Articles | Volume 22, issue 10
Nat. Hazards Earth Syst. Sci., 22, 3211–3230, 2022
https://doi.org/10.5194/nhess-22-3211-2022
Nat. Hazards Earth Syst. Sci., 22, 3211–3230, 2022
https://doi.org/10.5194/nhess-22-3211-2022
Research article
07 Oct 2022
Research article | 07 Oct 2022

Integrated seismic risk assessment in Nepal

Sanish Bhochhibhoya and Roisha Maharjan

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Machine learning models to predict myocardial infarctions from past climatic and environmental conditions
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022,https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022,https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Invited perspectives: Managed realignment as a solution to mitigate coastal flood risks – optimizing success through knowledge co-production
Mark Schuerch, Hannah L. Mossman, Harriet E. Moore, Elizabeth Christie, and Joshua Kiesel
Nat. Hazards Earth Syst. Sci., 22, 2879–2890, https://doi.org/10.5194/nhess-22-2879-2022,https://doi.org/10.5194/nhess-22-2879-2022, 2022
Short summary
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022,https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Estimating return intervals for extreme climate conditions related to winter disasters and livestock mortality in Mongolia
Masahiko Haraguchi, Nicole Davi, Mukund Palat Rao, Caroline Leland, Masataka Watanabe, and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 22, 2751–2770, https://doi.org/10.5194/nhess-22-2751-2022,https://doi.org/10.5194/nhess-22-2751-2022, 2022
Short summary

Cited articles

Abdi, H. and Williams, L. J.: Principal component analysis, Wiley Interdisciplin. Rev. Comput. Stat., 2, 433–459, https://doi.org/10.1002/wics.101, 2010. 
Aksha, S. K., Juran, L., Resler, L. M., and Zhang, Y.: An Analysis of Social Vulnerability to Natural Hazards in Nepal Using a Modified Social Vulnerability Index, Int. J. Disast. Risk Sci., 10, 103–116, https://doi.org/10.1007/s13753-018-0192-7, 2019. 
Alizadeh, M., Alizadeh, E., Asadollahpour Kotenaee, S., Shahabi, H., Beiranvand Pour, A., Panahi, M., bin Ahmad, B., and Saro, L.: Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran, Sustainability, 10, 3376, https://doi.org/10.3390/su10103376, 2018. 
Anagnos, T. and Kiremidjian, A. S.: A review of earthquake occurrence models for seismic hazard analysis, Probabil. Eng. Mech., 3, 3–11, https://doi.org/10.1016/0266-8920(88)90002-1, 1988. 
Atkinson, G. M. and Boore, D. M.: Empirical Ground-Motion Relations for Subduction-Zone Earthquakes and Their Application to Cascadia and Other Regions, Bull. Seismol. Soc. Am., 93, 1703–1729, https://doi.org/10.1785/0120020156, 2003. 
Download
Short summary
This is a comprehensive approach to risk assessment that considers the dynamic relationship between loss and damage. The study combines physical risk with social science to mitigate the disaster caused by earthquakes in Nepal, taking socioeconomical parameters into account such that the risk estimates can be monitored over time. The main objective is to recognize the cause of and solutions to seismic hazard, building the interrelationship between individual, natural, and built-in environments.
Altmetrics
Final-revised paper
Preprint