line vector

S1 100 equal classes 100 equal buffer zones

S2 50 equal classes 50 equal buffer zones

S3 Heuristic classification based on researcher experience

S4 Studentized contrast defined on S1 classes, positive and negative segments

S5 Studentized contrast defined on S1 classes, positive segments split into two, negative segments

S6 Studentized contrast defined on S1 classes, positive segments split into two, negative segments split into two

S7 Classification based on landslide density in S1
classes, i.e. expected vs. mapped landslide area

Classification based on landslide density in S1
classes, Eq. (4)

S8 10 classes defined by natural break (NB) classifica-
tion method applied on input data layers (stretched
raster)

10 classes defined by natural break (NB) classifica-
tion method applied on scenario S1 classes

S9 10 classes defined by quantile (Q) classification
method applied on input data layers (stretched raster)

10 classes defined by quantile (Q) classification
method applied on scenario S1 classes

S10 10 classes defined by geometrical interval (GI)
classification method applied on input data layers
(stretched raster)

10 classes defined by geometrical interval (GI) clas-
sification method applied on scenario S1 classes

S11 Input data layers (stretched raster) Scenario S1 classes

hypothesis stating that in each of the 100 LCF classes the
landslide density should be equal to the total study area land-
slide density, whereas the mapped landslide area was ac-
quired by simple observation. After calculating the mapped
and expected landslide area for each class, landslide density
curves considering each class are constructed (Fig. 2f). Fur-
thermore, the cut-off lines were determined by trend changes
of landslide area presence, i.e. at the points where expected

or mapped landslides change to being higher or lower than
the other.

For an example given in Fig. 2f, the trends change three
times resulting in three cut-off lines, i.e. four classes. On the
other hand, the constant expected number of landslides Aexp
for line vector LCFs used in scenario S7 was defined by

Aexp =
i

imax
×Atot, (4)
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Figure 1. Input data layers for landslide susceptibility analyses: (a) elevation; (b) slope; (c) aspect; (d) lithology (soil/rock type), geological
contact, and faults; (e) terrain wetness and streams; (f) drainage network; (g) land use; and (h) landslide dataset.

where i is the buffer interval size, imax the maximum reached
buffer distance and Atot total landslide area. The equation
aims to define an equal expected landslide area in each buffer
ring. Then, the area of mapped landslides in each buffer ring
is compared to the constant Aexp. Similarly, as with stretched
rasters, trends in relations between mapped landslides being
lower or higher than the constantAexp define the cut-off lines.
It should be noted that a training landslide dataset was used
for calculations needed to define scenarios S4–S7.

Continuous stretched rasters and scenario S1 vector lines
were reclassified using natural break (NB), quantile (Q) and
geometrical interval (GI) classification criteria. As a result,
scenarios S8, S9 and S10 are developed, with each having 10
classes, defined by NB, Q and GI reclassification criteria, re-
spectively. Lastly, scenario S11 was defined by using contin-
uous stretched rasters without classifying them, i.e. as input
data layers containing edge values rather than classes. More-
over, the aspect input data layer was applied with its origi-
nal stretched values (i.e. 0–360°) representing a continuous
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Figure 2. Theoretical example of the studentized contrast and landslide density curves for the methodology applied to define cut-off values
in scenarios S1 (a), S2 (b), S4 (c), S5 (d), S6 (e) and S7 (f), respectively.

LCF, unlike being categorical in the remaining 10 scenar-
ios. Lastly, scenario S1 line continuous LCFs with 100 equal
classes were used in scenario S11 to simulate an input data
layer as closely as possible. The presented classification cri-
teria for 11 scenarios were applied uniformly, meaning each
stretched raster and/or line vector was processed equally in-
side each scenario yet methodologically different from other
scenarios. Scenarios for proposed LCF classification criteria
vary from stretched (i.e. S11); partially stretched (i.e. S1 and
S2); heuristic (i.e. S3); classified based on studentized con-
trast curve (i.e. S4, S5 and S6); classified based on expected
and mapped landslide presence (i.e. S7); and lastly the com-
monly used classification criteria such as NB, Q and GI (i.e.
S8, S9 and S10). The main aim is to test the stated classifica-
tion criteria relevance and determine its influence and neces-
sity while using different statistical methods in a large-scale
case study.

3.2 Susceptibility analyses

Figure 3 synthesizes the methodology applied in this study
that can be split into “preparing input data”, “modelling”,

and “quantitative and qualitative analyses” steps. Namely,
relevant landslide and thematic (input data layers) infor-
mation was obtained as described in Sect. 2. Preparing in-
put data involves deriving continuous LCF sets applicable
in 11 classification scenarios and defining a fixed landslide
dataset. Susceptibility analysis includes deriving 54 LSMs
using the selected mapping unit with 5 statistical methods
applied with the 11 classified factor scenarios. The quanti-
tative and qualitative analyses considered three directions:
(i) model evaluation parameters, (ii) LSM validation parame-
ters and (iii) LSM classification parameters. Commonly used
quantitative parameters are examined in all three directions,
whereas the qualitative approach is made only for the LSM
classification, focusing on the LSM applicability, i.e. observ-
ing spatial distribution of susceptibility classes and variabil-
ity of susceptibility values. The described workflow ensures
the development of landslide susceptibility maps of high-
quality rank according to the SQL (Guzzetti et al., 2006a, b).
Lastly, the quantitative and qualitative analysis results were
summarized, enabling drawing the conclusions.
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Preparing input data begins with splitting the polygon-
based landslide inventory map randomly into two sets, each
containing the same number of polygons. Unstable training
polygons (first set) were transformed into pixels, i.e. 5 m
raster chosen as appropriate for a LSA on a large scale done
in this study. Unstable training pixels were subtracted from
the study area extent, and then an equal number of stable pix-
els were randomly selected in the remaining territory. This
ensured an unbiased landslide training set with an equal num-
ber of stable and unstable pixels for deriving LSMs, which
also defines the model training dataset for model evaluation
parameters. An unstable set of polygons used for validation
(second set) and all unstable polygons used for classification
were transformed into 5 m rasters and used for determining
LSM validation and classification parameters, respectively.

As a first step in susceptibility analyses (modelling), LCF
collinearity testing was performed individually for 11 scenar-
ios in LAND-SUITE (Rossi et al., 2022). Correlations were
examined by detecting LCF collinearity regarding Pearson’s
r absolute value of 0.5 as the cut-off threshold. Namely, val-
ues higher than 0.5 indicate collinearity between two exam-
ined LCFs, suggesting excluding one from the further sus-
ceptibility analyses. Selected LCFs showed no collinearity
in all 11 scenarios. Furthermore, 54 LSMs were derived us-
ing the prepared landslide dataset and 11 LCF sets in the
5 selected methods, i.e. information value (IV), logistic re-
gression (LR), neural network (NN), random forest (RF) and
support vector machine (SVM). It should be noted that the
IV method was not applied in scenario S11, as described fur-
ther below. The methods’ optimization is out of the scope of
this study, as they are already widely known, and their usage
is discussed by researchers in LSA studies. For a detailed
theoretical background about the methods applied in this pa-
per, the readers should consult van Westen et al. (1993) and
Merghadi et al. (2020).

IV is a simple bivariate statistical method developed by
Yin and Yan (1988), based on landslide density, using the
following equation:

Ii = log
SiN

NiS
, (5)

where Si is the number of landslide pixels in the observed
class, Ni the number of pixels in the observed class, S the
number of landslide pixels used for model training, N num-
ber of pixels in the study area and Ii the information value of
the observed variable. Positive and negative Ii values indicate
instability and stability, respectively, whereas higher values
indicate a stronger relationship. Detailed methodology for
using the bivariate statistical approach in landslide suscep-
tibility analyses is given in van Westen (2002), whereas IV
is applied by Sarkar et al. (2013), Farooq and Akram (2021),
and Krkač et al. (2023) in different LSAs.

To achieve posterior probability, i.e. probabilistic [0,1]
susceptibility values, the numerical Ii is converted using the

Figure 3. Landslide susceptibility modelling workflow.

following equation:

y =
ef (x)

1+ ef (x)
, (6)

where f (x) is the numerical susceptibility value (input) and
y the probabilistic susceptibility value (output) as defined by
Bonham-Carter (1994). The described equation has a 0.5 cut-
off value, defining < 0.5 and > 0.5 values as stable and un-
stable, respectively.

IV is the only method in this study using only unstable
modelling pixels for training, whereas other methods also
require the randomly generated stable pixels. Consequently,
IV LSM is not derived for scenario S11 as IV only applies
to LCFs with classes, i.e. not compatible with continuous
stretched input data layers that define scenario S11. On the
other hand, scenario S1 with 100 equal classes approximates
scenario S11 and can be considered the closest alternative.

Introduced in the early work of Cox (1958), LR today
corresponds to the most common statistical classification
method used in LSAs (Reichenbach et al., 2018), as seen
in the study cases from Rossi et al. (2010), Hemasinghe et
al. (2018) and Bornaetxea et al. (2018), with practical code
in a software application available in LAND-SUITE (Rossi
et al., 2022). A linear fitting function (Z) between landslides
for n number of conditioning variables is defined by the fol-
lowing equation:

Z = b0+ b1X1+ b2X2+ . . .+ bnXn, (7)

where b0 is the intercept of the model, bn the partial regres-
sion coefficients and Xn the conditioning variable. Lastly, a
common application of the LR method includes converting
resulting Z values to probabilistic output by applying Eq. (6)
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as mentioned in Bornaetxea et al. (2018) and Merghadi et
al. (2020).

NN is a two-stage regression or classification model that
can handle multiple quantitative responses (Hastie et al.,
2009). Among artificial NN methods, in this study feedfor-
warding was applied, indicating the flow of information ex-
clusively in one direction. NN models are generally com-
posed of simple circuits of nodes connected to each other
(Merghadi et al., 2020), defined by three layers, i.e. input
layer, hidden layer and output layer. The structure applied
in this paper is as follows: input layer, first fully connected
layer, rectified linear unit activation function, final fully con-
nected layer, softmax function and output. The softmax func-
tion which was applied to the final fully connected layer is
defined as

f (xi)=
e(xi )

K∑
j=1

e(xj )

, (8)

where K is the number of classes of response variables in
the final fully connected layer and xi each input, resulting in
probabilistic [0,1] values, i.e. f (xi). Merghadi et al. (2020)
summarize NN as a “black box” method, unable to inter-
pret relations between input and out variables. However,
the method is popular in LSAs (Reichenbach et al., 2018),
with Habumugisha et al. (2022) even testing different set-
tings to develop a method comparison, such as convolutional,
deep and recurrent NN models. Furthermore, the success-
ful applicability of different NN variations is found in the
work of Lee (2007), Nefeslioglu et al. (2008) and Pascale et
al. (2013), as well as in the LAND-SUITE software (Rossi et
al., 2022).

Introducing the concept of bagging and random feature se-
lection by Ho (1995) and Breiman (2001), RF is based on de-
cision trees and provides an improvement over bagged trees
(James et al., 2013). Bagging is a procedure introduced to re-
duce the variance of statistical learning methods, particularly
useful for decision trees (James et al., 2013). Defining p as
the number of total predictors and m as the number of pre-
dictors taken at each split, in bagging, decision trees are built
using the following expression:

m= p, (9)

compared to RF, where the relation is defined as

m=
√
p. (10)

Namely, the algorithm does not consider most predictors in
each decision tree in the RF method. As a result, RF tends
to produce precise results and has an increasing popularity
in LSAs from 2010 onward (Merghadi et al., 2020), as de-
picted in several papers such as Catani et al. (2013), Wang
et al. (2021) and Sandić et al. (2023). Moreover, ensemble
methods, including RF, are remarked to have excellent per-
formance by Merghadi et al. (2020).

SVM is introduced by Cortes and Vapnik (1995) and Vap-
nik (1995), whereas James et al. (2013) describe SVM as an
extension of a support vector classifier that can convert a lin-
ear classifier into one that automatically produces non-linear
boundaries. Moreover, SVM can deal with linearly separa-
ble data and linearly non-separable data, whereas points that
constrain the width of the margin, i.e. are closest to the op-
timal hyperplane, are called support vectors. To better clas-
sify most training observations, the support vector classifier
allows for a certain number of observations on the wrong
side of the hyperplane or the margin (James et al., 2013).
The SVM uses kernel functions to transform originally non-
separable data from two-dimensional into three-dimensional
feature space (Ballabio and Sterlacchini, 2012), where the
optimal hyperplane is constructed and later used to classify
new data. Binary classification applied in this study (i.e. 0
being stable and 1 unstable pixels) results in better predic-
tion efficiency than a one-class SVM application (Yao et al.,
2008). Also, Eq. (6) is applied to convert numerical sus-
ceptibility values to probabilistic ranging [0,1]. Merghadi et
al. (2020) identified SVM starting a continuous increase in
usage in landslide susceptibility studies since 2010 (e.g. Yao
et al., 2008; Pradhan, 2013; Kavzoglu et al., 2014) and char-
acterized SVM as having above-average performance with
moderately easy implementation.

3.3 Quantitative and qualitative analysis

A landslide training set containing unstable and stable mod-
elling pixels was examined to determine model evaluation
parameters, i.e. fitting performance by determining Cohen’s
κ and AUC for false alarm rate and hit rate metrics. Co-
hen’s κ and AUC are often used statistical parameters in
landslide susceptibility analyses to evaluate the model, e.g.
Pourghasemi et al. (2021) and Tyagi et al. (2023). Concretely,
Cohen’s κ value interpretation was defined in Landis and
Koch (1977) as (i) almost perfect (0.8–1), (ii) substantial
(0.61–0.8), (iii) moderate (0.41–0.60), (iv) fair (0.21–0.40),
(v) slight (0.00–0.20) or (vi) poor (< 0.00), and the equation
to determine the metric is

Cohen’s κ

=
2× (TP×TN− (FN×FP))

(TP+FP)× (FP+TN)+ (TP+FN)× (FN+TN)
, (11)

where TP denotes true positives (i.e. landslide pixels clas-
sified as unstable), FN denotes false negatives (i.e. land-
slide pixels classified as stable), TN denotes true negatives
(i.e. non-landslide pixels classified as stable) and FP denotes
false positives (i.e. non-landslide pixels classified as unsta-
ble) (Gorsevski et al., 2006).

In this study, the susceptibility values were split into 100
classes with 0.01 susceptibility intervals, i.e. defining the
classification thresholds used for AUC calculation. TP, FN,
TN and FP pixels were determined using 0.5 as a probabilis-
tic susceptibility cut-off value for each interval. Moreover,
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when the receiver operating characteristic (ROC) curve was
defined, the AUC was calculated to further estimate model
fitting performance as in Rossi et al. (2010), Bornaetxea et
al. (2018) and Wang et al. (2021), whereas the hit rate and
false alarm rate values were defined by Fawcett (2006) as

hit rate=
TP

TP+FN
(12)

and

false alarm rate=
FP

FP+TN
. (13)

AUC values closer to 1 indicate a perfect prediction, contrary
to a 0.5 value corresponding to random prediction. An exam-
ple of describing performance given by the AUC values is as
follows: (i) < 0.7 for poor, (ii) 0.7–0.8 for fair, (iii) 0.8–0.9
for good and (iv) > 0.9 for excellent (Fressard et al., 2014).

Unstable validation pixels are used to derive a cumula-
tive percentage study area and cumulative percentage land-
slide area, defining prediction performance as introduced by
Chung and Fabri (1999, 2003). The metric is often used in bi-
variate LSA approach (e.g. van Westen et al., 2003; Sinčić et
al., 2022b; Bernat Gazibara et al., 2023) and is defined as the
success rate and the prediction rate for fitting and predictive
performance, respectively.

The standard deviation (SD) maps for susceptibility val-
ues are implemented to measure each scenario’s stability and
method’s stability, resulting in qualitatively detecting uncer-
tainty zones. Namely, 11 SD maps are developed for each
of the 11 scenarios by observing the 5 applied methods in
each scenario, i.e. to measure deviations among the meth-
ods. Furthermore, 5 SD maps describing criteria are defined
by observing 11 scenarios applied for each method, i.e. to
measure deviations among scenarios. Considering the prob-
abilistic result of each LSM from 0.0 to 1.0 SD, classes are
determined with 0.1 threshold intervals to observe their pres-
ence and spatial distribution in the study area. Qualitatively,
all classified SD maps are presented to illustrate spatial distri-
bution, which is also measured quantitatively by determining
the percentage area of each SD class in every derived map.

By observing all unstable pixels, AUC values were deter-
mined for the cumulative percentage study area and cumula-
tive percentage landslide area curve. The latter presents AUC
for LSM classification, whereas all unstable pixels are the
sum of unstable pixels used for fitting performance (model
evaluation) and predictive performance (validation).

Observing both stable and unstable pixels for model eval-
uation by Cohen’s κ , false alarm rate and hit rate AUC met-
rics were chosen due to their equal presence in the model
training. On the other hand, measuring only unstable pixels
for validation and classification by developing a cumulative
percentage study area and cumulative percentage landslide
area curve was selected to emphasize landslide occurrence
exclusively for validation and classification without consid-
ering stable pixels. It should be noted that all AUC values

presented in this paper, i.e. fitting, predictive and classifica-
tion performance, are expressed in rates, meaning 100 and 50
correlate to 1.0 and 0.5, respectively.

For uniform comparison, LSMs were classified in this pa-
per according to probabilistic susceptibility values by using
cut-off values from Bornaetxea et al. (2018), resulting in five
susceptibility zones: (i) very low (0.0–0.2), (ii) low (0.2–
0.45), (iii) medium (0.45–0.55), (iv) high (0.55–0.8) and (v)
very high (0.8–1.0). Quantitatively, for every 54 LSMs, the
class area size is observed, including landslide presence in
each class. Furthermore, classified LSMs are qualitatively il-
lustrated with training and validation landslides to observe
spatial distribution, including close-up views by overlapping
them on high-resolution hillshade maps to investigate spatial
accuracy, robustness and pixellization degree.

4 Results

4.1 Landslide conditioning factors

In this section, differences between the 11 scenarios de-
scribed for classifying continuous LCFs are explained on el-
evation LCF maps, quantitatively (Table 4, Fig. 4) and qual-
itatively (Fig. 5). Moreover, a general overview of all LCFs
with the number of classes through 11 scenarios is presented
in Table 3, as well as class area distribution in Fig. 7. Follow-
ing the described methodology, all LCFs in S1 and S2 sce-
narios keep a rather stable number of classes at a 90–101 and
46–51 range, respectively. The shortage of classes in slope
and terrain wetness LCFs is due to missing certain values in
the original stretched raster. As intended, with a fixed num-
ber of 10 classes, S8 to S10 scenarios have identical numbers
of classes for all LCFs. Regarding the heuristic S3 scenario,
the number of classes varies from 7 classes at elevation to
13 classes in proximity to faults. A relatively low number of
classes are depicted in S4 to S6 scenarios where continuous
rasters have 2 to 6 classes, whereas vector line (buffer) LCFs
show a larger span from 2 to 25 classes. Namely, proximity to
geological contact has significantly more classes than other
LCFs, followed by proximity to streams and faults. An ex-
ception is proximity to drainage network LCF, having two to
four classes in S4–S6 scenarios. As intended, the number of
classes in each LCF increases from scenario S4 to scenario
S6. The S7 scenario has the lowest number of classes in all
LCFs, the highest number of classes being four at proximity
to geological contact and the lowest two classes in proxim-
ity to drainage network, streams and faults LCF. Edge raster
values and edge buffer values defined for the S11 scenario
representing input data layer files are depicted in Table 3.

To obtain 100 classes for the S1 scenario and 50 classes for
the S2 scenario, equal interval values in the elevation LCF are
3.2 and 6.4 m a.s.l., respectively. Furthermore, the heuristic
interval for the scenario S3 is chosen at 50 m a.s.l. Scenar-
ios S4 to S6 are defined by Cst curves based on scenario S1
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Table 3. Distribution of the number of classes (or values) for 7 continuous LCFs in 11 scenarios.

Number of classes in a continuous LCF (N )

Prox. to Prox. to
Terrain Prox. to drainage Geological Prox. to

Elevation Slope wetness streams network contact fault

S1 100 91 90 101 100 99 99
S2 50 46 46 51 50 50 50
S3 7 10 12 12 8 12 13
S4 3 2 3 8 2 13 6
S5 4 3 3 11 3 20 9
S6 6 4 4 14 4 25 12
S7 3 3 3 2 2 4 2
S8 10 10 10 10 10 10 10
S9 10 10 10 10 10 10 10
S10 10 10 10 10 10 10 10

Edge raster values Edge buffer values (m)

S11 From 122.15 0.71 2.14 12 1.7 12.5 13
To 439.94 80.26 19.90 1212 170 1237.5 1287

Table 4. Elevation reclassification cut-off value distribution in 10 scenarios.

Elevation (119.0–436.9 m a.s.l.) reclassification cut-off values

Class (N ) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 122.2 125.3 150.0 153.9 153.9 138.1 157.1 152.5 150.0 148.9
2 125.3 131.7 200.0 249.3 179.4 153.9 246.2 178.6 167.4 171.1
3 128.5 138.1 250.0 436.9 249.3 192.1 436.9 202.2 183.6 187.6
4 131.7 144.4 300.0 – 436.9 249.3 – 224.5 198.5 199.7
5 134.9 150.8 350.0 – 274.8 245.7 213.4 216.2
6 138.1 157.1 400.0 436.9 266.8 229.5 238.4
7 141.2 163.5 > 400 – 290.4 145.7 268.3
8 144.4 169.8 – 316.5 261.8 308.8
9 147.6 176.2 351.2 287.9 363.3
10 150.8 182.6 436.9 436.9 436.9
11 153.9 188.9 – – –
... ... ...
49 274.8 430.6
50 278.0 436.9
51 281.1 –
... ...
99 433.8
100 436.9

classes, as illustrated in Fig. 4. For elevation LCF, the curve is
defined by two negative segments in which Cst values reach
roughly −9 and −7 minimum values, respectively. The pos-
itive segment has a steep increase at class 12, leading to a
Cst value of 16 at class 24, followed by a decrease in value
reaching 0 in class 41, followed by below 0 values. Lastly,
class 63 and higher classes have a Cst value of 0, indicating
no landslide presence. Figure 4 illustrates that when defin-
ing scenario S7, the relation in expected and mapped land-
slides changes twice, defining three classes. Namely, there

are more expected landslides in classes 1 to 13 and 41 to 63,
whereas from 13 to 41 there are more mapped than expected
landslides. Regardless of having an equal number of classes,
the reclassification cut-off values significantly differ for sce-
narios S8, S9 and S10, as depicted in the example on eleva-
tion (Table 4). On the other hand, despite having a different
methodology, scenarios S4 and S7 show minimal differences
in the cut-off values for the elevation LCF.

Considering class area distribution illustrated in Fig. 5 for
the elevation LCF map, scenarios S1 and S11 (Fig. 5a and
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Figure 4. Elevation landslide conditioning factor class cut-off values determined for scenarios S1 (a), S2 (b), S4 (c), S5 (d) and S6 (e) based
on studentized curve and for scenario S7 (f) based on landslide density curve.

k, respectively) visually show little difference as intended,
S1 being a simulation, i.e. approximation of S11, depicting a
continuous change from low to high altitudes. With 50 in-
stead of 100 classes, the S2 scenario depicts a somewhat
rougher transition through altitude classes (Fig. 5b). Start-
ing at three classes in scenario S4 (Fig. 5d), the second class
defined by a positive Cst curve trend splits into two, making
up four classes in the S5 scenario (Fig. 5e).

Finally, two classes defined by negative Cst curve trends
split individually into two additional classes, making up a fi-
nal count of six classes for the S6 scenario (Fig. 5f). The S7
scenario is visually identical to S4 due to almost identical
cut-off values depicted in Table 3. Scenarios S8, S9, and S10
(Fig. 5h, i, j) visually represent moderate differences, mainly
visible in the areas of highest altitudes, i.e. the northernmost
and central parts of the study area defined by classes 9 and
10. The latter classes are predominantly expressed and pre-
vail in scenario S9 compared to scenarios S8 and S10.

Due to significant class number differences, scenarios S1
and S2 have drastically less class area size than other scenar-
ios (Fig. 6) in all applied LCFs. Concretely, in these two sce-

narios, the maximum class area is found to be around 10 %
in proximity to geological contact, proximity to drainage net-
work and terrain wetness LCFs. On the contrary, in the eleva-
tion LCF, the class area size does not exceed more than 5 %
in any class. After roughly the 30th class in scenario S2, the
class area size does not exceed more than 1 %. Similarly, in
scenario S1, the classes in the interval from 60 to 100 usu-
ally have nearly 0 % class area size. In scenarios S1 and S2,
elevation, slope, proximity to all streams and terrain wetness
LCFs have an increasing trend in class area size, reaching a
maximum followed by a decreased trend. Proximity to geo-
logical contact, proximity to fault and proximity to drainage
network show only a decreasing trend in scenarios S1 and
S2, an exception being proximity to drainage network in sce-
nario S1 with a short exchange of increasing and decreasing
trends. For scenarios S3 to S10, all LCFs have around 10
to 14 classes, except proximity to geological contact, which
has 24 classes. In any case, for all LCFs in scenarios S3 to
S7, most area is contained in the first few classes, e.g. up to
class 3 or 4. In elevation, slope and proximity to geological
contact LCFs, the maximum class area size is roughly 60 %,
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Figure 5. Maps of the spatial distribution of elevation landslide conditioning factor classes for 11 scenarios.

compared to roughly 80 % class area size in terrain wetness,
proximity to faults, drainage network and all streams’ LCFs.
Generally, in scenarios S3 to S7 the class area size tends to
drastically change from class to class, unlike scenarios S8 to
S10, which depict slight changes. As methodologically de-
fined, scenario S9 contains the 10 % class area trend through
all scenarios, whereas scenario S9 has significantly less class
area size in classes 7 to 10, compared to classes 1 to 6.

4.2 Landslide susceptibility model evaluation

Model evaluation parameters consider both stable and unsta-
ble pixels used for training the model and expose their fit-
ting performance as illustrated in Fig. 7. Namely, Cohen’s κ
index has substantial agreement in all 11 scenarios for IV,
LR, NN and SVM methods, ranging roughly from 0.6 to 0.7.
The latter methods follow the same trend in all scenarios,
with NN showing the best performance (0.7), followed by
LR (0.65) and, finally, SVM and IV (0.6). RF method showed
perfect agreement with 1.0 or near 1.0 values in S1, S2, S3,
S6, S8, S9, S10 and S11 scenarios and drastically lower (i.e.
0.7) in the S7 scenario. Scenarios S4 and S5 in RF performed
slightly worse but still with almost perfect agreement, having

Cohen’s κ values of 0.88 and 0.96, respectively. Regarding
false alarm rate and hit rate AUC values, the RF method fol-
lows the behaviour of Cohen’s κ values, having excellent per-
formance and nearly identical trends as Cohen’s κ through 11
scenarios. IV, LR and SVM methods depict nearly identical
AUC values in all 11 scenarios, ranging from roughly 85.5
to 88.5. In scenarios S4, S5, S6, and S7, the latter methods
show values closer to 85.5, whereas the IV method has some-
what poorer results in scenarios S8, S9 and S10. Having the
most stable AUC values in all 11 scenarios, the NN method
performed excellent with AUC values ranging from 90.5 to
92, which is moderately better than IV, LR and SVM yet sig-
nificantly worse than perfect agreements in the RF method.

4.3 Landslide susceptibility model validation

Unlike results in model evaluation, where studied metrics
showed significant differences between five methods, by val-
idating the LSMs, we notice fewer differences with clustered
AUC values between methods (Fig. 8). Measuring the pre-
dictive performance of LSMs on an independent landslide
dataset results in scenarios S1, S2, S3, S8, S9, S10 and S11
defined by 10 or more classes in LCFs as better solutions. In
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the latter scenarios, the AUC values range from roughly 86.5
to 88.5 for all methods, compared to a decrease in scenarios
S4, S5, S6 and S7, where AUC values reach approximately
84 to 87.5. Generally, methods are similar in all scenarios and
deviate minimally in scenarios S1, S2, S3, S8, S9, S10 and
S11 (approx. 1.5) and moderately in scenarios S4 to S7. Con-
cretively, S11 has proven as a scenario with minimum AUC
deviations (< 1) between methods, compared to the highest
deviations in scenarios S4, S5, S6 and S7 (approx. 3). LR
has the best prediction performance in all scenarios with the
highest values reaching up to 88.5. Furthermore, LR AUC
values are higher by up to 3 points compared to RF, which
has the least predictive performance, except in scenarios S1
and S2. Having lower AUC values in most scenarios than
LR, NN, and SVM, the IV value method nearly has the best
predictive performance in the S7 scenario. On the contrary,
LR, NN and SVM outperform IV in scenarios S8, S9 and
S10. Lastly, IV, NN and SVM have similar predictive perfor-
mances in scenarios S4, S5 and S6, outperforming RF signif-
icantly.

4.4 Landslide susceptibility model classification

AUC classification values, measuring all unstable pixels as
a combination of fitting and predictive performance, show
very high values (Fig. 9). IV, LR, NN and SVM methods
show low deviations from scenario to scenario, mainly clus-
tered with AUC values in the range of 84.5 to 89. RF method
outperforms the other methods by having AUC values rang-
ing lowest 89 in S7 up to > 93 in S11 and S1. After RF, NN
proved to be an alternative, having slightly higher AUC val-
ues than IV, LR and SVM, which differentiate minimally in
each observed scenario. All methods show lower AUC values
in scenarios S4, S5 and S6, with a minimum in scenario S7.

In scenarios S1, S2, S3, S8, S9, S10 and S11, all methods
show AUC values higher than 86. Lastly, the RF method is
the only method significantly influenced by the number of
LCF classes, with significantly lower AUC values in scenar-
ios S4, S5, S6 and S7.

To identify classification parameters, derived LSMs are
firstly classified in zones according to probabilistic suscep-
tibility values as follows: (i) very low (0.0–0.2), (ii) low
(0.2–0.45), (iii) medium (0.45–0.55), (iv) high (0.55–0.8)
and (v) very high (0.8–1.0). Generally observing the sus-
ceptibility zones, noticeable differences are distinguishable
among methods rather than scenarios (Fig. 10). All methods
show < 10 % class area in a very high zone, with RF, SVM
and IV often having < 5 %. All 54 LSMs have a medium-
susceptibility zone smaller than 10 %, with RF having a min-
imum as small as 2 %. Moreover, the RF method has the
smallest area in zones of high and very high susceptibility.
Class area percentage changes are most significant in very
low and low classes, whereas very high, high and medium
classes show low differences in all methods and most sce-
narios. IV and SVM methods tend to have fewer differences

between low and very low classes, i.e. having almost equal
areas in both zones. RF has the most percentage area in the
very low class, followed by NN and LR. However, RF, NN
and LR have nearly similar class area sizes in the low class.
Observing very low and low zones as one, IV, LR, NN and
SVM show a lot of similarities, unlike RF, which has excep-
tionally high values, reaching> 85 % area for the cumulative
area of the two classes in most scenarios. Similarly, very high
and high zones contain less than 10 % of the map area in the
RF method, whereas the values reach around 20 % for the
other methods. In other words, the most significant differ-
ences are depicted individually in the relation between very
low and low zone and very high and high zone. For the latter,
the RF method favours having an extremely large very low
zone and an extremely small very high zone. On the con-
trary, IV and SVM tend to have rather large low and high
zones. NN has around a 10 % smaller very low zone com-
pared to RF, followed by LR 10 % smaller than NN. Lastly,
IV and SVM have around 40 % of the map area in the very
low zone.

The sums of landslide presence in zones of very high
and high susceptibility are extremely similar in all 54 LSMs
(Fig. 11). However, observing the two zones individually, no-
ticeable differences are depicted. Namely, LR, NN and RF
methods have higher landslide presence percentages in very
high zones resulting in lower presence in high zones, whereas
on the contrary, IV and SVM methods have less landslide
presence in very high zones and higher landslide presence in
the high zones. Concretely, IV and SVM have around or less
than 35 % landslide presence in very high zones, compared
to other methods, which often have > 50 %. The minimum
is in the IV method scenario S7 and SVM method scenar-
ios S4 and S5 at around 20 % or less landslide presence in
very high susceptibility zones. RF has the maximum land-
slide presence in very high zones in each scenario, valuing
on average 62 %, followed by NN (approx. 56 %) and LR
(approx. 51 %). Observing landslide presence in very low,
low and medium zones, minimal differences are noticeable,
an exception being IV and SVM methods, which stand out
with extremely low landslide presence in very low suscepti-
bility zones. Moreover, the RF method has the highest num-
ber of landslides present in very high susceptibility zones in
each scenario and the highest landslide presence in very low
zones, reaching up to 5 %. Interestingly, the average landslide
presence area in the medium-susceptibility zone is 5.5 %, i.e.
rather low.

5 Discussion

5.1 Discussion regarding LCF classification criteria

Considering the quantitative results in Sect. 4.2, 4.3 and 4.4
from a perspective of 11 scenarios for continuous LCF clas-
sification, moderate differences are found in fitting perfor-
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Figure 6. Graphs of class area distribution for continuous landslide conditioning factors in scenarios S1 to S10.

Figure 7. AUC and Cohen’s κ quantitative parameters describing fitting performance of the 54 derived landslide susceptibility models.

mance and low differences in predictive and classification
performance. However, the noted differences occur repeat-
edly in scenarios S4 to S7 and are represented by poorer
performance in all studied metrics. A likely reason behind
the results is too few classes in the LCFs. Concretely, often
showing extraordinary results, scenario S7 has four or fewer
classes in the continuous LCFs. On the contrary, opposite
classification criteria with a large number of classes, such as
scenarios S1 to S3 and S8 to S10, result in satisfactory results
in all scenarios and are highly similar. That implies that the

closer the classification is to the continuous behaviour, the
higher the LSM fitting and predictive performance.

The 11 classified SD maps are illustrated in Fig. S1 in
the Supplement for each LCF classification scenario, rep-
resenting differences in susceptibility values between the 5
applied methods. Namely, classes of higher SD values in-
dicate higher uncertainties in the LSMs. The SD maps are
visually similar, indicating low differences in susceptibility
values from scenario to scenario. The 0.0–0.1 SD class is
most represented in all scenarios, with area presence rang-
ing from minimum approx. 50 % in scenario S5 to > 65 % in
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scenario S7. The 0.1–0.2 SD class and 0.2–0.3 SD class value
are equally represented in all scenarios, their area percentage
being approx. 35 % and 5 %–10 %, respectively. An excep-
tion is S7, where the 0.2–0.3 SD class has less than 5 %, and
in S11, where the 0.1–0.2 SD class has < 30 % area. Quali-
tatively observing spatial distribution, SD class distribution
does not differ significantly from scenario to scenario. An
exception is scenario S11, where the 0.0–0.1 SD zone has
clustered areas, unlike dispersed and likely pixellized, i.e.
distributed into smaller zones as visible in other scenarios.
Surprisingly, scenarios S7 and S11, which are methodolog-
ically opposite considering the number of classes, have a
high > 60 % map area in the 0.0–0.1 SD class. Moreover, S7
stands out by having the least area in the 0.2–0.5 SD range,
i.e. having > 95 % of the area in SD values < 0.2. If they are
present, 0.3–0.4 and 0.4–0.5 SD classes appear in the same
locations in all scenarios. Scenario S11 stands out with the
most area in the 0.3–0.4 SD class but still < 1 % of the study
area. Generally, the 0.3–0.5 SD range is least present and ne-
glectable in all scenarios when compared to other classes. By
observing the 11 close-up views (Fig. S2), the differences
can be observed by comparing two groups, defined by the
number of classes in LCFs used to derive a LSM, and sce-
nario S7 as a standalone scenario. Namely, the first group
consists of scenarios with fewer classes in LCFs, i.e. S4, S5
and S6. Scenarios with mainly 10 or more classes comprise
the second group, i.e. scenarios S1, S2, S3, S8, S9, S10 and
S11. The first group is less pixellized, with a low number of
standalone pixels and highly expressed susceptibility zones,
unlike the second group, which has heterogeneous and pixel-
lized small zones.

Considering the above, noticeable differences between the
11 scenarios can be traced to the number of classes present in
LCFs, not to the method applied to create the classes. Con-
sequently, scenarios S4, S5, S6 and S7 can be outlined as the
less favourable ones. The latter scenarios show poorer fitting,
predictive and classification performance results. Moreover,
qualitatively, they have robust susceptibility zones, i.e. los-
ing susceptibility information on a large scale, which is es-
sential for high spatial accuracy and applicability in spatial
planning. On the other hand, robustness can ease the classi-
fication process to determine susceptibility zones if the val-
ues related to robustness are spatially accurate. Also, com-
pared to other scenarios, the classification process is rela-
tively time-consuming for scenarios S4–S7. Commonly used
and straightforward heuristic, NB, Q and GI classification
criteria applied in scenarios S3, S8, S9 and S10 represent
satisfactory options, considering the number of classes de-
fined. With most researchers using around 10 classes in dif-
ferent methods, considering results from scenarios S1 and
S2, a significantly larger number of classes can also be ap-
plied to reach reliable results.

Lastly, scenario S11 can be suggested as a uniform ap-
proach to performing landslide susceptibility modelling. Sce-
nario S11 shares excellent performance with several other

scenarios. However, it stands out as the most consistent con-
sidering predictive performance with low differences be-
tween the five used methods. Similarly, it is the least pix-
ellized in the SD map and has > 60 % of the map area in the
0.0–0.1 SD zone, proving low uncertainties between meth-
ods. Moreover, directly applying stretched rasters removes a
step in landslide susceptibility modelling often done by re-
searchers, enabling more technical simplicity and reducing
the time needed due to avoiding the classification of the in-
put data layers. Considering the bivariate approach, where
applying stretched rasters such as in scenario S11 without
classes is not possible, we suggest scenario S1 as the closest
alternative, i.e. the optimal solution.

It should be stated that the set of prepared LCFs in this
study is appropriate for achieving excellent performance for
deriving LSMs. Moreover, the study aimed to test the 11
criteria on such a set; however, the relevance and/or impor-
tance of each LCF in the LSA was not individually deter-
mined. Hence, some of the LCFs may be of poor relation to
LSA quality, and classifying them differently is irrelevant.
In other words, the 11 classification scenarios would likely
present more differences on a limited number of highly im-
portant LCFs. The latter is addressed by applying the classifi-
cation criteria uniformly for all continuous LCFs and propos-
ing a uniform solution for a relevant set of LCFs, not limited
only to the most significant LCFs. Similarly, applying a non-
representative landslide inventory map would likely cause
substantial deviations to the results presented in this study.
Future work considering this topic could lead to the idea pre-
sented by Yan et al. (2019), where LCFs in all scenarios are
mutually combined and tested to develop an optimal solu-
tion, which would lead to a tremendous number of LSMs in
this paper and was therefore discarded, rather emphasizing
the investigation into developing a uniform approach.

5.2 Discussion regarding different statistical methods

Unlike low differences between the 11 scenarios, the 5 ap-
plied methods showed substantial deviations from each other
in different quantitative and qualitative performances as seen
in Sect. 4.2, 4.3, 4.4. and 4.6. Namely, RF outperforms other
methods significantly in model evaluation, followed by the
NN method, whereas IV, LR and SVM differ minimally and
show the lowest Cohen’s κ and AUC values. Furthermore,
predictive performance favours LR, whereas RF performed
poorly, leaving IV, NN and SVM in between. Lastly, clas-
sification metrics favour RF due to perfect results in model
evaluation. Moreover, unlike IV and SVM, RF has the most
landslide presence in a very high susceptibility zone. On the
other hand, RF also excels in the area presence of a very low
susceptibility zone, having it by far the largest compared to
other methods while keeping a low percentage of landslide
presence.

Examining SD maps of susceptibility values for each
method individually (Fig. S3), uncertainty through 11 sce-
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Figure 8. AUC quantitative parameter describing predictive performance of 54 derived landslide susceptibility models.

Figure 9. AUC quantitative parameter describing classification performance of 54 derived landslide susceptibility models.

narios is measured for each method. Surprisingly, the IV, LR
and SVM methods show minimal SD values for most of the
study area. Namely, the SVM method has 99 % of the study
area in the 0.0–0.1 SD zone, whereas IV and LR methods
have< 5 % of the study area in the 0.1–0.2 SD zone. In addi-
tion, SVM and IV methods display noticeable uncertainty in
the south and the southeastern part of the study area, whereas
the LR method has them distributed throughout the study
area. Conversely, RF and NN methods have significantly less
area in the lowest SD class.

The quantitative and qualitative analysis applied to com-
pare 54 derived LSMs showed the advantages and disad-
vantages of the 5 used methods, justifying the broader ap-
proach in this study. In model evaluation, RF often classi-
fied the training pixels perfectly, whereas the predictive per-
formance was significantly lower, leaving an open question
to investigate further. Nonetheless, a rigorous approach with
an unbiased training dataset and 50 % to 50 % landslide in-
ventory splitting still enabled high predictive performance.
Moreover, RF clusters the values close to 0 and 1 suscepti-
bility, leaving low- and high-susceptibility zones relatively
small. However, considering landslide presence in the RF
susceptibility zones, extreme landslide density in the very
high zone can be observed. Interestingly, the IV method can
be regarded as equally usable despite the modelling using
only unstable pixels. Moreover, IV was poorly influenced by
LCFs having few classes, similar to LR and SVM. All three
methods showed extremely low SD values, indicating that all
11 scenarios are equally suitable for their application con-

sidering the resulting susceptibility values. On the contrary,
NN and RF are affected by the lack of more classes in LCFs
(i.e. should not be used recklessly). Considering the classi-
fication parameters, low landslide presence was detected in
very high susceptibility zones for both IV and SVM. De-
spite using 100 classes for LCFs in scenario S1, SVM was
the only method that had well-characterized susceptibility
zones in close-up views, unlike other methods, which were
rather pixellized (Fig. S4). NN and even to a greater extent
RF seem to outperform IV, LR and SVM considering quan-
titative metrics. However, the qualitative approach depicted
certain drawbacks which should be noted. On the other hand,
certain advantages were noted in the IV and SVM methods,
despite their poorer performance. Consequently, we suggest
using LR as a starting point, being the most stable with the
least extraordinary results, whereas for IV, NN, RF and SVM
methods, the classification criteria can drastically influence
the LSM quality; i.e. optimization should be applied as well
as considering the LSA’s purpose.

Considering that in many LSA comparison papers the
mentioned model evaluation and/or validation metrics reach
satisfactory results in the tested scenarios, in this study we
emphasized the classification parameters for the following
reasons:

i. Satisfactory quantitative metrics results are expected in
model evaluation (fitting performance) and LSM vali-
dation (predictive performance) due to complete input
data of high spatial accuracy.
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Figure 10. Landslide susceptibility zone area distribution graph for 54 derived landslide susceptibility models.

Figure 11. Landslide area distribution in a landslide susceptibility zone graph for 54 derived landslide susceptibility models.

ii. Classification parameters take into consideration all
identified unstable pixels from the complete landslide
inventory.

iii. Spatial distribution of classified LSMs allows insight re-
garding application in the spatial planning system, com-
bined with susceptibility zone relation to elements at
risk (e.g. buildings, roads).

iv. Classification parameters define relations of all iden-
tified landslide presence in each defined susceptibility
class, essential for application and for defining landslide
protocols for LSA.

Putting the differences aside, all methods resulted in ob-
jectively excellent LSMs and confirmed the previous LSA
done by Bernat Gazibara et al. (2023) in the study area. How-
ever, modelling on a large scale and aiming towards appli-
cation in spatial planning, using a qualitative approach has
proven to be of great significance by providing new insights
into landslide susceptibility modelling. Without the latter, a
complete picture of the used methods could not be acquired.
LSA is often carried out to optimize certain parameters (e.g.
method, mapping unit, inventory type) by developing dozens
of LSMs which are further compared. When landslide sus-
ceptibility modelling reaches a point where most LSMs have
a high fitting and predictive performance, we argue that ad-

ditional metrics (e.g. qualitative approach and classification
parameters) are needed, depending on the scope of the LSA.

6 Conclusions

The presented work is based on geomorphologically signif-
icant and spatially accurate thematic data for LSMs, mak-
ing it one of the rarest pieces of scientific research to im-
plement the recommendations for LSA by Reichenbach et
al. (2018). More precisely, Reichenbach et al. (2018) identi-
fied that LSA researchers are more eager to experiment with
modelling techniques than to focus on acquiring relevant the-
matic and landslide data. Moreover, existing literature deals
with preparing thematic input data in a general way and
lacks a uniform approach for continuous LCF classification.
This work represents a comprehensive analysis of different
classification criteria for continuous LCFs and applies the
most commonly used statistical methods evaluated by sev-
eral quantitative and qualitative metrics to obtain representa-
tive conclusions and novelties regarding large-scale LSMs.

We defined 11 classification criteria for the 7 continuous
LCFs applied in the landslide susceptibility modelling: ele-
vation, slope, terrain wetness, proximity to geological con-
tact, faults, streams and drainage network. Also, two criteria
were applied to the categorical aspect LCF, whereas the re-
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maining categorical LCFs, i.e. lithology (rock/type) and land
use, remained constant in all scenarios. Scenarios were de-
fined based on the classification criteria applied in the lit-
erature review and/or modifications of the criteria and vary
by stretched values, partially stretched classes, the heuris-
tic approach, classification based on studentized contrast and
landslide presence, and commonly used classification (such
as natural neighbour, quantiles and geometrical intervals).
By applying 5 statistical methods (i.e. IV, LR, NN, RF and
SVM), 54 LSMs were derived, providing comprehensive in-
sight into the research issue. Also, a strict landslide sam-
pling approach was used, with 50 % of landslide polygons
used for training and the other 50 % for validation. Quan-
titative metrics to measure each derived LSM include false
alarm rate and hit rate AUC, Cohen’s κ model evaluation),
AUC prediction rate values, SD class percentage area (model
validation), AUC, susceptibility zone percentage area, and
landslide area presence in susceptibility zones (model clas-
sification). The complete set of studied metrics proved to be
necessary, pointing out the advantages and disadvantages of
used methods and classification scenarios. Considering gen-
eral performance, all the derived LSMs proved to be reliable
considering usually studied metrics, i.e. AUC for fitting and
predictive performance.

The analysis presented in the paper resulted in a set of
large-scale LSMs created from representative and spatially
accurate input data, including detailed lidar-based landslide
inventory and high-resolution thematic data. Based on 54 re-
liable LSMs, specific conclusions with practical application
could be made. The landslide susceptibility modelling was
done on 21 km2 in the Podsljeme area, using a 5 m pixel as a
mapping unit suitable for large-scale LSA. The study area is
characterized by small and shallow landslides and can be rep-
resentative of similar environments with high-quality input
data for landslide susceptibility modelling. The main conclu-
sions and novelties derived from the presented comprehen-
sive large-scale landslide susceptibility analysis are follow-
ing:

(i.) Due to using relevant input data with sufficient spatial
accuracy, landslide susceptibility modelling performed
by any statistical method or any LCF classification sce-
nario in this paper resulted in a highly reliable LSM.

(ii.) Any of the suggested scenarios to classify continuous
LCFs is appropriate if it resulted in roughly 10 or un-
limitedly more classes in the LCF, suggesting the higher
importance of the number of classes in LCFs than the
method of how the classes were created. In other words,
a low number of classes in LCFs, such as< 5, are likely
to perform poorly and should be avoided.

(iii.) Applying input data layers as stretched rasters (scenario
S11) and line vectors as buffers with > 10 buffer zones
simplifies the susceptibility modelling process and pro-
vides a uniform solution to preparing LCFs.

(iv.) Quantitative classification parameters and uncertainty
metrics, as well as qualitative comparison (e.g. close-
up views to verify spatial accuracy) applied in this
study, are necessary metrics to evaluate optimal set-
tings for large-scale landslide susceptibility modelling
as they depict LSM characteristics unidentified by stan-
dard quantitative fitting and/or prediction metrics.

(v.) Optimal method selection remains an open question and
generally should be considered regarding the final ap-
plicability of the LSA, whereas in this study the LR
method presents the most stable and representative op-
tion, and the RF method offers optimal performance
when appropriately applied, achieving far better perfor-
mance.

(vi.) NN and RF methods are more sensitive to the LCF clas-
sification criteria than IV, LR and SVM.

However, using the same strategy on a different scale or
with an incomplete dataset (either irrelevant LCFs or a non-
representative landslide inventory) remains an open question
which requires additional research. Moreover, comprehen-
sive comparison using a variety of parameters provides new
insight into derived LSMs. For LSM validation, quantitative
metrics are not representative due to the lack of a spatial ac-
curacy component, which is especially important in large-
scale LSA and was proven in this paper. The studied quali-
tative metrics are maps of SD classes for model validation,
whereas the spatial distribution of susceptibility zones and
landslides in full extent and additionally with elements at risk
in close-up views are used to describe classified LSMs. Pre-
sented results and performed validation of LSMs contribute
to the preparation of recommendations, evaluation, and use
of LSMs and associated terrain zonation proposed by Re-
ichenbach et al. (2018). The recommended qualitative met-
rics enable the verification of the LSMs for practical applica-
tion in spatial planning at the local level because they enable
comparison with real environmental conditions and elements
at risk that are visible on close-up views and high-resolution
hillshade maps.
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M. Sinčić et al.: Comparison of conditioning factor classification criteria 203

Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn.,
20, 273–297, https://doi.org/10.1007/BF00994018, 1995.

Cox, D. R.: The Regression Analysis of Binary Sequences, J. Roy.
Stat. Soc., 20, 215–242, 1958.

Cui, K., Lu, D., and Li, W.: Comparison of landslide susceptibil-
ity mapping based on statistical index, certainty factors, weights
of evidence and evidential belief function models, Geocarto Int.,
32, 935–955, https://doi.org/10.1080/10106049.2016.1195886,
2017.

Donati, L. and Turrini, M. C.: An objective method to rank
the importance of the factors predisposing to landslides with
the GIS methodology: application to an area of the Apen-
nines (Valnerina; Perugia, Italy), Eng. Geol., 63, 277–289,
https://doi.org/10.1016/S0013-7952(01)00087-4, 2002.

Dou, J., Tien Bui, D., P. Yunus, A., Jia, K., Song, X., Revhaug,
I., Xia, H., and Zhu, Z.: Optimization of Causative Factors for
Landslide Susceptibility Evaluation Using Remote Sensing and
GIS Data in Parts of Niigata, Japan, PLoS One, 10, e0133262,
https://doi.org/10.1371/journal.pone.0133262, 2015.

Evans, J. S., Oakleaf, J., Cushman, S. A., and Theobald, D.: An
arc gis toolbox for surface gradient and geo-morphometric
modeling, version 2.0-0., https://evansmurphy.wixsite.com/
evansspatial/arcgis-gradient-metrics-toolbox (last access: 6
February 2024), 2014.

Farooq, S. and Akram, M. S.: Landslide susceptibility mapping us-
ing information value method in Jhelum Valley of the Himalayas,
Arab. J. Geosci., 14, 824, https://doi.org/10.1007/s12517-021-
07147-7, 2021.

Fawcett, T.: An introduction to ROC analysis, Pattern Recognit.
Lett., 27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010,
2006.

Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and
Savage, W. Z.: Guidelines for landslide susceptibility, hazard
and risk zoning for land use planning, Eng. Geol., 102, 85–98,
https://doi.org/10.1016/j.enggeo.2008.03.022, 2008a.

Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and
Savage, W. Z.: Guidelines for landslide susceptibility, hazard
and risk zoning for land-use planning, Eng. Geol., 102, 99–111,
https://doi.org/10.1016/j.enggeo.2008.03.014, 2008b.

Fressard, M., Thiery, Y., and Maquaire, O.: Which data for
quantitative landslide susceptibility mapping at operational
scale? Case study of the Pays d’Auge plateau hillslopes (Nor-
mandy, France), Nat. Hazards Earth Syst. Sci., 14, 569–588,
https://doi.org/10.5194/nhess-14-569-2014, 2014.

Gaidzik, K. and Ramírez-Herrera, M. T.: The importance of input
data on landslide susceptibility mapping, Sci. Rep., 11, 19334,
https://doi.org/10.1038/s41598-021-98830-y, 2021.

Gorsevski, P. V., Gessler, P. E., Foltz, R. B., and Elliot,
W. J.: Spatial Prediction of Landslide Hazard Using Lo-
gistic Regression and ROC Analysis, T. GIS, 10, 395–415,
https://doi.org/10.1111/j.1467-9671.2006.01004.x, 2006.

Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Land-
slide hazard evaluation: a review of current techniques and their
application in a multi-scale study, Central Italy, Geomorphology,
31, 181–216, https://doi.org/10.1016/S0169-555X(99)00078-1,
1999.

Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali,
M., and Galli, M.: Estimating the quality of landslide

susceptibility models, Geomorphology, 81, 166–184,
https://doi.org/10.1016/j.geomorph.2006.04.007, 2006a.

Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., and Cardi-
nali, M.: Landslide hazard assessment in the Collazzone area,
Umbria, Central Italy, Nat. Hazards Earth Syst. Sci., 6, 115–131,
https://doi.org/10.5194/nhess-6-115-2006, 2006b.

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., San-
tangelo, M., and Chang, K.-T.: Landslide inventory maps:
New tools for an old problem, Earth Sci. Rev., 112, 42–66,
https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.

Habumugisha, J. M., Chen, N., Rahman, M., Islam, M. M., Ahmad,
H., Elbeltagi, A., Sharma, G., Liza, S. N., and Dewan, A.: Land-
slide Susceptibility Mapping with Deep Learning Algorithms,
Sustainability, 14, 1734, https://doi.org/10.3390/su14031734,
2022.

Hastie, T., Tibshirani, R., and Friendman, J.: The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction, Springer,
New York, 745, https://doi.org/10.1007/b94608, 2009.

Hemasinghe, H., Rangali, R. S. S., Deshapriya, N. L., and
Samarakoon, L.: Landslide susceptibility mapping us-
ing logistic regression model (a case study in Badulla
District, Sri Lanka), Procedia Eng., 212, 1046–1053,
https://doi.org/10.1016/j.proeng.2018.01.135, 2018.

Ho, T. K.: Random decision forests, in: Proceedings of 3rd Interna-
tional Conference on Document Analysis and Recognition, 278–
282, https://doi.org/10.1109/ICDAR.1995.598994, 1995.

Huang, F., Zhang, J., Zhou, C., Wang, Y., Huang, J., and Zhu,
L.: A deep learning algorithm using a fully connected sparse
autoencoder neural network for landslide susceptibility predic-
tion, Landslides, 17, 217–229, https://doi.org/10.1007/s10346-
019-01274-9, 2020a.

Huang, F., Cao, Z., Guo, J., Jiang, S.-H., Li, S., and Guo,
Z.: Comparisons of heuristic, general statistical and ma-
chine learning models for landslide susceptibility pre-
diction and mapping, Catena (Amst), 191, 104580,
https://doi.org/10.1016/j.catena.2020.104580, 2020b.

Huang, F., Tao, S., Li, D., Lian, Z., Catani, F., Huang, J., Li,
K., and Zhang, C.: Landslide Susceptibility Prediction Con-
sidering Neighborhood Characteristics of Landslide Spatial
Datasets and Hydrological Slope Units Using Remote Sens-
ing and GIS Technologies, Remote Sens. (Basel), 14, 4436,
https://doi.org/10.3390/rs14184436, 2022.

Jacobs, L., Kervyn, M., Reichenbach, P., Rossi, M., March-
esini, I., Alvioli, M., and Dewitte, O.: Regional susceptibility
assessments with heterogeneous landslide information: Slope
unit- vs. pixel-based approach, Geomorphology, 356, 107084,
https://doi.org/10.1016/j.geomorph.2020.107084, 2020.

James, G., Witten, D., Hastie, T., and Tibshirani, R.: An Intro-
duction to Statistical Learning, Springer, New York, 606 pp.,
https://doi.org/10.1007/978-1-4614-7138-7, 2013.

Jebur, M. N., Pradhan, B., and Tehrany, M. S.: Optimiza-
tion of landslide conditioning factors using very high-
resolution airborne laser scanning (LiDAR) data at
catchment scale, Remote Sens. Environ., 152, 150–165,
https://doi.org/10.1016/j.rse.2014.05.013, 2014.
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