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Abstract. Seismic risk analysis is necessary to mitigate the
potential losses resulting from future earthquakes and sup-
plement scientific risk management. In order to assist sys-
tematic evaluation and management of risk, it is indispens-
able to interpret risk in terms of social and economic conse-
quences due to hazardous events like earthquakes. There is
an interrelationship between hazards, physical risk, and the
social characteristics of populations. Therefore, based on the
existing studies focusing on each of these aspects, this pa-
per presents the integrated seismic risk assessment along the
subdivisional administrative units of Nepal using 2011 cen-
sus data. The administrative unit “provinces” are subdivided
into districts and each district into municipalities and village
development committees (VDCs). The districts, municipal-
ities, and VDCs were considered as our study units. In this
paper, the physical or seismic risk was evaluated from the ex-
posure model, hazard curves, and the vulnerability model of
the country, whereas the social vulnerability was assessed us-
ing social vulnerability index (SoVI) methods. To formulate
the physical risk, the assets used were five types of build-
ings under the exposure model. This model was combined
with the physical vulnerability functions of the building and
the hazard curves of the country. The result of the physical
risk has been presented as annual average loss (AAL). Sim-
ilarly, among 92 social vulnerability variables, 54 variables
were reduced to 7 weighted parameters using principal com-
ponent analysis (PCA). The scores of a total of 45 parame-
ters were used to evaluate the SoVI index, which was further
combined with the physical risk to evaluate integrated risk.
The results showed that populated cities like Kathmandu,
Hetauda, and Janakpur have a highly integrated risk index.
Similarly, the Terai region bordering its neighbor India and
some parts of the central hilly region are highly vulnerable,
while most parts of the mountainous region in the central and
eastern regions are the least vulnerable. The results from the

present study can be utilized as a part of a comprehensive risk
management framework at the district level to recuperate and
recover from earthquakes.

1 Introduction

Nepal is one of the seismically active regions in the world
with a long record of destructive earthquakes. This is due to
the intrinsic geological features with high exposure to earth-
quakes causing potentially severe consequences. The most
devastating earthquakes were reported in 1255, 1408, 1681,
1803, 1810, 1833, 1934, and 1988 (Pandey et al., 1999). Ta-
ble 1 shows the number of deaths caused by the earthquake
and poor hazard management in Nepal. From 2000 to 2015,
192 earthquakes greater than moment magnitude (Mw) 5, 14
earthquakes greater thanMw 6, and 1 earthquake greater than
Mw 7.5 took place in Nepal. Among these earthquakes, the
most recent one in 2015 killed 8948 people, destroyed world
heritage sites, and caused estimated damage of USD 10 bil-
lion with a moment magnitude ofMw 7.8 (Mori et al., 2020).
Around the globe, the impact of the seismic hazard has esca-
lated due to increased population density, unmanaged urban-
ization, and other socioeconomic parameters (Pachauri et al.,
2014). The destruction or disaster is the combination of expo-
sure to natural hazards and conditions of vulnerability char-
acterized by the place and the inability to mitigate the neg-
ative repercussions (UNISDR, 2009; Rao et al., 2020). Al-
though natural hazards are not escapable, hazard mitigation,
vulnerability assessment, and their integration can signifi-
cantly reduce the negative effect and aid in recovery (Frigerio
et al., 2016).

Vulnerability is the key element and prerequisite for miti-
gating disaster and facilitating hazard-resilient communities
(Guo and Kapucu, 2020; Douglas, 2007). The core elements
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Table 1. Deaths caused by Earthquakes in Nepal (Chaulagain et al.,
2018).

Year Magnitude Death

1255 7.8 One-third of Kathmandu Valley population
1934 8.0 11 000
1966 6.3 24
1980 6.5 103
1988 6.9 721
2011 6.9 111
2015 7.8 8857

of vulnerability include resilience, exposure, and sensitivity
(Cutter et al., 2003). The biophysical and natural components
and the built-in environment that are vulnerable have been
meticulously examined; however, the social aspects of the
vulnerability are highly understudied (Mileti, 1999). As a re-
sult, the loss estimation reports are usually unable to reflect
social losses. It is imperative to include social vulnerability
while assessing the natural hazards and their losses. Accord-
ing to Cutter et al. (2003), social vulnerability can be eval-
uated using the social vulnerability index (SoVI). For each
country, SoVI is the corresponding measure of overall social
vulnerability. The assessment of vulnerability and its miti-
gation necessitates the understanding of various factors like
social, economic, and political contexts (Hewitt, 2007). SoVI
analysis uses an all-inclusive framework in which each fac-
tor is viewed to play an equal contribution to the country’s
vulnerability (Cutter et al., 2003). This concept has been ap-
plied in geographical and social contexts around the world in
the US (South Carolina) (Schmidtlein et al., 2011), Iran (Al-
izadeh et al., 2018), and Bangladesh (Rahman et al., 2015).
Studying social vulnerability identifies the sensitive areas
and populations that are prone to high risk and are less likely
to acclimatize and recover from natural disasters.

To diminish the losses from natural and man-made haz-
ards, individuals and policymakers need to be responsible
and create a resilient community to combat the consequences
caused by disasters. Policymakers should focus on mitigat-
ing future risks and make endeavors toward sustainable de-
velopment. The knowledge transfer between individuals and
policymakers is very constrained as hazard and risk assess-
ment put limited focus on social components (Borden et al.,
2007). In Nepal, the quantitative assessment of social vul-
nerability associated with seismic hazards is less owing to
the lack of social data for analysis and mapping (Aksha et
al., 2019). Many studies in the past have focused on geo-
graphical/physical vulnerability assessment of hazards like a
flood (Dixit, 2003), landslides (Malakar, 2014), and extreme
weather events (Shrestha, 2005). The studies by Mainali and
Pricope (2019) and Aksha et al. (2019) incorporate vulnera-
bility to climatic conditions and natural hazards in Nepal, re-
spectively, with a wide range of socioeconomic factors. How-
ever, such studies in Nepal do not include extensive analyses

of social vulnerability to earthquakes. The extent of destruc-
tion caused by earthquakes differs from one place to another
based on the local vulnerability factors such as socioeco-
nomic and cultural aspects. For example, the 2015 Gorkha
Earthquake damaged more than 700 000 buildings, the ma-
jority of which were in underdeveloped rural areas with pre-
dominant traditional and low-quality masonry houses (Ulak,
2016). In this regard, integrated seismic risk assessment
plays a prominent role in determining the areas vulnerable to
seismic hazards and reducing the damage in the future. This
signifies the need to incorporate the seismic risk assessment
with social characteristics. In this study, the country-level
earthquake risk estimates from the global earthquake model
OpenQuake (Pagani et al., 2014) were analyzed by using the
input models (seismic hazard sources, fragility functions, and
consequence model) given by Chaulagain et al. (2015). The
results of earthquake risk estimates were integrated with vul-
nerability parameters (social and economic factors) of Nepal.
Here, 75 districts and the subdivision, municipalities, and vil-
lage development committees (VDCs) were considered as
the study unit. The administrative unit of Nepal is divided
into seven provinces, which are further subdivided into 75
districts and each district into municipalities and VDCs. The
administrative map of Nepal is shown in Fig. 1. This study
focuses on social vulnerability and explores the physical risk
from earthquakes at the village and municipal levels.

We assessed the seismic impact potential of the country
by moving beyond the physical (direct) impact by integrat-
ing physical risk with measures of social vulnerability. The
results are presented in the form of maps along the study
area. The main objective is to expand on the information and
knowledge of features that are more socially vulnerable to
seismic risks so that policymakers and individuals can carry
out a sustainable procedure to reduce the effect in the coun-
try. To the authors’ best knowledge, no previous studies have
been documented regarding integrating social vulnerability
(preparation of society for any disaster) and seismic risk for
Nepal.

2 Theory and background

2.1 Social vulnerability variables

Vulnerability is a multidimensional aspect, and it cannot be
integrated into a single variable (Cutter and Finch, 2018;
Contreras et al., 2020). There are many social vulnerabil-
ity parameters that determine the impact of natural hazards
such as socioeconomic status, geographical features, ethnic-
ity (minority), home ownership/rental status, gender, and age
(Burton and Silva, 2016). These intensify the impact of earth-
quakes; for instance, some people are privileged with social
advantages, while some succumb to poverty and discrimi-
nation. The households with better economic status can re-
cuperate from disasters better than low-income households
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Figure 1. Administrative map of Nepal showing VDCs, municipalities, 75 districts, 3 geographical regions, provinces, and province head-
quarters.

(Mileti, 1999). Similarly, there is a lethargic pace in devel-
opmental activities, and the situation is aggravated by the
centralized development only in the capital city, Kathmandu.
As a result, people are obliged to work overseas, especially
in Gulf countries, for employment opportunities owing to
poverty (Aksha et al., 2019). In addition to it, ethnicity also
creates barriers in distribution and access to financial re-
sources after disasters (Cutter et al., 2003). Nepal is home
to a wide number of caste and ethnic identity groups fac-
ing deep structural marginalization (Pherali, 2016). The di-
verse indigenous communities experience economic, social,
and political marginalization and annexation of infrastructure
and financial resources (Mishra et al., 2015). A significant
number of minorities, females, and dependent age groups
are more vulnerable (Borden et al., 2007). Furthermore, an-
other group of vulnerable populations are renters because, in
comparison to the homeowners, renters are financially un-
prepared for the recovery (Burby et al., 2003). Likewise, the
topography of Nepal is also a hindrance to distributing relief
materials to the affected regions in time which exacerbates
the impact of natural hazards. There are three geographical
regions in Nepal: the Terai, hilly, and Himalayan regions cov-
ering 24 %, 42 %, and 34 % of the total area, respectively. The
flat, arable Terai plain region contains 50 % of the total pop-
ulation. The hilly region is basically situated in the south of
the mountain region, which is less developed than the Terai
region. However, the densely populated and highly urban-
ized cities of Kathmandu and Pokhara lie in the hilly region.
The mountain region is characterized by severe climatic and

rugged topographic conditions with limited economic activi-
ties and human habitation.

2.2 Parameters of earthquake risk assessment

Earthquake risk assessment is the combination of the expo-
sure model, structural vulnerability, and seismic hazard anal-
ysis. Generally, the exposure model represents assets like
buildings and population (Silva et al., 2020). In this study, the
fundamental exposure data include building typologies and
district-wide distribution of buildings. Likewise, the struc-
tural vulnerability function resembles expected loss at a
given ground motion intensity level which can be derived
either by empirical methods or by combining fragility and
consequence functions (Martins et al., 2021). Using empir-
ical methods vulnerability is derived in the form of losses
from past events at given locations corresponding to the lev-
els of intensity of ground motion. Fragility functions are de-
fined by the probability of exceeding a set of limit states at
a given intensity measure level (Gómez Zapata et al., 2021).
These functions can be derived empirically or analytically or
by modeling the asset behavior at increasing ground motion
levels. Likewise, consequence functions are defined by the
probability distribution of loss at a given performance level
(Pagani et al., 2014).

The seismic hazard curve describes the annual probability
of exceeding a specified ground motion level. The probabilis-
tic approach can be used to derive hazard curves. This ap-
proach involves (a) delineation of seismic sources and their
characteristics, (b) determination of regional seismicity, (c)
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use of the appropriate ground motion equation, and (d) com-
bination of probability in terms of size, location, and ground
motion parameter. There is abundant research on seismic
hazard analysis in Nepal which uses various source typolo-
gies and characteristics. For instance, Stevens et al. (2018)
used a mix of fault and area source models – in total six
seismic sources with the Gutenberg a and b values along
with maximum magnitude estimated for each source zone.
Among the sources used in Stevens et al. (2018), the Main
Himalayan Thrust is the principle seismic hazard source in
Nepal, which is a huge, shallow-dipping reverse fault capable
of producing the largest earthquakes. Similarly, Pandey et al.
(2002) divided the whole Nepal region into 10 area sources
and 24 fault sources. Thapa and Guoxin (2013) divided the
Nepal region into 23 seismic source zones. Chaulagain et
al. (2016) also used the same sources to carry out a seis-
mic risk assessment. Similarly, selecting the ground motion
prediction equation is one of the important steps in seismic
hazard analysis, which governs the propagation of seismic
ground motion from seismic source to site in terms of mag-
nitude, distance, depth, and other site parameters (Cornell,
1968). However, in the context of Nepal, there are insuffi-
cient strong ground motion records to derive a precise equa-
tion capturing the actual response spectrum. On top of that,
very little research has been conducted in terms of attenua-
tion relationships in Nepal. Previous studies like Chaulagain
et al. (2015) and Stevens et al. (2018) have used a combina-
tion of ground motion prediction equations (GMPEs) within
the logic tree. The past seismic hazard analyses (Stevens et
al., 2018; Chaulagain et al., 2015; Thapa and Guoxin, 2013)
have produced a varying range of seismic hazard analyses of
Nepal. According to Stevens et al. (2018), in the large part of
Nepal, the accelerations in the range of 0.4–0.6 and 1.0–3.0 g
may be expected for 10 % and 2 % probability of exceedance
over a 50-year period, respectively. Chaulagain et al. (2015)
evaluated the estimated PGAs (in g) at 10 % and 2 % prob-
ability of exceedance in 50 years in the range of 0.22–0.5
and 0.42–0.85 g, respectively. Thapa and Guoxin (2013) es-
timated the PGA at 10 % and 2 % probability of exceedance
in 50 years in the range of 0.21–0.62 and 0.38–1.1 g, respec-
tively.

3 Materials and methods

This study assesses seismic risk by combining it with the
human dimensions within the hazard zone similar to that in
Burton and Silva (2016). This approach is an integrated seis-
mic risk assessment. Here we have quantified the social and
economic parameters in terms of social vulnerability indices
and then integrated those indices with the results of classical
probabilistic risk analysis.

3.1 Social vulnerability assessment

The social vulnerability index (SoVI) method was originally
formulated by Cutter et al. (2003), and this index provides
a comparative metric depicting an area’s relative social vul-
nerability to hazard. Social vulnerability helps to explain the
reason behind the difference in consequences in communities
even though they are subjected to similar levels of ground
shaking (Burton and Silva, 2016). We identified the mean-
ingful variables incorporating the socioeconomic and physi-
cal context of Nepal. Moreover, to describe the vulnerability
at the municipality and VDC level in Nepal, we computed a
modified SoVI.

3.1.1 Indicators of social vulnerability assessment

For social vulnerability, we extracted data from the most re-
cent national-wide census of Nepal held in 2011 (CBS, 2011)
and the Nepal Human Development Report 2014 (Sharma
et al., 2014). Table 2 provides the list of all the variables
used for social vulnerability assessment. Out of 45 variables,
district-wide indicators were represented by 22 variables, and
each subsection of districts (municipality and VDCs) was as-
sumed to have a uniform indicator value. Among these 45
variables, 7 of them were a weighted combination of mul-
tiple variables, as shown in Table 2. These weighted vari-
ables were obtained from 54 variables mentioned in Table 3.
Therefore, altogether 92 variables (45−7+54) were consid-
ered for SoVI index. This technique of weighing variables
has been used in principal component analysis (PCA) used in
the National Human Development Report (NHDR; Sharma
et al., 2014). The NHDR (2014) also used the same weigh-
tage values for these variables. The modification to the orig-
inal SoVI is required due to the difference in demographic
characteristics between Nepal and the USA and the avail-
ability of data. We included variables from various categories
like the housing unit status category, which reflects the fea-
tures of the household, housing characteristics, and facilities.
Similarly, population characteristics show female population
characteristics, age structure, population density, population
growth, child marriage, and disabled population.

The cardinality of each indicator (variables) is indicated
in Table 2. Positive cardinality (+) means variables have a
positive relationship with social vulnerability, while negative
cardinality (−) means they have a negative relationship. Each
indicator should be normalized to obtain a relatively uniform
dimension. Hence, based on cardinality, we used a min–max
method for each indicator using Eqs. (1) and (2), as used in
Fang et al. (2019).

For positively related indicators (+),

Si =
Xi −Xi,min

Xi,max−Xi,min
. (1)
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Table 2. Variables used to construct social vulnerability index and their loading values after PCA.

No. Description Category Data source Cardinality Loadings

1 Percentage of households that owned a house Housing unit status a − −0.502

2 Weighted foundation index per household∗∗ Housing unit status a − 0.863

3 Weighted wall index per household∗∗ Housing unit status a − 0.872

4 Weighted roof index per household∗∗ Housing unit status a − −0.645

5 Weighted drinking water index per household∗∗ Housing unit status a − 0.498

6 Weighted cooking index per household∗∗ Housing unit status a − 0.673

7 Weighted electricity index per household∗∗ Housing unit status a − 0.72

8 Percentage of households without toilet facility Housing unit status a + 0.533

9 Percentage of households without any of following
facilities: radio, television, mobile, refrigerator,
vehicles, internet

Housing unit status a + 0.653

10 Percentage of households with radio facilities Housing unit status a − 0.395

11 Percentage of households with television facilities Housing unit status a − 0.711

12 Percentage of households with internet facilities Housing unit status a − 0.614

13 Percentage of households with vehicles Housing unit status a − −0.51

14 Percentage of absentee households Housing unit status a + −0.885

15 Average household size Housing unit status a + 0.511

16 Percentage of households with child as household head∗ Housing unit status a + 0.546

17 Percentage of households with female as household
head∗

Housing unit status a + −0.797

18 Percentage of household with five or more members∗ Housing unit status a + 0.666

19 Housing density∗ Housing unit status a + −0.914

20 Percentage of population that is female Population a + −0.84

21 Percentage of children under 5 years Population a + 0.748

22 Percentage of children aged 5 to 14 Population a + 0.705

23 Percentage of people aged 30 to 49 Population a − 0.712

24 Percentage of elderly population (65+) Population a + −0.483

25 Percentage of population with disabilities
(blind, deaf, mental)

Population a + −0.374

26 Percentage of child marriages∗ Population a + 0.745

27 Population growth (2001–2011)∗ Population b − −0.846

28 Net migration rate∗ Population b − −0.85

29 Population density∗ Population a + −0.89

30 Population per each hospital and PHCC/HCC∗ Health e + 0.51

31 Population per each health post and sub-health post∗ Health e + 0.773

32 Life expectancy∗ Health b − 0.776

33 Infant mortality rate (per 1000 births)∗ Health b + 0.706

34 Literacy rate Education a − 0.469
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Table 2. Continued.

S.N. Description Category Data source Cardinality Loadings

35 Weighted education level index per capita∗∗ Education a − 0.717

36 Population per each school∗ Education g + 0.526

37 Human poverty index∗ Economy d + 0.803

38 Human development index (2011)∗ Economy d − 0.878

39 Budget allocation per capita∗ Economy f − 0.835

40 Per capita income, in Nepali currency (NPR) at market
price∗

Economy d − 0.751

41 Percentage of population that are economically active∗ Economy d − 0.488

42 Gross domestic product (value added) NPR in millions
(per capita)∗

Economy d − 0.739

43 Labor productivity per capita∗ Economy d − 0.871

44 Population per each small industry∗ Economy c + 0.429

45 Percentage of employees who are female∗ Economy a − 0.554

a National Population and Housing Census 2011 (CBS, 2012). b Population Monologue V01 (CBS, 2014a). c Population Monologue V03 (CBS, 2014b). d
Nepal Human Development Report (Sharma et al., 2014). e Department of Health Services (2013). f Budget report for year 2070–2071 BS (Bikram Sambat,
based on Nepali calendar) (2013–2014 CE). g Department of Education (2013–2014). ∗ District-wide data. PHCC signifies primary health care centre, and
HCC signifies health care center. ∗∗ Weighted index calculated as per Table 3.

For negatively related indicators (−),

Si =
Xi,max−Xi

Xi,max−Xi,min
, (2)

where Xi is the original value of indicator i, and Xi,max and
Xi,min are the maximum and minimum values of the variable
Xi . Si is the standard value of index i, which is in the range
of 0 and 1.

3.1.2 Calculation of social vulnerability index (SoVI)
by principal component analysis

The social vulnerability index was evaluated by incorporat-
ing socioeconomic variables through a mathematical pro-
cedure called principal component analysis (PCA). PCA
transforms a number of possibly correlated variables into
a smaller number of uncorrelated components (Abdi and
Williams, 2010). The main idea of PCA is to reduce the di-
mensionality of a dataset with a large number of inter-related
indicators whilst retaining the maximum possible variation
present in the dataset (Jolliffe, 2002). The procedure of PCA
used in this study is mentioned in further sections.

Number of principal components

It is very crucial to determine the number of components to
carry out PCA (Franklin, 1995). We used parallel analysis
(PA) by Horn (1965). Various studies like Humphreys and
Montanelli (1975), Zwick and Velicer (1986), and Thomp-
son and Daniel (1996) have shown that PA is an appropriate

method to determine the number of factors. These studies as-
sert that this method (PA) is the best available alternative to
calculate the number of factors to be retained. In this method,
eigenvalues from PCA prior to rotation were compared with
“expected” eigenvalues which were obtained by simulating
normal random samples with identical dimensionality (same
number of samples and variables) using a Monte-Carlo sim-
ulation process. Initially, a factor was considered significant
if the associated eigenvalue was bigger than the mean of
those obtained from the random uncorrelated data. The de-
fault (and recommended) values for a number of random cor-
relation matrices and percentile of eigenvalues are 100 and
95, respectively (Cota et al., 1993; Glorfeld, 1995; Velicer et
al., 2000). We used the PA engine developed by Vivek et al.
(2017) to calculate corresponding random eigenvalues. From
parallel analysis, there were eight components with larger as-
sociated eigenvalues than those from the Monte-Carlo sim-
ulation, as shown in Table 4. These eight components ex-
plained 77.51 % of the variance in all variables.

We also used two rules of thumb to calculate the number
of components to be retained for comparison. The first rule
of thumb used in this study was proposed by Kaiser (1960).
As per this rule, only those principal components with eigen-
values greater than 1.0 were retained. As seen in Table 4, just
like parallel analysis, Kaiser’s rule also indicated eight prin-
cipal components. The Cattell scree test was also used as the
second rule of thumb, and the test proposed in Cattell (1966)
is based on the scree plot (eigenvalues vs. the number of com-
ponents). According to this test, a point where the scree plot
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Table 3. Weights corresponding to the weighted variables, as defined in Table 2.

Variables Weightage Variables Weightage

A. Weighted foundation index E. Weighted cooking index
Types of foundation in houses Main cooking fuel

RCC with pillar 5 Liquid petroleum gas 6
Cement-bonded bricks/stone 4 Electricity 6
Mud-bonded bricks/stone 3 Kerosene 5
Wooden pillar 2 Bio gas 4
Others 1 Wood/firewood 3
Not stated 1 Santhi/guitha (cow dung) 2

Others 1
Not stated 1

B. Weighted wall index F. Weighted electricity index
Types of walls in houses Main source of light

Cement-bonded bricks/stone 6 Electricity 5
Mud-bonded bricks/stone 5 Solar 4
Wood/planks 4 Bio gas 3
Bamboo 3 Kerosene 2
Unbaked brick 2 Others 1
Others 1 Not stated 1
Not stated 1

C. Weighted roof index G. Weighted education index
Types of roofs in houses Highest level of education of each individual

RCC 7 Post-graduate equiv. and above 9
Tile/slate 6 Graduate and equiv. 8
Galvanized iron 5 Intermediate and equiv. 7
Wood/planks 4 Grade 10 and equivalent level 6
Mud 3 Secondary (9–10) 5
Thatch/straw 2 Lower secondary (6–8) 4
Others 1 Primary (1–5) 3
Not stated 1 Beginner 2

Others 1
Non-formal 1
Not stated 1

D. Weighted drinking water index
Main source of drinking water

Tap/piped water 7
Covered well/kuwa 6
Tube well/hand pump 5
Uncovered well/kuwa 4
Spout water 3
River/stream 2
Others 1
Not stated 1

moves from steep to shallow was taken as a cutting-off point,
as shown in Fig. 2, which also indicated eight principal com-
ponents similar to parallel analysis.

Suitability of data for PCA

We performed two tests, the Kaiser–Meyer–Olkin (KMO)
test and Bartlett’s test, to check the adequacy of data for PCA.
The KMO measure of sampling adequacy depicts the propor-
tion of variance in the variables that might be caused by un-
derlying factors (Kaiser, 1970; Fekete, 2009). A KMO value
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Table 4. Initial eigenvalues, variances, and results of parallel analysis for the first 10 principal components. The bold values represent the
cutting-off point where the initial eigenvalue is less than that obtained from the Monte-Carlo simulation.

Component Initial % of variance Cumulative % 95th percentile eigenvalue Parallel analysis:
eigenvalues (a) (parallel analysis) (b) remarks

1 13.215 29.366 29.366 1.227612 a > b

2 9.201 20.447 49.813 1.199826 a > b

3 3.541 7.87 57.683 1.183024 a > b

4 3.096 6.88 64.563 1.170289 a > b

5 1.787 3.972 68.535 1.160148 a > b

6 1.488 3.308 71.842 1.147872 a > b

7 1.345 2.99 74.832 1.136596 a > b

8 1.206 2.681 77.513 1.126383 a > b

9 0.929 2.064 79.577 1.11708 a < b

10 0.79 1.755 81.332 1.107092

Figure 2. Scree plot (eigenvalues vs. components).

greater than 0.8 was considered good, while a KMO value
less than 0.5 required some remedy, either by deleting or
adding variables (IBM Support, 2020). Similarly, Bartlett’s
test of sphericity is the suitability test, in which a value be-
low 0.05 indicates the variables are related and suitable for
structure detection. In this study, a KMO value of 0.873 and
Bartlett’s test value of 0.000 passed the requirements of data
for PCA.

Statistical analysis

PCA was carried out in Statistical Package for Social Science
(SPSS version 21.0). We employed the Varimax rotation with
Kaiser normalization as applied by Aksha et al. (2019) and
Fekete (2009), which maximized the variance shared among
data and eases the interpretation by rotating the axes of the
components perpendicular to them. For the interpretation of
the result, we suppressed the absolute loading value less than
0.30 and considered eigenvalues greater than 1.0 as in Fekete
(2009). Due to the lack of a justifiable method and evidence
for weighting components, an equal weighting and additive
approach were considered in our study. This approach was
also used in Cutter et al. (2003) and Aksha et al. (2019).

The loadings after PCA are presented in Table 2. Subse-
quently, SoVI scores were calculated by summing the scores
of all principal components. As presented in the paper by
Tate (2012), SoVI scores were used in the form of standard
deviations (z scores) or quintiles to emphasize their relative
value. Furthermore, z scores were considered to classify the
social vulnerability of each VDC and municipality into five
groups and then plotted the results in map form using Ar-
cGIS.

3.2 Assessment of physical risk

The classical Probabilistic Seismic Hazard Analysis
(PSHA)-based risk calculator was performed to calculate the
annual average loss using OpenQuake. This calculator com-
bines numerical integration, physical vulnerability functions
of the assets, and seismic hazard curve at the location to
calculate the loss distribution for the asset within a specified
time period (Pagani et al., 2014). The calculator requires
an exposure model describing the distribution of building
typologies, physical vulnerability functions for each building
type, and hazard curves calculated in the region of interest.
The hazard curves required were also calculated using the
OpenQuake engine using the classical PSHA approach. For
hazard curve derivation, a source model and ground motion
prediction were inputted in the OpenQuake engine. Finally,
the value of annual average loss (AAL) for each VDC and
municipality was rescaled into the range between 0 and 1
using min–max rescaling (Eq. 1).

3.2.1 Source model

In this study, the 23 source zones similar to those of Thapa
and Guoxin (2013) were considered for probabilistic seis-
mic hazard analysis. The seismic source zones are shown in
Fig. 3. The delineated sources were assumed to be homoge-
nous in terms of their seismicity such that every point was as-
signed an equal probability of occurrence of an earthquake.
Thapa and Guoxin (2013) determined a “b” value of 0.85 for
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the entire region. Here, we considered the same “b” value
as proposed in that study. Generally, small-magnitude earth-
quakes have a minute effect on infrastructures. Therefore, for
the hazard analysis, the minimum magnitude (Mw) within all
source zones was considered 4.0. Similarly, the hypocenter
depth of 10 km was used for the entire region.

3.2.2 Attenuation relationship (selection of ground
motion prediction equation)

We assumed the tectonic region to be a shallow crust and
subduction interface like that in Chaulagain et al. (2016).
Atkinson and Boore (2003), Youngs et al. (1997), Campbell
and Bozorgnia (2008), Chiou and Youngs (2008), and Boore
and Atkinson (2008) were used. These equations were used
within a logic tree (equal weights for each equation) to con-
duct probabilistic seismic hazard and risk analysis in Open-
Quake.

3.2.3 Exposure model and physical vulnerability model

In this study, the building descriptions and data from the
2011 census were used to develop the exposure model with-
out considering the industrial or commercial buildings. In
other words, only residential buildings were considered for
the exposure model. The total number of households accord-
ing to the 2011 census is 5 423 297. The exposure models
used in the study are part of the seismic risk assessment with
uncertainties, although present studies like Kalakonas et al.
(2020), Bal et al. (2010), and Gómez Zapata et al. (2022)
have pointed out how the epistemic uncertainties embedded
in exposure models are propagated throughout the computa-
tion of seismic risk.

We considered five types of buildings – mud-bonded,
cement-bonded, reinforced cement concrete (RCC), wooden,
and adobe. Most of the residential buildings in Nepal con-
sist of mud-mortar/bonded-brick masonry. In remote areas,
wooden buildings are abundant, whereas in the central re-
gion, especially in Kathmandu and urban areas, cement-
bonded or reinforced concrete buildings are present. The area
and construction cost of each building type is shown in Ta-
ble 5, as considered by Chaulagain et al. (2015). The spatial
distribution of total buildings across the country is shown in
Fig. 4a and the individual building typology is summarized
in the box-and-whisker plot shown in Fig. 4b. From Fig. 4b,
it can be observed that the average number of buildings that
are RCC with pillar, mud-bonded, cement-bonded, wooden
pillar, and adobe are 135.73, 603.36, 239.91, 340, and 46.33,
respectively.

On the other hand, the average annual loss was evalu-
ated using OpenQuake. In this study, the fragility model de-
veloped by Chaulagain et al. (2015) was adopted for dif-
ferent building types. To define fragility functions in a dis-
crete manner, for each limit state, a list of intensity measure
levels and their corresponding probabilities of exceedance

Table 5. Area and construction cost of different Building Type
(Chaulagain et al., 2015).

Building type Area per building Construction cost
(m2) (EURm−2)

Adobe 60 150
Mud-bonded 70 225
Cement-bonded 80 275
Wooden 60 200
RCC 80 325

must be provided. The intensity measure level in terms of
peak ground acceleration (PGA in g) was used. The fragility
curves for different building typologies at each limit state are
shown in Figs. 5 and 6. After defining fragility functions, it
is also important to assess the correlation between the log-
arithmic means and standard deviations of each limit state,
which are represented by µ and σ , respectively, as shown
in Table 6. Subsequently, the fragility curve was inputted in
the Vulnerability Modeller’s ToolKit (VMTK) developed by
GEM OpenQuake to derive the physical vulnerability model.
VMTK is a framework divided into six modules which can
be used to derive the fragility function via nonlinear dy-
namic analysis and also the physical vulnerability function
using the fragility model and consequence model (Martins et
al., 2021). In this process, the fractions of buildings in each
damage state were multiplied by the associated damage ra-
tio (from the consequence model) in order to obtain a distri-
bution of loss ratio for each intensity measure type (Pagani
et al., 2014). The damage ratios 0.3, 0.6, and 1.0 were used
for each damage type: moderate, extensive, and collapse, re-
spectively, as per Chaulagain et al. (2015). The vulnerabil-
ity curves for each building typology used in this study are
shown in Fig. 7.

3.3 Integrated risk assessment

An integrated risk index was constructed by combining the
social vulnerability index and estimates of average annual
loss in rescaled metrics. The framework or workflow of the
integrated risk assessment is shown in Fig. 8. The first step in
Fig. 8, seismic hazard, was evaluated using the probabilistic
approach. The geographic features represent exposure mod-
eling for residential buildings and their physical vulnerabil-
ity. By combining these parameters, seismic risks were eval-
uated in terms of average annual loss (AAL), which was fur-
ther recomputed by using the min–max rescaling method.
The physical vulnerability and exposure model interact with
the social and economic parameters or overall capacity of
the population to sustain hazards (Burton and Silva, 2016).
The social features define socioeconomic parameters related
to the demographic population to prepare for, react to, and
recuperate from damaging events (Burton and Silva, 2016).
The integrated risk is the combination of physical risk and a
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Figure 3. Seismic source zones of Nepal (Thapa and Guoxin, 2013).

Figure 4. (a) Spatial distribution of total buildings in Nepal and (b) box-and-whisker plot describing the distribution of each building type.

set of contextual and social vulnerability conditions (Carreño
et al., 2012). In this regard, the integrated risk was evaluated
based on direct factors or physical risk and socioeconomic
factors. The integrated risk index (RT) was calculated using
Eq. (3):

RT = Rf (1+F). (3)

Moncho’s equation (Eq. 3) was used to evaluate convoluted
risk, where Rf is a physical risk index or average annual

loss estimate, and F is a social fragility index or aggravat-
ing coefficient (Glorfeld, 1995). This technique and its suc-
cessful application can be found in numerous studies due to
its simplicity and successful applications (Burton and Silva,
2016; Carreño et al., 2012; Khazai et al., 2013; Fernandez et
al., 2006). The calculated integrated risk was evaluated using
the OpenQuake Integrated Risk Modeling Toolkit (IRMT).
The IRMT is a plugin developed by the GEM Foundation
and available in the QGIS open-source platform that allows
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Figure 5. Fragility curves for (a) adobe, (b) cement-bonded, (c) mud-mortar, and (d) wooden buildings.

Table 6. Mean and standard deviation per damage state for each building type (Chaulagain et al., 2015).

Building type Moderate damage Extensive damage Collapse

µ σ µ σ µ σ

Adobe −3.22 0.65 −1.99 0.77 −1.45 0.64
Mud-bonded −2.14 0.72 −1.66 0.72 −1.05 0.66
Cement-bonded −1.82 0.68 −1.06 0.67 −0.62 0.72
Wooden −1.08 0.64 −0.39 0.64 0.00 0.64
RCC 0.35 0.17 0.85 0.2 1.35 0.32

Figure 6. Fragility curves for RCC buildings.

a composite framework to be built to assess physical risk and
social characteristics that affect the earthquake risk. The di-
agrammatic workflow of social and physical risk indicators
developed by OpenQuake IRMT is shown in Fig. 9. The inte-
grated toolkit involves details from the selection of indicators
to the detailing and mapping of composite risk assessment.

4 Results

4.1 Results of social vulnerability analysis

The results of social vulnerability analysis are shown in
Fig. 10, which depicts the distribution of total SoVI scores
across the country. SoVI scores for each district provide rel-
ative comparison within the districts’ subdivision units. The
districts mapped with darker red shades demonstrate higher
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Figure 7. Vulnerability curves for (a) adobe, cement-bonded, mud-bonded, and wooden buildings and (b) RCC (reinforced cement concrete)
buildings.

Figure 8. Framework for integrated risk approach (Burton and
Silva, 2016).

rates of social vulnerability. It can be seen in Fig. 10 that
there is a higher degree of risk in the far-western region host-
ing places like Godawari and Deukhuri. This region is one
of the most rural areas of Nepal with nominal availability of
infrastructure. The results also illustrate that the Terai region
with cities like Janakpur and Biratnagar shows a higher level
of social vulnerability. These cities may be at greater risk as
a result of infrastructure exposure. On the other hand, the
central and eastern regions of Nepal with the cities of Kath-
mandu, Pokhara, and Hetauda are comparatively at lower
risk. The social vulnerability map of the country demon-
strates higher levels of social vulnerability in rural areas with
few exposed assets and industrial areas with exposure of in-
frastructure, whereas the lowest levels of social vulnerability
are in urban and populated cities like Kathmandu, Pokhara,
and Hetauda.

To further explore the overall social vulnerability observed
in Fig. 10, we generated the maps of sub-components: hous-
ing unit, population, health, education, and the economy, as
shown in Fig. 11. Figure 11a shows that highly vulnerable
areas under the housing unit category are concentrated in the
far-western hill and eastern Terai regions. The houses in ru-

ral areas are highly vulnerable due to their old age and lack
of amenities like retrofitting and repairing. The population
component (Fig. 11b) exhibits a high level of vulnerability
in Kathmandu, Janakpur, and some parts of the far-western
region. There is a dense population and unorganized urban-
ization in Kathmandu, whereas the far-western region hosts
minorities and an old-age population. Under the health com-
ponent (Fig. 11c), there is an intense degree of vulnerability
in the Terai region and the hilly parts of the far-western re-
gion. These regions have the least access to health facilities.
Similarly, the education component (Fig. 11d) reveals great
vulnerability in the eastern Terai region. The economy com-
ponent (Fig. 11e) shows a very high degree of vulnerability in
the mid-part of the far-western region and the Terai region.
There is a high level of vulnerability in the far-western re-
gion of the country due to the prevalence of a higher number
of minorities, illiteracy rate, nominal infrastructural access,
and poor economic status.

4.2 Results of seismic risk assessment

The probabilistic seismic hazard analysis was carried out,
and then the physical risk estimations were made, as shown
in Fig. 12. The physical risk in terms of average annual loss
(AAL) index obtained from the risk analysis was classified
into five quintiles from very low (<−1.5 standard devia-
tion) to very high (> 1.5 standard deviations) vulnerability.
Figure 12 shows the distribution of AAL per capita in mone-
tary terms, and Fig. 13 shows the distribution of the seismic
risk index across the country. The null regions in the maps
represent the areas which are national parks and wildlife re-
serves with nominal population. From Fig. 13, it is observed
that the Terai region, especially the eastern Terai and central
Terai regions, lies in a higher seismic risk category. Kath-
mandu Valley also lies in a very high-risk category. Contrary
to social vulnerability, the western part of Nepal lies in the
lower AAL value region.
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Figure 9. Workflow showing social and physical risk indicators in QGIS IRMT.

Figure 10. Spatial distribution of social vulnerability index in districts of Nepal.

4.3 Results of integrated risk assessment

Social vulnerability shows the intensity of the impact of any
disaster. When combined with the impact of seismic action,
the true nature of the distribution of seismic risk becomes
evident. As shown in Fig. 14, the integrated risk is higher in

the Terai region in cities like Janakpur and Biratnagar. Kath-
mandu region has a low SoVI index but a high integrated risk
index. Similarly, the far-western hills and the mountain re-
gion are found to be low-risk regions even though they have
a high SoVI index. However, due to their high social vulner-
ability, these regions should still be depicted as a concern.
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Figure 11. Spatial distribution of social vulnerability by sub-category.

Figure 12. Average annual loss per capita, as calculated from OpenQuake, for Nepal.
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Figure 13. Spatial distribution of the seismic risk index in Nepal.

Despite having a low number of houses, the houses may be
of lower quality, which are likely to suffer damage from even
low-magnitude earthquakes, and these regions may not have
enough resources for mitigation measures. On top of that,
even though they are in low-seismic risk-regions, the respec-
tive population may be at high risk from other disasters like
a landslide, flood, glacier, or other weather conditions.

5 Discussion

The main purpose of this study is to assess the integrated
seismic risk by combining the socioeconomic parameters and
physical risk. The methodology by Cutter et al. (2003) was
used to compute social vulnerability components. The to-
tal SoVI scores were calculated by summing all principal
components. On the other hand, the seismic source model,
fragility curves, and consequence model given by Chaulagain
et al. (2015) were used to evaluate the physical risk in Open-
Quake. Similar to the study by Burton and Silva (2016), the
integrated risk was evaluated using the IRMT. Further dis-
cussion on social vulnerability, physical risk, and integrated
risk assessment are presented in the following sections.

5.1 Discussion on social vulnerability assessment

In this paper, the objective of the social vulnerability assess-
ment was to quantify the vulnerability in Nepal considering
socioeconomic parameters at the local level. The results of
social vulnerability show that the most socially vulnerable
places are located in the far-western, eastern Terai, and west-
ern Terai regions of Nepal. Our findings exhibit differences

in social vulnerability in areas located in the same ecological
region. The main reason behind this could be the pre-existing
conditions like infrastructures, education, economy, etc. The
population in the far-western region and the eastern Terai re-
gion are mostly minorities, Dalits, and marginalized groups
who are educationally disadvantaged and developmentally
challenged (Gautam, 2017). As for mountainous and hilly
areas in the far-western region, the geographical terrain has
affected the development path of these areas. Aksha et al.
(2019) and Gautam (2017) also found a similar vulnerability
in their respective studies. However, Aksha et al. (2019) clas-
sified Kathmandu Valley as a high-vulnerability class, while
Gautam (2017) classified it as a very low-vulnerability class.
Our social vulnerability result agreed with the latter case.
This variability in the result is due to differences in variables
and hazards considered during the analysis. Moreover, more
recent data for SoVI will depict the more exact status of so-
ciety and its vulnerability to disaster. This study uses census
data from 2011. And, the census is done every 10 years in
Nepal, and the most recent census was held in 2021. How-
ever, data from 2011 were considered due to the unavailabil-
ity of recent comprehensive data. More recent data can be
used in future studies once the 2021 Nepal census is pub-
lished and made available.

5.2 Discussion on physical risk assessment

The objective of physical risk assessment in this study was
to evaluate the physical risk index using a probabilistic ap-
proach. As in Burton and Silva (2016), the classical PSHA
risk-based calculator was used to assess loss exceedance
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Figure 14. Spatial distribution of the integrated risk index in districts of Nepal.

curves, risk maps, and average annual loss. In this study, a
probabilistic approach and region-specific steps were used
to evaluate the seismic hazard curves as in Chaulagian et al.
(2015).

The probabilistic method of estimating seismic hazards
used in the study utilizes the Poisson distribution model. Al-
though earthquakes are assumed to occur randomly in space
and time, the Poisson model assumes that earthquakes make
a stochastically independent sequence of events in space and
time (Anagnos and Kiremidjian, 1988). Despite such coun-
terintuitive characteristics, the Poisson model is widely used
due to its simplicity in the formulation and smaller range
of parameters to be estimated. Moreover, recent research
(Weatherill et al., 2015; Schiappapietra and Douglas, 2020)
in seismic risk assessment has incorporated spatially corre-
lated distribution not only to estimate simultaneous inten-
sity measure levels at locations during a specific earthquake
but also to quantify the correlation between locations. The
present studies have suggested the modeling of the spatial
correlation of earthquake ground motion since attenuation
of ground motion is not only period-dependent but also re-
gionally dependent. However, in our study, we have used
the conventional method of probabilistic seismic risk assess-
ment due to its simplicity. Nonetheless, a certain standard
approach is necessary to evaluate comparable estimates of
seismic hazards. Moreover, the authors are aware of the fact
that numerous estimations such as casualties, non-structural
damage, business interruption loss, and loss of critical infras-
tructure may improve the indicator of physical risk. How-
ever, only the economic losses of buildings were utilized in
this study as an initiation for this type of research for Nepal.

Similarly, the results of physical risk (average annual loss
estimates) were rescaled using the min–max method as men-
tioned in previous sections. The rescaling is necessary to in-
tegrate social vulnerability with physical risk, although the
rescaling of the estimates may have resulted in the loss of
spatial information of physical damage results.

5.3 Discussion on integrated risk assessment

The integration and mapping of the spatial distribution of av-
erage annual losses and social vulnerability are very useful.
However, the integrated maps do not reflect the true effect
of components inducing seismic risk at a particular location.
This can be due to the compounding nature of the spatial risk
as the areas of medium to high levels of social vulnerability
compound moderate levels of physical risk to generate high
levels of integrated risk. The medium level of social vulner-
ability in the eastern Terai region is compounded with the
high level of physical risk to create a higher level of inte-
grated risk, which can be seen in Fig. 14. On the other hand,
there is a higher degree of seismic risk and integrated risk in
Kathmandu Valley, although the social vulnerability results
depict a lower degree of vulnerability. In light of the lim-
itations of this study, it is clear that robust procedures and
methods should be used in future analyses of integrated risk
assessment. Although this study has certain shortcomings, it
is within the context that the inclusion of a higher number
of factors that contribute to the mitigation of earthquake risk
provides better approaches in the development of policy and
plans to reduce overall seismic risk.
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6 Conclusion

The impacts of earthquakes cannot be defined only from the
potential damage from them. Such an effect also depends on
the capacity of society to address and rebound from dam-
age. The social vulnerability index depicts how society will
prepare and respond to any disaster, while the seismic risk
index (AAL) shows how society will be affected due to
earthquakes. This paper presents an integrated study using
SPSS and OpenQuake to delineate integrated seismic risk for
Nepal. The integration of seismic risk with social character-
istics gives a different outlook on seismic risk mitigation and
planning. The major conclusions of this study are described
below.

– The far-western and eastern and western Terai regions
of Nepal were determined to be highly vulnerable from
social vulnerability analysis. The main reason behind
the differences in social vulnerability within the same
ecological region could be the pre-existing conditions
like infrastructure, education, economy, etc. Moreover,
the population residing in the far-western region and the
eastern Terai region are mostly minorities, Dalits, and
marginalized groups.

– Integrated risk helps clear up the confusion on whether
to focus on loss and damage or the population who are
least likely to be able to recover from losses. For ex-
ample, if only the social vulnerability index is consid-
ered, the western hills and the mountain region seem
more vulnerable than Kathmandu Valley, while consid-
ering the seismic risk index, Kathmandu Valley is more
vulnerable. Only by integrating can we confirm that
Kathmandu Valley is more vulnerable to earthquakes
and needs more attention than the western hills and the
mountain region.

– From the results of the seismic risk assessment, Kath-
mandu Valley and the eastern Terai region were de-
termined to be high-seismic-risk areas. Similarly, the
integrated risk results indicated the high vulnerability
in Kathmandu Valley and the entire Terai region. The
far-western hills and the mountain region were deter-
mined to be the low-vulnerability region as per inte-
grated risk maps even though they have a high SoVI in-
dex. These regions (far-western hills and the mountain
region) should still be depicted as a major concern. This
is because these areas might have a smaller number of
houses, but they can be of low quality, which could suf-
fer damage from even low-magnitude earthquakes, and
these regions are considered to be less developed areas
of Nepal in terms of infrastructure and development ac-
tivities.

– The findings reinforce the concept in the hazard and vul-
nerability field that the analysis of socio-demographic

characteristics, when considered along with the physi-
cal environment, brings a greater understanding of the
potential impacts of hazards.

– Additionally, this study provides a basis for local policy-
makers to integrate knowledge about the physical envi-
ronment, social, and demographic composition of their
region to assess their natural hazard mitigation using a
standardized tool like OpenQuake before an event oc-
curs.

In this study, we assess social vulnerability characteristics
and potential risks from a large earthquake on seismically ac-
tive zones across the country. Since local-level policymakers
and municipalities have a big responsibility to minimize, pre-
pare for, and respond to hazards and their impacts, a proper
understanding of the social vulnerability is crucial to allevi-
ate the risks caused by earthquakes. The distribution of po-
tential seismic-hazard-related losses across the country can
be partially explained by the region’s ethnicity, income, and
renter population. Although previous studies have also iden-
tified the integration or relationship between natural disasters
and vulnerability features, this research extended the applica-
bility of social vulnerability by integrating it with earthquake
risk estimates.
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