Articles | Volume 24, issue 4
https://doi.org/10.5194/nhess-24-1185-2024
https://doi.org/10.5194/nhess-24-1185-2024
Research article
 | 
03 Apr 2024
Research article |  | 03 Apr 2024

A regional early warning for slushflow hazard

Monica Sund, Heidi A. Grønsten, and Siv Å. Seljesæter

Related authors

The Norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides
Ingeborg K. Krøgli, Graziella Devoli, Hervé Colleuille, Søren Boje, Monica Sund, and Inger Karin Engen
Nat. Hazards Earth Syst. Sci., 18, 1427–1450, https://doi.org/10.5194/nhess-18-1427-2018,https://doi.org/10.5194/nhess-18-1427-2018, 2018
Short summary
Comparison of landslide forecasting services in Piedmont (Italy) and Norway, illustrated by events in late spring 2013
Graziella Devoli, Davide Tiranti, Roberto Cremonini, Monica Sund, and Søren Boje
Nat. Hazards Earth Syst. Sci., 18, 1351–1372, https://doi.org/10.5194/nhess-18-1351-2018,https://doi.org/10.5194/nhess-18-1351-2018, 2018

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024,https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024,https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary

Cited articles

Abermann, J., Eckerstorfer, M., Malnes, E., and Hansen, B. U.: A large wet snow avalanche cycle in West Greenland quantified using remote sensing and in situ observations, Nat. Hazards, 97, 517–534, https://doi.org/10.1007/s11069-019-03655-8, 2019. 
Barsch, D., Gude, M., Mausbacher, R., Schukraft, G., Schulte, A. and Strauch, D.: Slush stream phenomena – process and geomorphic impact, Supplementband 92, Z. Geomorphol., 39–53, http://geoprodig.cnrs.fr/items/show/80945 (last access: 14 February 2024), 1993. 
Beldring, S., Engeland, K., Roald, L. A., Sælthun, N. R., and Voksø, A.: Estimation of parameters in a distributed precipitation-runoff model for Norway, Hydrol. Earth Syst. Sci., 7, 304–316, https://doi.org/10.5194/hess-7-304-2003, 2003. 
Bellaire, S., van Herwijnen, A., Mitterer, C., and Schweizer, J.: On forecasting wet-snow avalanche activity using simulated snow cover data, Cold Reg. Sci. Technol., 144, 28–38, https://doi.org/10.1016/j.coldregions.2017.09.013, 2017. 
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An energy and mass model of snow cover suitable for operational avalanche forecasting, J. Glaciol., 35, 333–342, https://doi.org/10.3189/S0022143000009254, 1989. 
Download
Short summary
Slushflows are rapid mass movements of water-saturated snow released in gently sloping terrain (< 30°), often unexpectedly. Early warning is crucial to prevent casualties and damage to infrastructure. A regional early warning for slushflow hazard was established in Norway in 2013–2014 and has been operational since. We present a methodology using the ratio between water supply and snow depth by snow type to assess slushflow hazard. This approach is useful for other areas with slushflow hazard.
Altmetrics
Final-revised paper
Preprint