Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2031-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2031-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seismogenic potential and tsunami threat of the strike-slip Carboneras fault in the western Mediterranean from physics-based earthquake simulations
Department of Geodynamics, Stratigraphy and Paleontology, Faculty of Geology, Complutense University of Madrid, Madrid, Spain
Paula Herrero-Barbero
Department of Geodynamics, Stratigraphy and Paleontology, Faculty of Geology, Complutense University of Madrid, Madrid, Spain
Geosciences Barcelona CSIC, GEO3BCN-CSIC, Barcelona, Spain
José J. Martínez-Díaz
Department of Geodynamics, Stratigraphy and Paleontology, Faculty of Geology, Complutense University of Madrid, Madrid, Spain
IGEO, Geosciences Institute, CSIC-UCM, Madrid, Spain
Related authors
Antonio Olaiz, José A. Álvarez Gómez, Gerardo de Vicente, Alfonso Muñoz-Martín, Juan V. Cantavella, Susana Custódio, Dina Vales, and Oliver Heidbach
Solid Earth, 16, 947–1024, https://doi.org/10.5194/se-16-947-2025, https://doi.org/10.5194/se-16-947-2025, 2025
Short summary
Short summary
Understanding the stress and strain conditions in the Earth's crust is crucial for various activities, such as oil and gas exploration and assessing seismic hazards. In this article, we have updated the database of moment tensor focal mechanisms for Greater Iberia. We conducted kinematic and dynamic analyses on the selected populations, determining the average focal mechanism, strain and stress orientations, and tectonic regime. The orientation for horizontal compression is primarily N154° E.
Octavi Gómez-Novell, Francesco Visini, José A. Álvarez-Gómez, Bruno Pace, and Julián García-Mayordomo
EGUsphere, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, 2025
Short summary
Short summary
Earthquake surface ruptures are a hazard for infrastructure and life that requires proper assessment. We use a physics-based earthquake cycle simulator to derive fault displacement hazard statistics in a test fault system and their dependence to fault geometry. Our results show that more complex fault geometries increase surface rupture probabilities and might improve the agreement with observations. Earthquake cycle simulators are thus a promising tool for fault displacement hazard analyses.
Antonio Olaiz, José A. Álvarez Gómez, Gerardo de Vicente, Alfonso Muñoz-Martín, Juan V. Cantavella, Susana Custódio, Dina Vales, and Oliver Heidbach
Solid Earth, 16, 947–1024, https://doi.org/10.5194/se-16-947-2025, https://doi.org/10.5194/se-16-947-2025, 2025
Short summary
Short summary
Understanding the stress and strain conditions in the Earth's crust is crucial for various activities, such as oil and gas exploration and assessing seismic hazards. In this article, we have updated the database of moment tensor focal mechanisms for Greater Iberia. We conducted kinematic and dynamic analyses on the selected populations, determining the average focal mechanism, strain and stress orientations, and tectonic regime. The orientation for horizontal compression is primarily N154° E.
Octavi Gómez-Novell, Francesco Visini, José A. Álvarez-Gómez, Bruno Pace, and Julián García-Mayordomo
EGUsphere, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, 2025
Short summary
Short summary
Earthquake surface ruptures are a hazard for infrastructure and life that requires proper assessment. We use a physics-based earthquake cycle simulator to derive fault displacement hazard statistics in a test fault system and their dependence to fault geometry. Our results show that more complex fault geometries increase surface rupture probabilities and might improve the agreement with observations. Earthquake cycle simulators are thus a promising tool for fault displacement hazard analyses.
Cited articles
Álvarez-Gómez, J. A., Aniel-Quiroga, Í., González, M., Olabarrieta, M., and Carreño, E.: Scenarios for earthquake-generated tsunamis on a complex tectonic area of diffuse deformation and low velocity: The Alboran Sea, Western Mediterranean, Mar. Geol., 284, 55–73, 2011a. a, b, c, d, e, f, g, h, i, j
Álvarez-Gómez, J. A., Aniel-Quiroga, ĺ., González, M., and Otero, L.: Tsunami hazard at the Western Mediterranean Spanish coast from seismic sources, Nat. Hazards Earth Syst. Sci., 11, 227–240, https://doi.org/10.5194/nhess-11-227-2011, 2011b. a, b, c, d
Álvarez Gómez, J. A., Herrero Barbero, P., and Martínez Díaz, J. J.: Supplementary data for “Seismogenic potential and tsunami threat of the strike-slip Carboneras fault in the western Mediterranean from physics-based earthquake simulations”, Zenodo [data set], https://doi.org/10.5281/zenodo.7994105, 2023. a, b, c, d
Bak, P. and Tang, C.: Earthquakes as a self-organized critical phenomenon,
J. Geophys. Res., 94, 15635–15637, 1989. a
Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality, Phys. Rev. A, 38, 364–374, https://doi.org/10.1103/PhysRevA.38.364, 1988. a
Ballesteros, M., Rivera, J., noz, A. M., noz Martín, A. M., Acosta, J.,
Carbó, A., and Uchupi, E.: Alboran Basin, southern
Spain – Part II: Neogene tectonic implications for the
orogenic float model, Mar. Petrol. Geol., 25, 75–101, 2008. a
Baptista, M. A. and Miranda, J. M.: Revision of the Portuguese catalog of tsunamis, Nat. Hazards Earth Syst. Sci., 9, 25–42, https://doi.org/10.5194/nhess-9-25-2009, 2009. a
Basili, R., Brizuela, B., Herrero, A., Iqbal, S., Lorito, S., Maesano, F. E., Murphy, S., Perfetti, P., Romano, F., Scala, A., Selva, J., Taroni, M., Thio, H. K., Tiberti, M. M., Tonini, R., Volpe, M., Glimsdal, S., Harbitz, C. B., Løvholt, F., Baptista, M. A., Carrilho, F., Matias, L. M., Omira, R., Babeyko, A., Hoechner, A., Gurbuz, M., Pekcan, O., Yalçıner, A., Canals, M., Lastras, G., Agalos, A., Papadopoulos, G., Triantafyllou, I., Benchekroun, S., Agrebi Jaouadi, H., Attafi, K., Ben Abdallah, S., Bouallegue, A., Hamdi, H., and Oueslati, F.: NEAM Tsunami Hazard Model 2018 (NEAMTHM18): online data of the Probabilistic Tsunami Hazard Model for the NEAM Region from the TSUMAPS-NEAM project, Istituto Nazionale di Geofisica e Vulcanologia (INGV), https://doi.org/10.13127/tsunami/neamthm18 2018. a
Basili, R., Brizuela, B., Herrero, A., Iqbal, S., Lorito, S., Maesano, F. E., Murphy, S., Perfetti, P., Romano, F., Scala, A., Selva, J., Taroni, M., Thio, H. K., Tiberti, M. M., Tonini, R., Volpe, M., Glimsdal, S., Harbitz, C. B., Løvholt, F., Baptista, M. A., Carrilho, F., Matias, L. M., Omira, R., Babeyko, A., Hoechner, A., Gurbuz, M., Pekcan, O., Yalçıner, A., Canals, M., Lastras, G., Agalos, A., Papadopoulos, G., Triantafyllou, I., Benchekroun, S., Agrebi Jaouadi, K., Ben Abdallah, S., Bouallegue, A., Hamdi, H., Oueslati, F., Amato, A., Armigliato, A., Behrens, J., Davies, G., Di Bucci, D., Dolce, M., Geist, E., Gonzalez Vida, J. M., González, M., Macías Sánchez, J., Meletti, C., Ozer Sozdinler, C., Pagani, M., Parsons, T., Polet, J., Power, W., Sørensen, M. B., and Zaytsev, A.: The making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18), Front. Earth Sci., 8, https://doi.org/10.3389/feart.2020.616594, 2021. a, b, c
Ben-Zion, Y. and Rice, J. R.: Slip patterns and earthquake populations along different classes of faults in elastic solids, J. Geophys. Res.-Sol. Ea., 100, 12959–12983, https://doi.org/10.1029/94JB03037, 1995. a
Bolshakova, A. V. and Nosov, M. A.: Parameters of Tsunami Source Versus
Earthquake Magnitude, Pure Appl. Geophys., 168, 2023–2031,
https://doi.org/10.1007/s00024-011-0285-3, 2011. a, b, c, d
Borghini, M., Bryden, H., Schroeder, K., Sparnocchia, S., and Vetrano, A.: The Mediterranean is becoming saltier, Ocean Sci., 10, 693–700, https://doi.org/10.5194/os-10-693-2014, 2014. a
Borque, M. J., Sánchez-Alzola, A., Martin-Rojas, I., Alfaro, P., Molina, S., Rosa-Cintas, S., Rodríguez-Caderot, G., de Lacy, C., García-Armenteros, J. A., Avilés, M., Herrera-Olmo, A., García-Tortosa, F. J., Estévez, A., and Gil, A. J.: How Much Nubia-Eurasia Convergence Is Accommodated by the NE End of the Eastern Betic Shear Zone (SE Spain)? Constraints From GPS
Velocities, Tectonics, 38, 1824–1839, https://doi.org/10.1029/2018TC004970, 2019. a
Bourgois, J., Mauffret, A., Ammar, N. A., and Demnati, N. A.: Multichannel seismic data imaging of inversion tectonics of the Alboran Ridge (Western Mediterranean Sea), Geo-Mar. Lett., 12, 117–122, 1992. a
Bousquet, J.-C.: Quaternary strike-slip faults in southeastern Spain,
Tectonophysics, 52, 277–286, https://doi.org/10.1016/0040-1951(79)90232-4, 1979. a
Burbidge, D., Mueller, C., and Power, W.: The effect of uncertainty in earthquake fault parameters on the maximum wave height from a tsunami propagation model, Nat. Hazards Earth Syst. Sci., 15, 2299–2312, https://doi.org/10.5194/nhess-15-2299-2015, 2015. a
Cabañas, L., Rivas-Medina, A., Martínez-Solares, J. M., Gaspar-Escribano, J. M.,Benito, B., Antón, R., and Ruiz-Barajas, S.: Relationships Between Mw and Other Earthquake Size Parameters in the Spanish IGN Seismic Catalog, Pure Appl. Geophys., 172, 2397–2410, https://doi.org/10.1007/s00024-014-1025-2, 2015. a
Chartier, T., Scotti, O., Lyon-Caen, H., Richard-Dinger, K., Dieterich, J. H., and Shaw, B. E.: Modelling earthquake rates and associated uncertainties in the Marmara Region, Turkey, Nat. Hazards Earth Syst. Sci., 21, 2733–2751, https://doi.org/10.5194/nhess-21-2733-2021, 2021. a, b
Chertova, M. V., Spakman, W., Geenen, T., van den Berg, A. P., and van
Hinsbergen, D. J. J.: Underpinning tectonic reconstructions of the western
Mediterranean region with dynamic slab evolution from 3-D numerical
modeling, J. Geophys. Res.-Sol. Ea., 119, 5876–5902,
https://doi.org/10.1002/2014JB011150, 2014. a
Comas, M. C., Dueñas, V. G., and Jurado, M. J.: Neogene tectonic evolution of the Alboran Basin from MCS data, Geo-Mar. Lett., 12, 157–164, 1992. a
Console, R., Carluccio, R., Papadimitriou, E., and Karakostas, V.: Synthetic
earthquake catalogs simulating seismic activity in the Corinth Gulf,
Greece, fault system, J. Geophys. Res.-Sol. Ea., 120,
326–343, https://doi.org/10.1002/2014JB011765, 2015. a
Console, R., Nardi, A., Carluccio, R., Murru, M., Falcone, G., and Parsons, T.: A physics-based earthquake simulator and its application to seismic hazard assessment in Calabria (Southern Italy) region, Acta Geophys., 65, 243–257, https://doi.org/10.1007/s11600-017-0020-2, 2017. a, b
Console, R., Vannoli, P., and Carluccio, R.: The seismicity of the Central Apennines (Italy) studied by means of a physics-based earthquake simulator, Geophys. J. Int., 212, 916–929, https://doi.org/10.1093/gji/ggx451, 2018. a
Console, R. Carluccio, R., Murru, M., Papadimitriou, E., and Karakostas, V.: Physics‐Based Simulation of Spatiotemporal Patterns of Earthquakes in the Corinth Gulf, Greece, Fault System, B. Seismol. Soc. Am., 112, 98–117, https://doi.org/10.1785/0120210038, 2021. a
Cunha, T. A., Matias, L. M., Terrinha, P., Negredo, A. M., Rosas, F., Fernandes, R. M. S., and Pinheiro, L. M.: Neotectonics of the SW Iberia margin, Gulf of Cadiz and Alboran Sea: a reassessment including recent structural, seismic and geodetic data, Geophys. J. Int., 188, 850–872, 2012. a
Davies, G., Griffin, J., Løvholt, F., Glimsdal, S., Harbitz, C., Thio, H. K., Lorito, S., Basili, R., Selva, J., Geist, E., and Baptista, M. A.: A global probabilistic tsunami hazard assessment from earthquake sources, Geol. Soc. Spec. Publ., 456, 219–244, 2018. a
Dieterich, J. H.: Modeling of rock friction: 1. Experimental results and
constitutive equations, J. Geophys. Res.-Sol. Ea., 84,
2161–2168, https://doi.org/10.1029/JB084iB05p02161, 1979. a
Dieterich, J. H.: Earthquake nucleation on faults with rate-and state-dependent strength, Tectonophysics, 211, 115–134, https://doi.org/10.1016/0040-1951(92)90055-B, 1992. a
Dieterich, J. H.: Earthquake simulations with time-dependent nucleation and long-range interactions, Nonlin. Processes Geophys., 2, 109–120, https://doi.org/10.5194/npg-2-109-1995, 1995. a, b, c
Dieterich, J. H. and Richards-Dinger, K. B.: Earthquake Recurrence in Simulated Fault Systems, in: Seismogenesis and Earthquake Forecasting: The Frank Evison Volume II, edited by: Savage, M. K., Rhoades, D. A., Smith, E. G. C., Gerstenberger, M. C., and Vere-Jones, D., Springer, Basel, 233–250, https://doi.org/10.1007/978-3-0346-0500-7_15, 2010. a, b, c
Do Couto, D., Gorini, C., Jolivet, L., Lebret, N., Augier, R., Gumiaux, C., d'Acremont, E., Ammar, A., Jabour, H., and Auxietre, J.-L.: Tectonic and stratigraphic evolution of the Western Alboran Sea Basin in the last 25 Myrs, Tectonophysics, 677–678, 280–311, https://doi.org/10.1016/j.tecto.2016.03.020, 2016. a
Dotsenko, S. F., and Soloviev, S. L.: Mathematical modeling of tsunami excitation process by displacement of the ocean bottom, Tsunami Researches, 4, 8–20, 1990 (in Russian). a
Echeverria, A., Khazaradze, G., Asensio, E., Gárate, J., Dávila, J. M., and Suriñach, E.: Crustal deformation in eastern Betics from CuaTeNeo GPS network, Tectonophysics, 608, 600–612,
https://doi.org/10.1016/j.tecto.2013.08.020, 2013. a
Echeverria, A., Khazaradze, G., Asensio, E., and Masana, E.: Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain), Tectonophysics, 663, 302–309, https://doi.org/10.1016/j.tecto.2015.08.009, 2015. a
Elbanna, A., Abdelmeguid, M., Ma, X., Amlani, F., Bhat, H. S., Synolakis, C., and Rosakis, A. J.: Anatomy of strike-slip fault tsunami genesis, P. Natl. Acad. Sci. USA, 118, e2025632118, https://doi.org/10.1073/pnas.2025632118, 2021. a, b, c
Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., and Rossetti, F.: Lateral slab deformation and the origin of the western Mediterranean arcs,
Tectonics, 23, TC1012, https://doi.org/10.1029/2002TC001488, 2004. a
Faulkner, D. R., Lewis, A. C., and Rutter, E. H.: On the internal structure and mechanics of large strike-slip fault zones: field observations of the
Carboneras fault in southeastern Spain, Tectonophysics, 367, 235–251,
https://doi.org/10.1016/S0040-1951(03)00134-3, 2003. a
Fernández-Ibáñez, F. and Soto, J. I.: Crustal rheology and seismicity
in the Gibraltar Arc (western Mediterranean), Tectonics, 27, TC2007, https://doi.org/10.1029/2007TC002192, 2008. a
Field, E. H.: How Physics-Based Earthquake Simulators Might Help
Improve Earthquake Forecasts, Seismol. Res. Lett., 90,
467–472, https://doi.org/10.1785/0220180299, 2019. a
Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, II, R. J., and Zeng, Y.: Uniform California
Earthquake Rupture Forecast, Version 3 (UCERF3) – The
Time-Independent Model, B. Seismol. Soc. Am., 104, 1122–1180, https://doi.org/10.1785/0120130164, 2014. a, b
Frucht, E., Salamon, A., Gal, E., Ginat, H., Grigorovitch, M., Shem Tov, R., and Ward, S.: A Fresh View of the Tsunami Generated by the Dead Sea Transform, 1995 Mw 7.2 Nuweiba Earthquake, along the Gulf of Elat – Aqaba, Seismol. Res. Lett., 90, 1483–1493,
https://doi.org/10.1785/0220190004, 2019. a, b
Fujii, Y., Satake, K., Sakai, S., Shinohara, M., and Kanazawa, T.: Tsunami
source of the 2011 off the Pacific coast of Tohoku Earthquake, Earth
Planet. Space, 63, 815–820, https://doi.org/10.5047/eps.2011.06.010, 2011. a
García-Mayordomo, J.: Caracterización y análisis de la peligrosidad sísmica en el sureste de España, PhD Thesis, Universidad Complutense de Madrid, 2005. a
García-Mayordomo, J.: Creación de un modelo de zonas sismogénicas para el
cálculo del mapa de peligrosidad sísmica de España, Instituto Geológico y
Minero de España, Madrid, 12 pp., ISBN 978-84-7840-964-8, 2015. a
García-Mayordomo, J., Martín-Banda, R., Insua-Arévalo, J. M., Álvarez-Gómez, J. A., Martínez-Díaz, J. J., and Cabral, J.: Active fault databases: building a bridge between earthquake geologists and seismic hazard practitioners, the case of the QAFI v.3 database, Nat. Hazards Earth Syst. Sci., 17, 1447–1459, https://doi.org/10.5194/nhess-17-1447-2017, 2017. a, b
Geist, E. L.: Local Tsunamis and Earthquake Source Parameters, in: Advances in Geophysics, edited by: Dmowska, R., and Saltzman, B., vol. 39 of Tsunamigenic Earthquakes and Their Consequences, Elsevier, 117–209, https://doi.org/10.1016/S0065-2687(08)60276-9, 1998. a
Geist, E. L.: Complex earthquake rupture and local tsunamis, J. Geophys. Res.-Sol. Ea., 107, ESE 2-1–ESE 2-15, https://doi.org/10.1029/2000JB000139, 2002. a, b
Gibbons, S. J., Lorito, S., de la Asunción, M., Volpe, M., Selva, J., Macías, J., Sánchez-Linares, C., Brizuela, B., Vöge, M., Tonini, R., Lanucara, P., Glimsdal, S., Romano, F., Meyer, J. C., and Løvholt, F.: The Sensitivity of Tsunami Impact to Earthquake Source Parameters
and Manning Friction in High-Resolution Inundation Simulations,
Front. Earth Sci., 9, https://doi.org/10.3389/feart.2021.757618, 2022. a
Gimbutas, Z., Greengard, L., Barall, M., and Tullis, T. E.: On the
Calculation of Displacement, Stress, and Strain Induced by
Triangular Dislocations, B. Seismol. Soc. Am., 102, 2776–2780, https://doi.org/10.1785/0120120127, 2012. a
Goda, K., Yasuda, T., Mori, N., and Mai, P. M.: Variability of tsunami
inundation footprints considering stochastic scenarios based on a single
rupture model: Application to the 2011 Tohoku earthquake, J.
Geophys. Res.-Oceans, 120, 4552–4575, https://doi.org/10.1002/2014JC010626, 2015. a
Gómez de la Peña, L., R. Ranero, C., Gràcia, E., and Booth-Rea, G.: The evolution of the westernmost Mediterranean basins, Earth-Sci. Rev., 214, 103445, https://doi.org/10.1016/j.earscirev.2020.103445, 2021. a
Gómez de la Peña, L., Gràcia, E., Maesano, F. E., Basili, R., Kopp, H., Sánchez-Serra, C., Scala, A., Romano, F., Volpe, M., Piatanesi, A., and Ranero, C. R.: A first appraisal of the seismogenic and tsunamigenic
potential of the largest fault systems in the westernmost Mediterranean,
Mar. Geol., 445, 106749, https://doi.org/10.1016/j.margeo.2022.106749, 2022. a, b, c, d, e, f, g, h, i, j
Gràcia, E., Pallàs, R., Soto, J. I., Comas, M., Moreno, X., Masana, E., Santanach, P., Diez, E., García, M., and Dañobeitia, J.: Active faulting offshore SE Spain (Alboran Sea): Implications for earthquake hazard assessment in the Southern Iberian Margin, Earth Planet. Sc. Lett., 241, 734–749, 2006. a, b
Grevemeyer, I., Gràcia, E., Villaseñor, A., Leuchters, W., and Watts, A. B.:
Seismicity and active tectonics in the Alboran Sea, Western
Mediterranean: Constraints from an offshore-onshore
seismological network and swath bathymetry data, J. Geophys. Res.-Sol. Ea., 120, 8348–8365, https://doi.org/10.1002/2015JB012073, 2015. a
Gusiakov, V. K.: Relationship of Tsunami Intensity to Source Earthquake Magnitude as Retrieved from Historical Data, Pure Appl. Geophys., 168, 2033–2041, https://doi.org/10.1007/s00024-011-0286-2, 2011. a
Gusman, A. R., Tanioka, Y., Sakai, S., and Tsushima, H.: Source model of the
great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal
deformation data, Earth Planet. Sc. Lett., 341–344, 234–242,
https://doi.org/10.1016/j.epsl.2012.06.006, 2012. a
Gusman, A. R., Satake, K., and Harada, T.: Rupture process of the 2016 Wharton Basin strike-slip faulting earthquake estimated from joint inversion of teleseismic and tsunami waveforms, Geophys. Res. Lett.,
44, 4082–4089, https://doi.org/10.1002/2017GL073611, 2017. a, b
Harris, R. A., Barall, M., Aagaard, B., Ma, S., Roten, D., Olsen, K., Duan, B., Liu, D., Luo, B., Bai, K., Ampuero, J.-P., Kaneko, Y., Gabriel, A.-A., Duru, K., Ulrich, T., Wollherr, S., Shi, Z., Dunham, E., Bydlon, S., Zhang, Z., Chen, X., Somala, S. N., Pelties, C., Tago, J., Cruz-Atienza, V. M., Kozdon, J., Daub, E., Aslam, K., Kase, Y., Withers, K., and Dalguer, L.: A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes, Seismol. Res. Lett., 89, 1146–1162, https://doi.org/10.1785/0220170222,
2018. a
Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T., and Takagawa, T.: Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 Mw 7.8 event and its relationship with the April 2012 Mw 8.6 event, Geophys. J. Int., 211, 1601–1612,
https://doi.org/10.1093/gji/ggx395, 2017. a, b
Herrero-Barbero, P., Alvarez-Gomez, J. A., Martinez-Diaz, J. J., and Klimowitz, J.: Neogene Basin Inversion and Recent Slip Rate Distribution of the Northern Termination of the Alhama de Murcia Fault (Eastern Betic Shear Zone, SE Spain), Tectonics, 39, e2019TC005750, https://doi.org/10.1029/2019TC005750, 2020. a
Herrero-Barbero, P., Álvarez-Gómez, J. A., Williams, C., Villamor, P., Insua-Arévalo, J. M., Alonso-Henar, J., and Martínez-Díaz, J. J.: Physics-Based Earthquake Simulations in Slow-Moving Faults: A Case Study From the Eastern Betic Shear Zone (SE Iberian Peninsula), J. Geophys. Res.-Sol. Ea., 126,
e2020JB021133, https://doi.org/10.1029/2020JB021133, 2021. a, b, c, d, e, f, g, h
Ho, T.-C., Satake, K., Watada, S., Hsieh, M.-C., Chuang, R. Y., Aoki, Y., Mulia, I. E., Gusman, A. R., and Lu, C.-H.: Tsunami Induced by the Strike-Slip Fault of the 2018 Palu Earthquake (Mw = 7.5), Sulawesi Island, Indonesia, Earth Space Sci., 8, e2020EA001400, https://doi.org/10.1029/2020EA001400, 2021. a, b
Hornbach, M. J., Braudy, N., Briggs, R. W., Cormier, M.-H., Davis, M. B., Diebold, J. B., Dieudonne, N., Douilly, R., Frohlich, C., Gulick, S. P. S., Johnson Iii, H. E., Mann, P., Mchugh, C., Ryan-mishkin, K., Prentice, C. S., Seeber, L., Sorlien, C. C., Steckler, M. S., Symithe, S. J., Taylor, F. W., and Templeton, J.: High tsunami frequency as a result of combined strike-slip
faulting and coastal landslides, Nat. Geosci., 3, 783–788,
https://doi.org/10.1038/ngeo975, 2010. a
Howarth, J. D., Barth, N. C., Fitzsimons, S. J., Richards-Dinger, K., Clark, K. J., Biasi, G. P., Cochran, U. A., Langridge, R. M., Berryman, K. R., and Sutherland, R.: Spatiotemporal clustering of great earthquakes on a transform
fault controlled by geometry, Nat. Geosci., 14, 314–320,
https://doi.org/10.1038/s41561-021-00721-4, 2021. a
IGN-UPM: Actualización de mapas de peligrosidad sísmica de España 2012, vol. 267, https://doi.org/10.7419/162.05.2017, 2013. a, b, c
Jiménez-Munt, I. and Negredo, A. M.: Neotectonic modelling of the western part of the Africa–Eurasia plate boundary: from the Mid-Atlantic ridge to Algeria, Earth Planet. Sc. Lett., 205, 257–271, 2013. a
Kozdon, J. E. and Dunham, E. M.: Rupture to the Trench: Dynamic Rupture Simulations of the 11 March 2011 Tohoku Earthquake, B. Seismol. Soc. Am., 103, 1275–1289, https://doi.org/10.1785/0120120136, 2013. a
Lavallée, D., Liu, P., and Archuleta, R. J.: Stochastic model of heterogeneity in earthquake slip spatial distributions, Geophys. J. Int., 165, 622–640, https://doi.org/10.1111/j.1365-246X.2006.02943.x, 2006. a
Legg, M., Borrero, J., and Synolakis, C.: Tsunami Hazards From
Strike-Slip Earthquakes, AGU Fall Meeting, 8–12 December 2003, San Francisco, USA, American Geophysical Union, OS21D-06, 2003. a
Leonard, M.: Self-Consistent Earthquake Fault-Scaling Relations: Update and Extension to Stable Continental Strike-Slip Faults,
B. Seismol. Soc. Am., 104, 2953–2965, https://doi.org/10.1785/0120140087, 2014. a
Liu, P. L. F., Cho, Y. S., Yoon, S. B., and Seo, S. N.: Numerical Simulations of the 1960 Chilean Tsunami Propagation and Inundation at Hilo, Hawaii, in: Tsunami: Progress in Prediction, Disaster Prevention and Warning, edited by: Tsuchiya, Y. and Shuto, N., Advances in Natural and Technological Hazards Research, Springer Netherlands, Dordrecht, 99–115, https://doi.org/10.1007/978-94-015-8565-1_7, 1995. a, b
Lotto, G. C. and Dunham, E. M.: High-order finite difference modeling of tsunami generation in a compressible ocean from offshore earthquakes, Comput. Geosci., 19, 327–340, https://doi.org/10.1007/s10596-015-9472-0, 2015. a
Løvholt, F., Pedersen, G., Bazin, S., Kühn, D., Bredesen, R. E., and
Harbitz, C.: Stochastic analysis of tsunami runup due to heterogeneous
coseismic slip and dispersion, J. Geophys. Res.-Oceans, 117, C03047,
https://doi.org/10.1029/2011JC007616, 2012. a
Madden, E. H., Bader, M., Behrens, J., van Dinther, Y., Gabriel, A.-A., Rannabauer, L., Ulrich, T., Uphoff, C., Vater, S., and van Zelst, I.: Linked 3-D modelling of megathrust earthquake-tsunami events: from subduction to tsunami run up, Geophys. J. Int., 224, 487–516, https://doi.org/10.1093/gji/ggaa484, 2021. a
Maeda, T., and Furumura, T.: FDM Simulation of Seismic Waves, Ocean Acoustic Waves, and Tsunamis Based on Tsunami-Coupled Equations
of Motion, Pure Appl. Geophys., 170, 109–127,
https://doi.org/10.1007/s00024-011-0430-z, 2013. a
Mai, P. M. and Beroza, G. C.: A spatial random field model to characterize complexity in earthquake slip, J. Geophys. Res.-Sol. Ea., 107, ESE 10-1–ESE 10-21, https://doi.org/10.1029/2001JB000588, 2002. a
Mancilla, F. L., Stich, D., Berrocoso, M., Martín, R., Morales, J., Fernandez-Ros, A., Páez, R., and Pérez-Peña, A.: Delamination in the Betic Range: Deep structure, seismicity, and GPS motion, Geology, 41, 307–310, 2013. a
Martínez-García, P.: Recent tectonic evolution of the Alboran Ridge and Yusuf regions, PhD thesis, Universidad de Granada, ISBN 9788490283325, 2012. a
Martínez-García, P., Comas, M., Soto, J. I., Lonergan, L., and Watts,
A. B.: Strike-slip tectonics and basin inversion in the Western
Mediterranean: the Post-Messinian evolution of the Alboran Sea,
Basin Res., 25, 361–387, https://doi.org/10.1111/bre.12005, 2013. a
Martínez-García, P., Comas, M., Lonergan, L., and Watts, A. B.: From Extension to Shortening: Tectonic Inversion Distributed in Time and Space in the Alboran Sea, Western Mediterranean, Tectonics, 36,
2777–2805, https://doi.org/10.1002/2017TC004489, 2017. a
Martínez Solares, J. M. and Mezcua, J.: Catálogo sísmico de la Península Ibérica: (880 a. C–1900), Ministerio de Fomento, ISBN 84-95.172-37-2, 2002. a
Masana, E., Moreno, X., Gràcia, E., Pallàs, R., Ortuño, M., López, R., Gómez-Novell, O., Ruano, P., Perea, H., Stepancikova, P., and Khazaradze, G.: First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula): Los Trances site, Geol. Acta, 16, 461–476, 2018. a, b
McCloskey, J., Antonioli, A., Piatanesi, A., Sieh, K., Steacy, S., Nalbant, S., Cocco, M., Giunchi, C., Huang, J., and Dunlop, P.: Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra, Earth Planet. Sc. Lett., 265, 61–81, https://doi.org/10.1016/j.epsl.2007.09.034, 2008. a
Meade, B. J.: Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space, Comput. Geosci., 33, 1064–1075, https://doi.org/10.1016/j.cageo.2006.12.003, 2007. a
Moreno, X.: Neotectonic and Paleoseismic Onshore-Offshore integrated study of the Carboneras Fault (Eastern Betics, SE Iberia)/Estudio integrado tierra-mar de la Neotectonica y Paleosismología de la Falla de Carboneras (Béticas Orientales, SE Península Ibérica), PhD Thesis, Universitat de Barcelona, http://hdl.handle.net/10261/100991 (last access: 1 June 2023), 2011. a, b, c, d
Moreno, X., Masana, E., Pallàs, R., Gràcia, E., Rodés, Á., and Bordonau, J.: Quaternary tectonic activity of the Carboneras Fault in the La Serrata range (SE Iberia): Geomorphological and chronological constraints, Tectonophysics, 663, 78–94, https://doi.org/10.1016/j.tecto.2015.08.016, 2015. a, b, c, d, e
National Geophysical Data Center (NGDC): Global Historical Tsunami Database, National Geophysical Data Center [data set], https://doi.org/10.7289/V5PN93H7, 2022. a
Neres, M., Carafa, M. M. C.,Fernandes, R. M. S., Matias, L., Duarte, J. C., Barba, S., and Terrinha, P.: Lithospheric deformation in the Africa-Iberia plate boundary: Improved neotectonic modeling testing a basal-driven Alboran plate, J. Geophys. Res.-Sol. Ea., 121, 6566–6596, https://doi.org/10.1002/2016JB013012, 2016. a
Niemeijer, A. R. and Vissers, R. L. M.: Earthquake rupture propagation inferred from the spatial distribution of fault rock frictional properties, Earth Planet. Sc. Lett., 396, 154–164, https://doi.org/10.1016/j.epsl.2014.04.010,
2014. a
Nikkhoo, M. and Walter, T. R.: Triangular dislocation: an analytical,
artefact-free solution, Geophys. J. Int., 201, 1119–1141,
https://doi.org/10.1093/gji/ggv035, 2015. a, b
Noda, H. and Lapusta, N.: Stable creeping fault segments can become destructive as a result of dynamic weakening, Nature, 493, 518–521,
https://doi.org/10.1038/nature11703, 2013. a
Nosov, M. A., Bolshakova, A. V., and Kolesov, S. V.: Displaced Water Volume, Potential Energy of Initial Elevation, and Tsunami Intensity: Analysis of Recent Tsunami Events, Pure Appl. Geophys., 171, 3515–3525, https://doi.org/10.1007/s00024-013-0730-6, 2014. a
Okada, Y.: Internal deformation due to shear and tensile faults in a
half-space, B. Seismol. Soc. Am., 82, 1018–1040, 1992. a
Pollitz, F. F.: ViscoSim Earthquake Simulator, Seismol. Res. Lett., 83, 979–982, https://doi.org/10.1785/0220120050, 2012. a
Power, W., Wang, X., Lane, E., and Gillibrand, P.: A Probabilistic Tsunami Hazard Study of the Auckland Region, Part I: Propagation Modelling and Tsunami Hazard Assessment at the Shoreline, Pure Appl. Geophys., 170, 1621–1634, 2013. a
Rafiei, M., Khodaverdian, A., and Rahimian,M.: A Probabilistic Physics-Based
Seismic Hazard Model for the Alborz Region, Iran, B. Seismol. Soc. Am., 112, 2141–2155, https://doi.org/10.1785/0120210238, 2022. a
Reicherter, K. and Becker-Heidmann, P.: Tsunami deposits in the western Mediterranean: Remains of the 1522 Almería earthquake?, Geol. Soc. Spec. Publ., 316, 217–235, https://doi.org/10.1144/SP316.14, 2009. a
Reicherter, K. and Hübscher, C.: Evidence for a seafloor rupture of the
Carboneras Fault Zone (southern Spain): Relation to the 1522
Almería earthquake?, J. Seismol., 11, 15–26,
https://doi.org/10.1007/s10950-006-9024-0, 2007. a, b
Robinson, R. and Benites, R.: Synthetic seismicity models of multiple interacting faults, J. Geophys. Res.-Sol. Ea., 100, 18229–18238, https://doi.org/10.1029/95JB01569, 1995. a
Robinson, R., Van Dissen, R., and Litchfield, N.: Using synthetic seismicity to evaluate seismic hazard in the Wellington region, New Zealand,
Geophys. J. Int., 187, 510–528, https://doi.org/10.1111/j.1365-246X.2011.05161.x, 2011. a
Rodriguez Escudero, E.: Implicaciones de la estructura interna de una zona de
falla activa en la génesis de terremotos, PhD Thesis, Universidad
Autonoma de Madrid, http://hdl.handle.net/10486/682976 (last access: 1 June 2023), 2017. a
Romagny, A., Jolivet, L., Menant, A., Bessière, E., Maillard, A., Canva, A., Gorini, C., and Augier, R.: Detailed tectonic reconstructions of the Western Mediterranean region for the last 35 Ma, insights on driving mechanisms, B. Soc. Géol. Fr., 191, 37, https://doi.org/10.1051/bsgf/2020040, 2020. a
Rosenbaum, G. and Lister, G. S.: Formation of arcuate orogenic belts in the western Mediterranean region, in: Orogenic curvature: integrating paleomagnetic and structural analyses, edited by: Sussman, A. J. and Weil, A. B., Geological Society of America, 383, 41–56, https://doi.org/10.1130/0-8137-2383-3(2004)383[41:FOAOBI]2.0.CO;2, 2004. a
Ruina, A.: Slip instability and state variable friction laws, J. Geophys. Res.-Sol. Ea., 88, 10359–10370, https://doi.org/10.1029/JB088iB12p10359, 1983. a
Rundle, J. B.: A physical model for earthquakes: 2. Application to southern
California, J. Geophys. Res.-Sol. Ea., 93, 6255–6274,
https://doi.org/10.1029/JB093iB06p06255, 1988. a, b
Rutter, E. H., Faulkner, D. R., and Burgess, R.: Structure and geological history of the Carboneras Fault Zone, SE Spain: Part of a stretching transform fault system, J. Struct. Geol., 45, 68–86,
https://doi.org/10.1016/j.jsg.2012.08.009, 2012. a
Ryan, K. J., Geist, E. L., Barall, M., and Oglesby, D. D.: Dynamic models of an earthquake and tsunami offshore Ventura, California, Geophys. Res. Lett., 42, 6599–6606, https://doi.org/10.1002/2015GL064507, 2015. a
Sachs, M. K., Heien, E. M., Turcotte, D. L., Yikilmaz, M. B., Rundle, J. B.,
and Kellogg, L. H.: Virtual California Earthquake Simulator,
Seismol. Res. Lett., 83, 973–978, https://doi.org/10.1785/0220120052, 2012. a
Satake, K., Fujii, Y., Harada, T., and Namegaya, Y.: Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data, B. Seismol. Soc. Am., 103, 1473–1492, https://doi.org/10.1785/0120120122, 2013. a
Scholz, C. H.: Earthquakes and friction laws, Nature, 391, 37–42,
https://doi.org/10.1038/34097, 1998. a
Schultz, K. W., Yoder, M. R., Wilson, J. M., Heien, E. M., Sachs, M. K., Rundle, J. B., and Turcotte, D. L.: Parametrizing Physics-Based Earthquake Simulations, in: Earthquakes and Multi-hazards Around the Pacific Rim, Vol. I, edited by: Zhang, Y., Goebel, T., Peng, Z.,
Williams, C. A., Yoder, M., and Rundle, J. B., Springer
International Publishing, Cham, 75–84, https://doi.org/10.1007/978-3-319-71565-0_6, 2018. a
Schwartz, D. P. and Coppersmith, J.: Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones,
J. Geophys. Res., 89, 5681–5698, 1984. a
Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Baldi, P., and Gasperini, P.: Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data, Geophys. J. Int., 169, 1180–1200, https://doi.org/10.1111/j.1365-246X.2007.03367.x, 2007. a
Shaw, B. E., Milner, K. R., Field, E. H., Richards-Dinger, K., Gilchrist, J. J., Dieterich, J. H., and Jordan, T. H.: A physics-based earthquake simulator replicates seismic hazard statistics across California, Science Advances, 4, eaau0688, https://doi.org/10.1126/sciadv.aau0688, 2018. a, b, c, d, e
Shaw, B. E., Fry, B., Nicol, A., Howell, A., and Gerstenberger, M.: An Earthquake Simulator for New Zealand, B. Seismol. Soc. Am., 112,
763–778, https://doi.org/10.1785/0120210087, 2022. a, b, c
Somoza, L., Medialdea, T., Terrinha, P., Ramos, A., and Vázquez, J.-T.: Submarine Active Faults and Morpho-Tectonics Around the Iberian Margins: Seismic and Tsunamis Hazards, Front. Earth Sci., 9, https://doi.org/10.3389/feart.2021.653639, 2021. a, b
Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., and Grünthal, G.: Probabilistic tsunami hazard in the Mediterranean Sea. J. Geophys. Res.-Sol. Ea., 117, B01305, https://doi.org/10.1029/2010JB008169, 2012. a
Tanioka, Y. and Satake, K.: Tsunami generation by horizontal displacement of ocean bottom, Geophys. Res. Lett., 23, 861–864, https://doi.org/10.1029/96GL00736, 1996. a, b
Tao, C. and Tsunami Research Group: COMCOT adaptation to gfortran compiler, Institute of Hydrological and Oceanic Science, National Central University, China, GitHub [code], https://github.com/AndybnACT/comcot-gfortran, last access: 5 June 2023. a
Tullis, T. E., Richards-Dinger, K., Barall, M., Dieterich, J. H., Field, E. H., Heien, E. M., Kellogg, L. H., Pollitz, F. F., Rundle, J. B., Sachs, M. K., Turcotte, D. L., Ward, S. N., and Burak Yikilmaz, M.: A Comparison among Observations and Earthquake Simulator Results for the allcal2
California Fault Model, Seismol. Res. Lett., 83, 994–1006,
https://doi.org/10.1785/0220120094, 2012. a
Ulrich, T., Vater, S., Madden, E. H., Behrens, J., van Dinther, Y., van Zelst, I., Fielding, E. J., Liang, C., and Gabriel, A.-A.: Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami, Pure Appl. Geophys., 176, 4069–4109, https://doi.org/10.1007/s00024-019-02290-5, 2019. a
Vernant, P., Fadil, A., Mourabit, T., Ouazar, D., Koulali, A., Davila, J. M., Garate, J., McClusky, S., and Reilinger, R.: Geodetic constraints on active tectonics of the Western Mediterranean: Implications for the kinematics and dynamics of the Nubia-Eurasia plate boundary zone, J. Geodynam., 49, 123–129, https://doi.org/10.1016/j.jog.2009.10.007, 2010. a
Wang, X. and Liu, P. L.-F.: An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami, J. Hydraul. Res., 44, 147–154, 2006. a
Ward, S. N.: San Francisco Bay Area Earthquake Simulations: A Step Toward a Standard Physical Earthquake Model, B. Seismol. Soc. Am., 90, 370–386, https://doi.org/10.1785/0119990026, 2000. a
Ward, S. N.: ALLCAL Earthquake Simulator, Seismol. Res. Lett.,
83, 964–972, https://doi.org/10.1785/0220120056, 2012. a
Wendt, J., Oglesby, D. D., and Geist, E. L.: Tsunamis and splay fault dynamics, Geophys. Res. Lett., 36, L15303, https://doi.org/10.1029/2009GL038295, 2009. a
Wessel, P.: An Empirical Method for Optimal Robust Regional-Residual Separation of Geophysical Data, Math. Geol., 30, 391–408, https://doi.org/10.1023/A:1021744224009, 1998. a
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic Mapping Tools: Improved Version Released, Eos, Transactions American Geophysical Union, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
a
Whirley, R. G. and Engelmann, B. E.: DYNA3D: A nonlinear, explicit,
three-dimensional finite element code for solid and structural mechanics,
User manual. Revision 1, Tech. Rep. UCRL-MA-107254-Rev.1, Lawrence
Livermore National Lab, CA, United States, https://doi.org/10.2172/10139227, 1993. a
Wilson, A. and Ma, S.: Wedge Plasticity and Fully Coupled Simulations of Dynamic Rupture and Tsunami in the Cascadia Subduction Zone, J. Geophys. Res.-Sol. Ea., 126, e2020JB021627, https://doi.org/10.1029/2020JB021627, 2021. a
Xu, Z., Sun, L., Rahman, M. N. A., Liang, S., Shi, J., and Li, H.: Insights on the small tsunami from January 28, 2020, Caribbean Sea MW 7.7 earthquake by numerical simulation and spectral analysis, Nat. Hazards, 111, 2703–2719, https://doi.org/10.1007/s11069-021-05154-1, 2022. a
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy map of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017. a, b
Yamazaki, Y., Lay, T., Cheung, K. F., Yue, H., and Kanamori, H.: Modeling
near-field tsunami observations to improve finite-fault slip models for the
11 March 2011 Tohoku earthquake, Geophys. Res. Lett., 38, L00G15,
https://doi.org/10.1029/2011GL049130, 2011. a
Zamora, N. and Babeyko, A. Y.: Tsunami potential from local seismic sources along the southern Middle America Trench, Nat. Hazards, 80, 901–934, 2016. a
Short summary
The strike-slip Carboneras fault is one of the largest sources in the Alboran Sea, with it being one of the faster faults in the eastern Betics. The dimensions and location of the Carboneras fault imply a high seismic and tsunami threat. In this work, we present tsunami simulations from sources generated with physics-based earthquake simulators. We show that the Carboneras fault has the capacity to generate locally damaging tsunamis with inter-event times between 2000 and 6000 years.
The strike-slip Carboneras fault is one of the largest sources in the Alboran Sea, with it being...
Altmetrics
Final-revised paper
Preprint