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Abstract. Strike-slip fault ruptures have a limited capacity
to generate vertical deformation, and for this reason they are
usually dismissed as potential destructive tsunami sources.
At the western tip of the western Mediterranean, in the Albo-
ran Sea, tectonics is characterized by the presence of large
transcurrent fault systems and minor reverse and normal
faults in a zone of diffuse deformation. The strike-slip Car-
boneras fault is one of the largest sources in the Alboran
Sea and therefore with the greatest seismogenic capacity. It
is also one of the active structures with higher slip rates in
the eastern Betic fault zone and has been proposed as the
source of the damaging 1522 (M 6.5; Int. VIII–IX) Almeria
earthquake. The dimensions and location of the Carboneras
fault imply a high seismic and tsunami threat. In this paper
we present tsunami simulations from seismic sources gen-
erated with physics-based earthquake simulators. We have
generated a 1 Myr synthetic seismic catalogue consistent on
773 893 events, with magnitudes ranging between Mw 3.3
and 7.6. From these events we have selected those sources
producing a potential energy capable of generating a notice-
able tsunami, those sources being earthquakes with magni-
tudes ranging from 6.71 to 7.62. The Carboneras fault has
the capacity to generate locally damaging tsunamis; how-
ever, on a regional scale its tsunami threat is limited. The
frequency–magnitude distribution of the generated seismic
catalogue reflects the variability of magnitudes associated
with the rupture of the entire fault, departing the upper limit
from the classical Gutenberg–Richter potential relation. The

inter-event time for the maximum earthquake magnitudes is
usually between 2000 and 6000 years. The use of physics-
based earthquake simulations for tsunamigenic sources al-
lows an in-depth characterization of the scenarios, allowing
a qualitative leap in their parametrization.

1 Introduction

Tsunamis are generated by any natural event that involves an
immediate alteration of the elevation of the free surface of
the sea. This alteration may be due to events that directly al-
ter the sea surface (usually meteorological, meteoric or vol-
canic events) or by geological events that abruptly modify
the ocean floor (earthquakes or submarine landslides). Earth-
quakes are the geological events that most often generate de-
structive tsunamis (NGDC, 2022), and this ability depends
on their magnitude and depth, as well as on their mode of
seismic rupture (e.g. Burbidge et al., 2015; Geist, 1998; Gib-
bons et al., 2022). The rake, the orientation of the slip vector
on the fault plane during seismic rupture, is one of the most
determining parameters in the generation of tsunamis, pre-
senting the thrust and normal faults, with dip-slip rupture,
the greatest capacity. On the other hand, the strike-slip rup-
tures, with rakes close to the horizontal, have a limited capac-
ity to generate vertical deformation on the seafloor, and for
this reason they are usually dismissed as potential destructive
tsunami sources.
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Although the lower capacity of strike-slip faults to gener-
ate tsunamis is a proven fact, it is not negligible, as has been
numerically demonstrated (Elbanna et al., 2021; Legg et al.,
2003; Tanioka and Satake, 1996; Ulrich et al., 2019) and ob-
served (Baptista and Miranda, 2009; Frucht et al., 2019; Gus-
man et al., 2017; Heidarzadeh et al., 2017; Ho et al., 2021)
and also occasionally linked to submarine landslides (Horn-
bach et al., 2010; Xu et al., 2022). This is of special relevance
in local sources, where the dispersion of the tsunami waves
is low, and the local fault complexities and rupture-slip vari-
ations are key parameters on tsunami impact (Geist, 2002).

The study of tsunami hazard, due to the scarcity of events
from a statistical point of view, is frequently approached
from numerical modelling. These models are usually based
on the simulation of tsunamis generated by ruptures of sim-
ple, rectangular, fault planes with homogeneous slip, some-
times mixed with more complex ruptures or the combination
of several rectangular ruptures (e.g. Basili et al., 2021; Power
et al., 2013; Davies et al., 2018; Zamora and Babeyko, 2016).
Codes based on the Okada (1985) or Mansinha and Smylie
(1971) equations are used to obtain the seafloor deformation
produced by the earthquake.

However, the variability in the slip distribution on the fault
plane is a fundamental parameter to understand the occur-
rence of maximum amplitudes in destructive events (Fujii
et al., 2011; Gusman et al., 2012; McCloskey et al., 2008;
Satake et al., 2013; Yamazaki et al., 2011). This variability
is of special relevance in local sources, which if modelled as
simple ruptures cannot capture the complexity of the earth-
quake rupture process. Wave propagation and flooding are
highly nonlinear processes, very sensitive to local variations
in shallow waters. To overcome this limitation, methodolo-
gies have been proposed based on the stochastic (or random)
generation of slip patterns in faults (Geist, 2002; Goda et al.,
2015; Lavallée et al., 2006; Løvholt et al., 2012; Mai and
Beroza, 2002) or on the use of physical dynamic rupture
models for particular events (Elbanna et al., 2021; Kozdon
and Dunham, 2013; Madden et al., 2021; Maeda and Furu-
mura, 2013; Ryan et al., 2015; Wendt et al., 2009; Wilson
and Ma, 2021).

Our approach is based on the use of physics-based earth-
quake simulators (Rundle, 1988). These simulators have
been developed in recent decades in order to overcome the
temporal limitation of the instrumental seismic catalogue in
probabilistic seismic hazard assessment (PSHA) (Robinson
et al., 2011; Shaw et al., 2018), especially in the character-
ization of large events. Through the development of models
based on earthquake physics, synthetic catalogues of hun-
dreds of thousands of years can be generated whose char-
acteristics reflect those of the instrumental catalogue but in-
corporating the long-term evolution of the seismic cycle and
the complex interactions of fault systems (Console et al.,
2018, 2015; Robinson and Benites, 1995). Moreover, re-
cent development of numerical codes based on the rate-and-
state constitutive law for fault slip and frictional behaviour

(Dieterich, 1992, 1995) allows not only the modelling of
long-term seismic cycle deformation but also the short-term
rupture process based on a quasi-dynamic physical approx-
imation to the rupture propagation (Richards-Dinger and
Dieterich, 2012), producing earthquake ruptures similar to
those in fully dynamic models (Whirley and Engelmann,
1993).

The western Mediterranean presents a complex tectonic
history and context (e.g. Chertova et al., 2014; Gómez de la
Peña et al., 2021; Romagny et al., 2020) and is character-
ized by the development of a series of arcuate fold and thrust
belts surrounding back-arc-formed deep-water basins (Fac-
cenna et al., 2004; Rosenbaum and Lister, 2004). The current
rate of shortening between the Nubian and Eurasian plates in
the western Mediterranean is approximately 5 mm yr−1 (Ser-
pelloni et al., 2007; Vernant et al., 2010), which, being dis-
tributed in a large number of structures, makes them have low
or very low velocities. These low deformation rates imply
that the seismic cycles of the main structures are very long,
and the instrumental seismic catalogue can hardly show the
characteristics of the potential major events.

At the western tip of the western Mediterranean, in the
Alboran Sea, tectonics is characterized by the presence of
large transcurrent fault systems and minor reverse and nor-
mal faults in a zone of diffuse deformation (Ballesteros et al.,
2008; Martínez-García et al., 2013). These structures, formed
during the Miocene in a transcurrent and mainly extensional
tectonic context, were later reactivated in a transpressional
post-Tortonian setting (Bourgois et al., 1992; Comas et al.,
1992; Do Couto et al., 2016; Herrero-Barbero et al., 2020;
Martínez-García et al., 2017). Although the reverse faults
associated with the Alboran ridge seem to have the great-
est tsunamigenic potential (Álvarez-Gómez et al., 2011a, b;
Gómez de la Peña et al., 2022), the mainly strike-slip faults
(Yusuf, Al-Idrisi and Carboneras) are the ones with the great-
est length and, therefore, the greatest seismogenic capacity
(Somoza et al., 2021).

The Carboneras fault is a left-lateral transpressive struc-
ture oriented N50–60◦ E with a length of ∼ 150 km, most of
them offshore (Gràcia et al., 2006; Somoza et al., 2021). It
is one of the active structures with higher slip rates in the
Alboran Sea and in the eastern Betic shear zone (Masana
et al., 2018; Moreno et al., 2015), a fault system that crosses
the SE of the Iberian Peninsula, forming a tectonic corri-
dor on which a significant density of population and indus-
try is based (Fig. 1). Moreover this fault has been proposed
as the source of the 1522 Almeria earthquake, a damaging
earthquake that reached intensities of VIII–IX in the city
of Almeria (Martínez Solares and Mezcua, 2002), and pos-
sibly related to a local tsunami (Reicherter and Hübscher,
2007; Reicherter and Becker-Heidmann, 2009). The location
of this event is uncertain, being located onshore in the his-
toric and instrumental seismic catalogue (IGN-UPM, 2013)
(Fig. 1) but with an offshore epicentral location proposed by
Reicherter and Hübscher (2007). It is noteworthy that much
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Figure 1. Seismotectonic setting of the eastern Betic shear zone (EBSZ), modified from Herrero-Barbero et al. (2021). The filled circles
show the epicentres of the declustered and homogenized earthquake catalogue from the IGN-UPM (2013) (Cabañas et al., 2015). The green
arrows represent geodetic velocities from GNSS (global navigation satellite system) networks (Borque et al., 2019; Echeverria et al., 2013),
with a Eurasia-fixed reference frame. Fault traces are from the Quaternary Active Fault Database of Iberia, QAFI v.3 (García-Mayordomo
et al., 2017). In red are the main faults of the EBSZ: Carboneras fault (CF), Alhama de Murcia fault (AMF), Palomares fault (PF), Los Tollos
fault (LTF), Carrascoy fault (CAF), and Bajo Segura fault (BSF). The inset shows the location of the EBSZ in the western tip of the Alpine
orogenic belt (modified from Martínez-García, 2012). Note that the projections may differ from a Mercator projection.

of the instrumental seismicity in the study area cannot be di-
rectly related to the most conspicuous active faults (Fig. 1).
Although it can be puzzling, is a common feature in slow
moving faults, where seismic cycles are on the order of thou-
sands of years. In these cases the use of physics-based earth-
quake simulators can be especially useful to get insight into
the seismogenic behaviour of the fault system.

The dimensions and location of the Carboneras fault pose
a high seismic and tsunami risk potential. According to pre-
vious studies, this fault has the capacity to produce events
with magnitudes up to 7.1–7.4 (Álvarez-Gómez et al., 2011a;
García-Mayordomo et al., 2017; Gómez de la Peña et al.,
2022; Gràcia et al., 2006) and even 7.6, according to Moreno
(2011), with mainly a horizontal left-lateral component but
some reverse dip-slip motion too (Moreno et al., 2015).
Although the tsunami simulations done to date (Álvarez-
Gómez et al., 2011a, b; Gómez de la Peña et al., 2022) dis-

card major damaging events, the simplicity and assumptions
of such simulations must be re-evaluated. The Carboneras
fault has also been modelled in the frame of probabilistic
tsunami hazard assessments but from regional simplified ap-
proaches where this source is not specifically studied (Basili
et al., 2021; Sørensen et al., 2012).

In this paper we present tsunami simulations based on the
generation of a synthetic catalogue of earthquakes whose
characteristics resemble the instrumental and historical seis-
micity recorded in the area (Herrero-Barbero et al., 2021).
From these simulations we make estimates of maximum
wave elevations for seismogenic tsunamis and recurrence in-
tervals for significant events in order to reassess the threat
posed by the Carboneras fault in the context of the Alboran
Sea and the western Mediterranean.
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2 Earthquake ruptures simulation

Reproducing a long-term catalogue of earthquake ruptures
requires a computationally efficient approach to the phys-
ical processes that control earthquake occurrence. Earth-
quake simulators (Rundle, 1988; Tullis et al., 2012; Ward,
2000) are computer codes that use fault geometry, stress in-
teractions and frictional resistance to produce long earth-
quake sequences, overcoming the completeness limitations
of the instrumental record. The multi-cycle earthquake sim-
ulations necessarily adopt approximations to elastodynam-
ics to make computation feasible and, unlike in fully dy-
namic single-event simulators (see, for example, Harris et al.,
2018), seismic waves are not computed. Even so, recent mod-
elling enhancements have successfully extended their use in
more complex fault geometries (Field et al., 2014; Shaw
et al., 2018) and for different representations of fault fric-
tion, rheology and stress transfer (Pollitz, 2012; Richards-
Dinger and Dieterich, 2012; Sachs et al., 2012; Schultz et al.,
2018; Ward, 2012); therefore, a better validation of the quasi-
dynamic part of the seismic cycle is achieved.

Our approach is based on the application of the RSQSim
earthquake simulator (Dieterich and Richards-Dinger, 2010;
Richards-Dinger and Dieterich, 2012). The physics-based
RSQSim code reproduces earthquakes into a fully interacting
3D fault model. It performs the physical processes leading to
rupture nucleation and propagation through a boundary ele-
ment formulation that incorporates rate- and state-dependent
friction based on Dieterich (1995), in which frictional shear
stress is quantified as

τ = σ

[
µ0+ a ln

(
V

V0

)
+ b ln

(
θV0

DC

)]
. (1)

Given that this is a quasi-dynamic approximation, long-
term stress accumulation and earthquake slip at each fault
element are separated efficiently into three sliding states:
(0) locked, (1) nucleating and (2) sliding. The result is a long
synthetic earthquake catalogue including a comprehensive
and detailed record of complex earthquake ruptures with het-
erogeneous slip. Recent results obtained using the RSQSim
code are promising in relation to potential practical appli-
cability (Chartier et al., 2021; Herrero-Barbero et al., 2021;
Howarth et al., 2021; Shaw et al., 2018, 2022).

The 3D structure of the Carboneras fault is integrated into
a more complex fault model of the eastern Betic fault zone
(Fig. 2), which includes kinematic properties of the main
faults, such us slip rates and rakes (Herrero-Barbero et al.,
2021). RSQSim simulations have been run on this fault sys-
tem model of triangular elements with 1 km2 resolution and
maximum fault depths between 8 and 12 km, considering
the seismogenic thickness in the area (García-Mayordomo,
2005; Fernández-Ibañez and Soto, 2008; Mancilla et al.,
2013; Grevemeyer et al., 2015). The Carboneras fault is de-
fined in the model as a sub-vertical (dipping 85◦ SE) sinistral
strike-slip structure (Bousquet, 1979; Masana et al., 2018;

Moreno et al., 2015; Rutter et al., 2012), N45–60◦ strike, and
segmented into two fault sections: an onshore northern sec-
tion, partially offshore at the SW and connecting with the
Palomares fault at the NE, and a totally offshore southern
section.

The slip rate of the Carboneras fault has been estimated
by means of geodetic data (GNSS or InSAR) and geologic
data (paleoseismology, tectonic geomorphology). From the
geological point of view, Moreno et al. (2015) obtained a
minimum strike-slip rate of 1.31 mm yr−1 for a section in the
onshore segment of the Carboneras fault and a minimum dip-
slip rate of 0.18 mm yr−1. The offshore segment of the Car-
boneras fault has also been extensively studied by Moreno
(2011), obtaining a minimum strike-slip rate of 1.3 mm yr−1

and dip-slip rates between 0.1 and 0.3 mm yr−1. The geodetic
data obtained to date are from the onshore segment by means
of high-resolution GNSS campaign measurement and perma-
nent stations, with the preferred value of strike-slip a rate
of 1.3± 0.2 mm yr−1 (Echeverria et al., 2015). Taking into
account that the onshore and offshore geologically obtained
slip rates are the same, and that the onshore geodetic data co-
incide with the geological data, we have used the estimated
slip rate of 1.3 mm yr−1 in our models. Kinematic numeri-
cal models developed in the area obtain values in the same
range for the Carboneras fault slip rate in their preferred re-
sults (Jiménez-Munt and Negredo, 2003; Cunha et al., 2012;
Neres et al., 2016).

Besides the input kinematic data (Table S1 in the Supple-
ment, detailed in Herrero-Barbero et al., 2021), the simula-
tions are governed by rate- and state-dependent friction pa-
rameters, a and b, that reproduce the effect of the velocity
change on the coefficient of friction (Dieterich, 1979; Ru-
ina, 1983). These frictional parameters have a notable im-
pact on the slip distribution and spatio-temporal clustering
(Noda and Lapusta, 2013; Richards-Dinger and Dieterich,
2012; Scholz, 1998). We define reference rate-and-state val-
ues based on experimental data taken from a nearby loca-
tion in the fault zone (Niemeijer and Vissers, 2014; Ro-
driguez Escudero, 2017). These experimental values are the
starting point before testing several synthetic catalogs, with
variations of the rate- and state-dependent coefficients, until
achieving the best-fit values (Herrero-Barbero et al., 2021).
The aims of the testing process were to match frequency
distributions with a Gutenberg–Richter b value close to
1.0± 0.1 and to correlate the synthetic seismicity with instru-
mental and paleoseismic data (Herrero-Barbero et al., 2021).
This b value has been estimated in the same seismogenic
zone in previous works based on instrumental seismicity
(IGN-UPM, 2013; García-Mayordomo, 2015) and is also a
reference value as an assumption in numerous papers of syn-
thetic seismicity modelling (e.g. Console et al., 2017; Shaw
et al., 2018, 2022). Finally, a preferred set of input model pa-
rameters is selected for the best-fit catalogue: rate-and-state
friction parameters a = 0.001 and b = 0.010 (not to be con-
fused with the a value and b value of the Gutenberg–Richter
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Figure 2. (a) A 3D fault model used for the synthetic seismic catalogue simulation. CF: Carboneras fault, CF-S: Carboneras fault southern
section, CF-N: Carboneras fault northern section, PF: Palomares fault, LTF: Los Tollos fault, CAF: Carrascoy fault, AMF: Alhama de Murcia
fault. (b) Example of a Mw 6.85 event, (c) example of a Mw 7.27 event and (d) example of a Mw 7.62 event.

frequency magnitude distribution), a steady-state friction co-
efficient µ0 = 0.6, a depth-variable normal stress with a
20 MPa km−1 gradient, and a b value of 1.05 (Fig. 3). De-
fined frictional parameters in this study entail a totally seis-
mogenic behaviour of this fault system, although Faulkner
et al. (2003) also suggested possible creeping sections in the
Carboneras fault zone due to the mechanical heterogeneity
of its fault gouge. As the seismic productivity (the a value in
frequency magnitude distribution, FMD) depends on the slip
rate and seismic coupling of active faults, our approximation,
which considers fully coupled structures, can be considered
as the maximum seismic productivity expected.

According to the selected input model parameters, a
1 Myr synthetic earthquake catalogue has been generated
(https://doi.org/10.5281/zenodo.7994105, Álvarez Gómez
et al., 2023; Fig. 3), from which the first 2000 years have
been discarded to avoid artefacts until the simulation sta-
bilizes. In total, 773 893 events have been obtained, with a
magnitude range of 3.3≤Mw≤ 7.6. The Carboneras fault
is the seismogenic source that generates the most frequent
synthetic seismicity, with almost a 30 % of the events in
the catalogue, of which 0.6 % of total events are Mw≥ 6

Figure 3. Frequency–magnitude distribution of the generated syn-
thetic earthquake catalogue for the Carboneras fault. The grey bars
show the discrete count of events, while the grey dots show the cu-
mulative form of the distribution. The dashed line shows the best fit
of the Gutenberg–Richter law.

earthquakes. For 6.5≤Mw< 7.0 events, the most frequent
inter-event time intervals range between 800 and 6000 years
(Fig. 4). Logically, the earthquake frequency decreases as
the magnitude increases (Fig. 4). However, from magnitude
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Figure 4. Inter-event time distribution. The graph shows a box and whisker plot for intervals of 0.1 in magnitude in yellow. In grey are shown
box and whisker plots for different magnitude ranges.

Mw 7.0–7.1, the simulation shows an increase in the fre-
quency of events; therefore, the recurrence intervals of the
most damaging Mw≥ 7.0 earthquakes would be shortened.
As the inter-event time intervals depend on the seismic pro-
ductivity (a value of the FMD), our results are the most
conservative (shortest inter-event times), as we are assum-
ing fully coupled faults. The largest number of these major
simulated ruptures in the Carboneras fault is nucleated in the
northern section, being physically capable of propagating a
complete fault-length rupture. Between them, 115 ruptures
are also transferred to a portion of the southern branch of
the Palomares fault (Fig. 2d), increasing the rupture area and
therefore the released seismic moment (a shear modulus of
30 GPa is used throughout the model computations).

The epicentres of the simulated events are not homoge-
neously distributed along the fault. The generation of these
events is more frequent at the tips of the sections and fault-
bends (Fig. 5a). The rupture initiation in the code is governed
by the rate-and-state formulation. When a nucleation state is
reached by an element in the model, the code spontaneously
computes the rupture propagation to the neighbouring ele-
ments on a pseudo-dynamic approximation (Dieterich, 1995;
Dieterich and Richards-Dinger, 2010; Richards-Dinger and
Dieterich, 2012). Towards the ends of the fault is also where
the average magnitude is higher (Fig. 5c). However, the max-
imum magnitude of the generated event does not show an
important variation, with there being generated events with
magnitudes M> 7.3 along the entire fault trace (Fig. 5b).
Although the maximum magnitude estimated previously ac-
cording to empirical relationships wasMw 7.1–7.2 (Álvarez-
Gómez et al., 2011a; Gómez de la Peña et al., 2022), our
result is close to the maximum magnitude of Mw 7.6± 0.3
proposed by Moreno (2011).

3 Tsunami modelling

Simulations for seismically triggered tsunamis are based on
modelling the deformation of the ocean bottom produced
by the earthquake rupture. These models use analytical so-
lutions in an elastic half space to reproduce the behaviour
of the upper crust. The most commonly used codes for this
are often based on equations derived for rectangular dislo-
cations (Mansinha and Smylie, 1971; Okada, 1985, 1992),
which makes it difficult to model complex rupture geome-
tries without incorporating numerical artefacts. To solve this
problem, other mathematical approaches and alternative al-
gorithms have been developed, also using analytical equa-
tions but for triangular dislocations (Gimbutas et al., 2012;
Meade, 2007; Nikkhoo and Walter, 2015). In this work we
have used the calculation algorithm developed by Nikkhoo
and Walter (2015) for artefact-free triangular geometries with
a Poisson ratio of 0.25, typical of the upper crust.

As the faults involved in our models are fundamentally
strike-slip structures, we have to take into account the im-
pact of the horizontal component of the deformation in the
sea bottom alteration. We have adopted the Tanioka and Sa-
take (1996) approximation, which considers the alteration of
the sea bottom morphology by the horizontal displacement
of the bathymetric slopes:

−uh = ux
∂H

∂x
+ uy

∂H

∂y
, (2)

where H is the water depth, and ux and uy are the compo-
nents of the horizontal displacement. The total vertical dis-
placement, applied as initial condition for tsunami genera-
tion, is the sum of the vertical component uz and the hori-
zontal sea bottom alteration uh.
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Figure 5. Different statistics for the epicentral location of the modelled events shown as heat maps with a cell size of ∼ 5 km2. (a) Number
of epicentres, (b) maximum magnitude, (c) mean magnitude and (d) magnitude standard deviation.

To evaluate the potential of tsunami generation of the
modelled earthquakes, we have initially selected events
with magnitudes greater than 6.0, obtaining a total of
1344 events (https://doi.org/10.5281/zenodo.7994105, Ál-
varez Gómez et al., 2023). Many of these events will not have
the capacity to generate detectable tsunamis on the coast,
so to avoid an excessive computational load, we have fil-
tered these pre-selected events based on the surface defor-
mation generated. As the seafloor deformation generated by
the earthquake is the physical cause producing the tsunami,
we can use it to directly estimate the tsunamigenic capacity
of the event.

Each earthquake rupture is characterized by its unique fi-
nite fault model composed by a number of triangular ele-
ments. The smaller events considered here, with magnitudes
of 6.0, are formed by a few tens of elements (∼ 40), while
the biggest ones, with magnitudes of ∼ 7.6, are formed by
the rupture of a few thousands of elements (up to 5279). In

total we have modelled the rupture of 1 150 265 triangular
elements for the 1344 finite fault models.

We have parameterized each seafloor deformation mod-
elled with the following quantities (Bolshakova and Nosov,
2011; Wessel, 1998) (Fig. 6):

i. maximum uplift or water elevation

ηmax =max[ηZ(x,y)]; (3)

ii. maximum vertical displacement double amplitude, de-
fined as

Aη =max[ηZ(x,y)] −min[ηZ(x,y)]; (4)

iii. displaced volume

V =

∫∫
S

|ηZ(x,y)|dS; (5)

and
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Figure 6. Relations of seafloor deformation parameters with earthquake magnitude. (a) Potential energy; the dashed lines show the tsunami
intensity according to Eq. (7). (b) Displaced volume; the dash-dotted line shows the Bolshakova and Nosov (2011) upper limit for the
magnitude–volume relation. (c) Displacement double amplitude; the dash-dotted line shows the Bolshakova and Nosov (2011) upper limit
for the magnitude–double amplitude relation and the dashed line the Dotsenko and Soloviev (1990) empirical relation. (d) Maximum vertical
displacement.

iv. potential energy

Ets =
1
2
ρg

∫∫
S

η2
Z(x,y)dS, (6)

where ρ is the density of water (taken as 1038 kg m−3;
Borghini et al., 2014) and g the acceleration due to grav-
ity.

Nosov et al. (2014) analysed a series of tsunamis generated
by earthquakes whose sources were characterized with a fi-
nite fault model. They compared the modelled surface defor-
mation with the size and intensity of the generated tsunami.
Based on these data, they established a series of relationships
between the Soloviev–Imamura intensity of the tsunami (Gu-
siakov, 2011) and different parameters of the seafloor defor-
mation, among them the displaced volume and the potential
energy. Figure 6a shows the ranges of intensity values de-
fined as a function of the potential energy:

i = 1.16log10(Ets)− 14.2. (7)

We have selected to simulate those events with a potential
energy capable of generating a tsunami of an intensity of at
least −2. This criteria restricts the number of tsunami propa-
gations to model from 1344 events with M> 6 to 331 events
with earthquake magnitudes ranging from 6.71 to 7.62 and
double amplitudes Aη from 0.3 to 1.2 m.

Bolshakova and Nosov (2011) examined some relevant
tsunamis for which they also parameterized the seafloor de-
formations. It is noteworthy that those events with double

amplitudes below 0.4 m were only perceptible in tide gauges,
not generating a notable impact on the coast. As can be seen
in Fig. 6, there is a good correspondence between the events
selected to be simulated and with those whose double ampli-
tudes are above 0.3–0.4 m.

In order to model the tsunami propagation and inundation,
we have resorted to the highly used and validated code COM-
COT (Cornell Multi-grid Coupled Tsunami) (Liu et al., 1995;
Wang and Liu, 2006). This algorithm is based on the nonlin-
ear shallow water equations built over a modified leapfrog
nested-grid scheme. In this approximation the compressibil-
ity of water is not considered, which could act as a filter
when computing the initial sea surface deformation (Lotto
and Dunham, 2015), and consequently our approach is con-
servative.

The bathymetry used is composed of three independent
sources (Fig. 7). On the one hand, the bathymetric data corre-
spond to the EMODnet 2020 mesh (EMODnet, 2022), with a
horizontal resolution of 1/16′ (∼ 115 m). On the other hand,
for the regional topography, we have used the MERIT global
DEM (Yamazaki et al., 2017), with a horizontal resolution of
3′′ (∼ 90 m). For the highest-resolution mesh needed in or-
der to compute inundations on the coast of Almeria, we have
used the topography of the digital model of 25 m from the
National Geographic Institute of Spain (CNIG, 2022). The
regional mesh has been resampled with a cell size of 500 m
and the local one with a cell size of 100 m. We have used
open boundary conditions for the water borders and a Man-
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Figure 7. Bathymetric grids used in the propagation modelling. The Grid 0, with a cell size of 500 m, is composed by the EMODnet 2020
bathymetry (EMODnet, 2022) and the topography by the MERIT DEM (Yamazaki et al., 2017). The Grid 1, with a cell size of 100 m, is
composed by the EMODnet bathymetry and the 25 m resolution topographic DEM of the IGN (CNIG, 2022). The dashed polygon labelled
with CB marks the location of the Chella bank bathymetric feature. The labels show the main localities mentioned in the text: Car, Cartagena;
PM, Puerto de Mazarron; Ag, Águilas; Crb, Carboneras; CG, Cabo de Gata; Al, Almeria; RM, Roquetas de Mar; Adr, Adra; Mo, Motril; Nj,
Nerja; TM, Torre del Mar; M, Málaga; Mb, Marbella; G, Gibraltar; Ce, Ceuta; T, Tétouan; OL, Oued Laou; EJ, El Jebha; Ah, Al Hoceima;
Me, Melilla; Nd, Nador; Gh, Ghazaouet; BS, Béni Saf; O, Oran.

ning’s roughness coefficient of 0.02 when computing the in-
undation.

For each of the 331 tsunami propagations we have
computed the maximum elevation for a model running
during 90 min, which is enough time for the waves to
propagate through the basin and to capture the wave re-
flections (https://doi.org/10.5281/zenodo.7994105, Álvarez
Gómez et al., 2023). In Fig. 8 tsunami travel times are shown
as well as examples of the results for three events with dif-
ferent magnitudes.

As expected, for the smaller magnitude events, the loca-
tion of the rupture and the slip distribution along the fault
plane are the determining factors in the location of the max-
imum wave elevations (Fig. 8a–f). However, for the maxi-
mum events (Fig. 8g–i), in which slip occurs along the entire
fault plane (see Fig. 2d), the location of the maximum wave
elevations are clearly determined by the morphology of the
seafloor.

The classical tsunami hazard deterministic approach con-
sists of the definition of the worst-case scenario based on the
dimensions of the source and the employ of a series of em-
pirical relations to define the magnitude of the event and the
average slip over the fault. Alternatively, instead of defining
a single average homogeneous slip model, a set of stochastic
variable slip models can be produced and analysed statisti-
cally.

A common procedure is to show the maximum wave el-
evation expected for each model cell from a series of mod-
elled sources. This kind of map is usually called an aggre-

gated maximum elevation map and is very useful to deter-
mine the worst impact of the wave, considering all the po-
tential sources. An extension of this reasoning is the aggre-
gation of maximum elevations produced by a set of tsunamis
produced by variable slip models on a single source or a set
of sources. With this latter approach, we have produced the
aggregated maximum elevation map shown in Fig. 9.

The maximum elevations produced by the Carboneras
strike-slip fault exceed 1 m consistently, and with relevant in-
undations, on the Almerian coast (Fig. 9). The maximum el-
evations are located in front of the fault rupture, from Adra to
Almeria city but with relevant local inundations in the Cabo
de Gata area. Towards the west, the maximum elevations can
reach 1 m locally but usually show values of a few decime-
tres. On the opposite coast, in northern Africa, the maximum
elevations are always in the range of 0.1–0.8 m, with the
highest values from Melilla to Ghazaouet. For North Africa
only the coarse bathymetry has been used, and local reflec-
tions and resonances not modelled could produce higher ele-
vations locally. Although our approximation is deterministic,
we can compare our results with the range of elevations ob-
tained for the same area in the context of the probabilistic
NEAMTH18 model (Basili et al., 2018, 2021). In the prob-
abilistic model an elevation of 1.3 m is obtained, with 50 %
of probability for a period of 10 000 years. Our worst-case
scenarios, with elevations over 1 m, have inter-event times
between 2000 and 6000 years (Fig. 4), compatible with the
probabilistic hazard results.
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Figure 8. Example of maximum wave elevations obtained for three events (out of 331) with different magnitudes. The ruptures corresponding
with these events are shown in Fig. 2. Dashed contours show the wave travel time in minutes. See Fig. 7 for labels of localities. Panels (a),
(d) and (g) show the results for the regional bathymetry; panels (b), (e) and (h) show the results in the high-resolution topobathymetry; and
panels (c), (f) and (i) show examples of the inundation results in the high-resolution topobathymetry. Dashed green rectangles show the areas
of the highest-resolution topobathymetry as well as the inundation maps.

Having produced hundreds of rupture scenarios that obey
both dimensional and temporal characteristics in the regional
seismotectonic context, we can statistically analyse the prop-
agation results. For each calculation point on the map we ob-
tain a statistical distribution of elevations. In Fig. 10 some
examples are shown for localities along the coast. These ele-
vations have been taken for the 5 m-depth isobath. The distri-
bution shown is common for the entire calculation domain,
where several local maxima in the distribution can be inter-
preted as being far from a normal distribution. The highest
frequency is commonly related to the lower elevation values,
denoting the lower recurrence interval of small events. The

second peak observed is usually related to the highest wave
elevations, with values ranging from 1.2 to 2 m. In some
places these higher elevations constitute the most frequent
values (as is seen in the example of Fig. 10a, corresponding
to the locality of Adra). Between these two local maxima in
the distribution two more local peaks can be interpreted, al-
though they are of less importance.

In a simple way we have decided to show the statistical
complexity of the distributions of maximum elevations on
the coast through the use of quartiles; thus, Fig. 11 shows
the maximum elevations corresponding to the 25 %, 50 %
(median) and 75 % quartiles. The difference between the re-
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Figure 9. Maximum wave elevation aggregated (a) regional and (b) local maps. See Fig. 7 for labels.

Figure 10. Tsunami wave maximum elevations frequency distribution for locations in (a) Adra, (b) Roquetas de Mar, (c) Almería and
(d) Genoveses cove.

gional and local maximum elevations arise from the differ-
ent cell size used in the propagation modelling. The regional
bathymetry (grid 0 in Fig. 7) has a cell size of 500 m, while
the local bathymetry (grid 1) has a cell size of 100 m. The
coarser bathymetry is unable to reproduce with precision the
nearshore complexities, and the maximum wave elevations
are underestimated. This is clearly shown in the 75 % quartile
maximum elevations (Fig. 11c, f), where the elevations along
the coast are consistently higher using the local bathymetry
when compared with the regional. An especially illustrative
example is shown in the area of Cabo de Gata (near the

eastern edge of the local grid), where a peak on the eleva-
tion stands out. This peak is located in the Genoveses cove
(Fig. 11f), where resonance effects are probably responsible
of exceptionally high elevations.

4 Discussion

4.1 Tsunamigenic potential of the Carboneras fault

In line with results obtained in previous analyses of the
tsunamigenic potential of strike-slip faults (Elbanna et al.,
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Figure 11. Quartiles of maximum wave elevations obtained from the set of modelled sources. Regional scale maps for (a) 25 % quartile;
(b) 50 % quartile and (c) 75 % quartile. Local scale maps for (d) 25 % quartile, (e) 50 % quartile and (f) 75 % quartile.

2021; Frucht et al., 2019; Gusman et al., 2017; Heidarzadeh
et al., 2017; Ho et al., 2021), this work demonstrates the
tsunamigenic capacity of the Carboneras fault. This is a
strike-slip fault, with some dip-slip components (rake ∼ 10◦

based on field analysis of its outcrops onshore according to
Moreno et al., 2015) and with the capacity to generate locally
damaging tsunamis. However, on a regional scale consider-
ing the Alboran Sea basin, its tsunamigenic capacity is more
limited, with it being able to produce tsunamis of small size
in the North African coast between Melilla and Ghazaouet
(Fig. 9), although with a low frequency (Fig. 11).

If we compare the results of this work with previous results
(Álvarez-Gómez et al., 2011a, b; Gómez de la Peña et al.,
2022), we can see that the tsunamigenic capacity modelled
here is higher. While the fault geometry is essentially the
same with minor variations due to the higher resolution used
in our models than in those of Álvarez-Gómez et al. (2011a)
and Gómez de la Peña et al. (2022), there are other parame-
ters that differ significantly. The maximum magnitude, esti-
mated according to empirical relationships, in previous mod-

els was Mw 7.1–7.2, notably lower than the maximum mag-
nitude reached with our physical model, Mw 7.62, which
is close to the maximum magnitude proposed by Moreno
(2011). This difference in magnitude consequently produces
an important difference in net slip. The one used by Álvarez-
Gómez et al. (2011a) is 1.9 and 1.38 m by Gómez de la Peña
et al. (2022), with these being average slips over the entire
rupture area. In the models that we have developed in this
work, the slip is variable, but the average slip for a worst-case
of magnitude 7.62 would be ∼ 6 m, with maximum slips of
∼ 9 m. On the other hand, the rake used in our models is 10◦,
while Álvarez-Gómez et al. (2011a) used 15◦ and Gómez
de la Peña et al. (2022) used 0◦. Obviously, this value has
an impact on the final results, and higher rake values will
produce greater wave elevations.

Although the physics-based earthquake simulators gener-
ate different catalogues each time they are run, if the bound-
ary conditions are the same, the general picture would be
equivalent. For example the range in maximum magnitudes
would probably be the same, as it depends on the dimensions
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Figure 12. Comparison of source simplifications. (a) Realistic geometry and variable slip maximum earthquake,Mw 7.62, model; (b) realistic
geometry with average homogeneous slip; and (c) simplified geometry and homogeneous slip.

of the structures. If we vary the slip rate or the seismic cou-
pling, the inter-event times, and consequently the statistical
distribution of maximum elevations and inundations, would
be different. When dealing with deterministic approaches,
usually a single worst-case scenario is used. In the best case,
a set of worst-case scenarios considering the uncertainties is
used. With these models we can obtain a physically coherent
seismic behaviour through hundreds of seismic cycles that
produce hundreds or thousands of destructive events that can
be modelled to characterize not only the worst-case scenario
but also scenarios linked to probabilities of exceedance or
return periods.

4.2 Seismogenic potential and frequency–magnitude
distribution

Although the difference in maximum magnitudes may seem
large, it must be taken into account that those provided by
the empirical relations are the mean values of the regression
best fits, with standard deviations that may be high. On the
other hand, in our models we have selected the largest mag-
nitude generated throughout a 1 Myr. catalogue and not the
average value of the maximum magnitudes generated. If we
look at Fig. 3, we see that the maximum magnitudes, gen-
erated by the complete rupture of the Carboneras fault, vary
roughly between magnitudes of 6.9 and 7.7 (maximum ab-
solute value of 7.62). If we use the empirical relationship of
Leonard (2014), for example, for a maximum rupture length
of 71 km (using the Gómez de la Peña et al., 2022 value) we
obtain magnitudes of 7.25, and using the rupture area we ob-
tain values of 7.14. However, these values represent the mean
of the best fit, with a 1 standard deviation range between 6.86
and 7.64 for the empirical length–Mw relationship and be-
tween 6.88 and 7.4 for the area–Mw relationship. Therefore,
the values obtained in our model are within the range of 1
standard deviation of this empirical relationship, with the ad-
vantage that we can obtain an in-depth maximum magnitude
statistical analysis.

The distribution of frequencies and magnitudes (FMD) of
the generated seismic catalogue (Fig. 3) reflects the variabil-

ity of magnitudes associated with the rupture of the entire
fault. Since the long-term behaviour of the modelled system
is complex, although the construction of the model is deter-
ministic, the statistical distribution of the generated events
reflects the stochastic behaviour characteristic of dynamical
systems showing self-organized criticality (SOC) (Bak et al.,
1988; Bak and Tang, 1989). This stochastic behaviour of
the system is also reflected in the nonlinearity of the rela-
tionship between the size of the earthquake rupture and the
slip; thus, for the same rupture size we obtain different slip
distributions, and therefore different magnitudes are gener-
ated. Maybe as a consequence of this, the upper limit of the
FMD departs from the classical Gutenberg–Richter poten-
tial relation (GR), showing a markedly different distribution
that can be seen on the discrete counts of the plot in Fig. 3.
This distribution resembles that of the characteristic earth-
quake behaviour (Schwartz and Coppersmith, 1984), show-
ing a bell-shaped distribution of the characteristic earthquake
magnitudes. Similar results have also been observed in other
physics-based models (Console et al., 2021; Rafiei et al.,
2022; Shaw et al., 2022). In our models this behaviour can be
related to the physical limit imposed to the maximum rupture
area and consequently can limit the self-similar range of the
dynamic system (Ben-Zion and Rice, 1995).

4.3 Worst-case scenario approximation

This concept of characteristic earthquake, or worst-case sce-
nario, is frequently used in deterministic hazard approxi-
mations. In these models, simple rectangular sources with
homogeneous slips over the fault rupture are used. There
has been much debate about the appropriateness of using
these simple models and whether they can roughly reflect the
tsunamigenic potential of a source. To address some of the
drawbacks of this methodology, stochastic probabilistic ap-
proaches have been proposed for the generation of variable
slips on the fault plane. In principle, the variable slip should
play a key role on the impact of local sources, which has
been seen in the models shown in Fig. 8 for events of differ-
ent magnitudes (see supplementary models for comparison).
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Figure 13. Comparison of local propagations for the simplified sources shown in Fig. 12. (a) Propagation of the simplified rectangular source.
(b) Propagation of the variable slip and realistic geometry source. (c) Propagation of the homogeneous slip source with realistic geometry.
(d) Differences between variable and simplified sources. (e) Differences between variable and constant slip sources. See Fig. 7 for labels.

To analyse the influence of these aspects we have compared
one of the maximum scenarios modelled, with magnitude
Mw 7.62 (Fig. 12a), with scenarios of equal magnitude, but
with a homogeneous slip in the detailed geometry (Fig. 12b),
as well as with a simplistic model based on three rectangular

sections like the one used by Álvarez-Gómez et al. (2011a)
(Fig. 12c).

At first glance, the propagations are very similar and share
their main features. If we compare them at a local scale
(Fig. 13), we see that the differences are below 0.5 m in gen-
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Figure 14. Comparison of regional propagations for the simplified sources shown in Fig. 12. (a) Propagation of the simplified rectangular
source. (b) Propagation of the variable slip and realistic geometry source. (c) Propagation of the homogeneous slip source with realistic
geometry. (d) Differences between variable and simplified sources. (e) Differences between variable and constant slip sources. See Fig. 7 for
labels.

eral, although locally the differences may be greater on the
coast (up to 3 m). From the regional point of view, the differ-
ences are minor (Fig. 14).

If we compare the local propagation between the sim-
plified rectangular source and the variable slip source

(Fig. 13d), the main differences are located towards the tips
of the fault sections. These sections behave as patches whose
slip decreases towards the tips (Fig. 12a), and it is there-
fore at these points where the simplified model overestimates
seafloor uplift (the blue colours in Fig. 13d show this impor-
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tant difference in the Adra area). On the contrary, towards the
centre of the sections the simplified model underestimates
the uplift. These differences are essentially the same as those
that can be observed in the comparison of both realistic ge-
ometries but with variable or constant slips (Fig. 13e). In this
case, since both geometries are the same, the differences be-
tween both models are minor. Some of these differences can
be diminished using slip tapering towards the edges of the
rectangular rupture or modelling elliptical ruptures.

Regionally, the differences between the models are minor,
although the slip differences towards the southern tip of the
fault are evident, as has been seen locally as well. On both
the Iberian and African coasts, values are overestimated by
the simplified models towards the western part of the basin
(negative values in Fig. 14d and e), while elevations are un-
derestimated towards the eastern part.

What is evident is the main role that bathymetry plays in
the propagation features, determining to a large extent the
location of the areas where there is major impact (Fig. 9). In
this sense, the Chella bank, off the coast of Adra (Fig. 7), de-
termines the wave propagation and the impact on this coast,
in which the highest wave elevations are observed (Fig. 11).

5 Conclusions

From a deterministic point of view, the one adopted in this
work, the use of physics-based earthquake simulations for
tsunamigenic sources allows an in-depth characterization of
the scenarios, either through aggregated maps of maximum
elevations (Fig. 9) or the statistical exploitation of the hun-
dreds or thousands of scenarios generated (Fig. 11). In addi-
tion, the use of this tool allows for characterizing the inter-
event times and the recurrence intervals of the maximum
events, which are those that have the greatest impact on
tsunami hazard.

Regarding the estimation of the maximum magnitude of
a source, a key step in the deterministic characterization
of the tsunami impact, this methodology incorporates the
stochastic natural variation in rupture area, slip and magni-
tude that arises from the nonlinear process of seismic rup-
ture. Thus, instead of characterizing the size of the worst-
case earthquake through empirical relationships, we can ob-
tain a range of magnitudes characterized by a probability dis-
tribution, which allows an in-depth implementation of the un-
certainty estimation. In addition, each modelled seismic rup-
ture is characterized by its own variable slip distribution and
rupture process, as they are modelled with a quasi-dynamic
algorithm.

The strike-slip Carboneras fault has the capacity to gener-
ate locally damaging tsunamis. However, on a regional scale,
considering the Alboran Sea basin, its tsunamigenic capacity
is more limited. Comparing our results with previous works
(Álvarez-Gómez et al., 2011a, b; Gómez de la Peña et al.,
2022), we can see that the tsunamigenic capacity modelled

here is higher, basically due to the difference in maximum
magnitude, which produces an important difference in maxi-
mum net slip.

The distribution of frequencies and magnitudes (FMD) of
the generated seismic catalogue (Fig. 3) reflects the variabil-
ity of magnitudes associated with the rupture of the entire
fault. The upper limit of the FMD departs from the clas-
sical Gutenberg–Richter potential relation, showing a bell-
shaped distribution of the maximum earthquake magnitude
in a range between 6.9 and 7.7. The inter-event time for these
magnitudes is around 2000–6000 years (Fig. 4).

The use of physics-based earthquake simulations for
tsunamigenic sources allows a qualitative leap in their char-
acterization. From a probabilistic point of view, these mod-
els have shown, in the Probabilistic Seismic Hazard Analysis
(PSHA), a great potential for estimating recurrence periods
and inter-event times for large earthquakes, which are poorly
represented in the instrumental seismic catalogues (Chartier
et al., 2021; Herrero-Barbero et al., 2021; Console et al.,
2017), with them being one of the key pieces in the cur-
rent development of seismic forecast models (Dieterich and
Richards-Dinger, 2010; Field, 2019; Field et al., 2014; Shaw
et al., 2018). The implementation of these methodologies in
the Probabilistic Tsunami Hazard Analysis (PTHA), is a log-
ical and necessary step.
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