Articles | Volume 22, issue 10
https://doi.org/10.5194/nhess-22-3211-2022
https://doi.org/10.5194/nhess-22-3211-2022
Research article
 | 
07 Oct 2022
Research article |  | 07 Oct 2022

Integrated seismic risk assessment in Nepal

Sanish Bhochhibhoya and Roisha Maharjan

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Quantifying the potential benefits of risk-mitigation strategies on future flood losses in Kathmandu Valley, Nepal
Carlos Mesta, Gemma Cremen, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 23, 711–731, https://doi.org/10.5194/nhess-23-711-2023,https://doi.org/10.5194/nhess-23-711-2023, 2023
Short summary
Review article: Potential of nature-based solutions to mitigate hydro-meteorological risks in sub-Saharan Africa
Kirk B. Enu, Aude Zingraff-Hamed, Mohammad A. Rahman, Lindsay C. Stringer, and Stephan Pauleit
Nat. Hazards Earth Syst. Sci., 23, 481–505, https://doi.org/10.5194/nhess-23-481-2023,https://doi.org/10.5194/nhess-23-481-2023, 2023
Short summary
Invited perspectives: An insurer's perspective on the knowns and unknowns in natural hazard risk modelling
Madeleine-Sophie Déroche
Nat. Hazards Earth Syst. Sci., 23, 251–259, https://doi.org/10.5194/nhess-23-251-2023,https://doi.org/10.5194/nhess-23-251-2023, 2023
Short summary
Classifying marine faults for hazard assessment offshore Israel: a new approach based on fault size and vertical displacement
May Laor and Zohar Gvirtzman
Nat. Hazards Earth Syst. Sci., 23, 139–158, https://doi.org/10.5194/nhess-23-139-2023,https://doi.org/10.5194/nhess-23-139-2023, 2023
Short summary
Assessing agriculture's vulnerability to drought in European pre-Alpine regions
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023,https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary

Cited articles

Abdi, H. and Williams, L. J.: Principal component analysis, Wiley Interdisciplin. Rev. Comput. Stat., 2, 433–459, https://doi.org/10.1002/wics.101, 2010. 
Aksha, S. K., Juran, L., Resler, L. M., and Zhang, Y.: An Analysis of Social Vulnerability to Natural Hazards in Nepal Using a Modified Social Vulnerability Index, Int. J. Disast. Risk Sci., 10, 103–116, https://doi.org/10.1007/s13753-018-0192-7, 2019. 
Alizadeh, M., Alizadeh, E., Asadollahpour Kotenaee, S., Shahabi, H., Beiranvand Pour, A., Panahi, M., bin Ahmad, B., and Saro, L.: Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran, Sustainability, 10, 3376, https://doi.org/10.3390/su10103376, 2018. 
Anagnos, T. and Kiremidjian, A. S.: A review of earthquake occurrence models for seismic hazard analysis, Probabil. Eng. Mech., 3, 3–11, https://doi.org/10.1016/0266-8920(88)90002-1, 1988. 
Atkinson, G. M. and Boore, D. M.: Empirical Ground-Motion Relations for Subduction-Zone Earthquakes and Their Application to Cascadia and Other Regions, Bull. Seismol. Soc. Am., 93, 1703–1729, https://doi.org/10.1785/0120020156, 2003. 
Download
Short summary
This is a comprehensive approach to risk assessment that considers the dynamic relationship between loss and damage. The study combines physical risk with social science to mitigate the disaster caused by earthquakes in Nepal, taking socioeconomical parameters into account such that the risk estimates can be monitored over time. The main objective is to recognize the cause of and solutions to seismic hazard, building the interrelationship between individual, natural, and built-in environments.
Altmetrics
Final-revised paper
Preprint