Articles | Volume 22, issue 9
https://doi.org/10.5194/nhess-22-3083-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-22-3083-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identification and ranking of subaerial volcanic tsunami hazard sources in Southeast Asia
German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473
Potsdam, Germany
Aiym Orynbaikyzy
German Aerospace Center (DLR), Münchenerstr. 20, 82234 Weßling, Germany
Simon Plank
German Aerospace Center (DLR), Münchenerstr. 20, 82234 Weßling, Germany
Andrey Babeyko
German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473
Potsdam, Germany
Herlan Darmawan
Geophysics Study Program, Department of Physics, Faculty of
Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara,
Bulaksumur, Yogyakarta, Indonesia
Ismail Fata Robbany
German Aerospace Center (DLR), Münchenerstr. 20, 82234 Weßling, Germany
Thomas R. Walter
German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473
Potsdam, Germany
Related authors
No articles found.
Daniel Müller, Thomas R. Walter, Valentin R. Troll, Jessica Stammeier, Andreas Karlsson, Erica de Paolo, Antonino Fabio Pisciotta, Martin Zimmer, and Benjamin De Jarnatt
Solid Earth, 15, 1155–1184, https://doi.org/10.5194/se-15-1155-2024, https://doi.org/10.5194/se-15-1155-2024, 2024
Short summary
Short summary
We use uncrewed-aerial-system-derived optical and infrared data, mineralogical and geochemical analyses of rock samples, and surface degassing measurements to analyze degassing and hydrothermal alteration at the fumaroles of the La Fossa cone, Vulcano island, Italy. We give a detailed view of associated structures and dynamics, such as local alteration gradients, diffuse active units that significantly contribute to the total activity, or effects of permeability reduction and surface sealing.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
W. Wang, M. Motagh, S. Plank, A. Orynbaikyzy, and S. Roessner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1181–1187, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1181-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1181-2022, 2022
Stefan Schlaffer, Marco Chini, Wouter Dorigo, and Simon Plank
Hydrol. Earth Syst. Sci., 26, 841–860, https://doi.org/10.5194/hess-26-841-2022, https://doi.org/10.5194/hess-26-841-2022, 2022
Short summary
Short summary
Prairie wetlands are important for biodiversity and water availability. Knowledge about their variability and spatial distribution is of great use in conservation and water resources management. In this study, we propose a novel approach for the classification of small water bodies from satellite radar images and apply it to our study area over 6 years. The retrieved dynamics show the different responses of small and large wetlands to dry and wet periods.
Juan Camilo Gomez-Zapata, Nils Brinckmann, Sven Harig, Raquel Zafrir, Massimiliano Pittore, Fabrice Cotton, and Andrey Babeyko
Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021, https://doi.org/10.5194/nhess-21-3599-2021, 2021
Short summary
Short summary
We present variable-resolution boundaries based on central Voronoi tessellations (CVTs) to spatially aggregate building exposure models and physical vulnerability assessment. Their geo-cell sizes are inversely proportional to underlying distributions that account for the combination between hazard intensities and exposure proxies. We explore their efficiency and associated uncertainties in risk–loss estimations and mapping from decoupled scenario-based earthquakes and tsunamis in Lima, Peru.
Cited articles
Airbus: Copernicus DEM Validation Report (v2.1), https://spacedata.copernicus.eu/documents/20126/0/GEO1988-CopernicusDEM-SPE-002_ProductHandbook_I1.00.pdf (last access: 19 September 2022), 2020.
Annunziato, A., Prasetya, G., and Husrin, S.: Anak Krakatau volcano
emergency tsunami early warning system, Science of Tsunami Hazards, 38, 68–95, ISSN 8755-6839, 2019.
Badriana, M. R., Bachtiar, H., Adytia, D., Sembiring, L., Andonowati, and
Groesen, E. v.: Wave run-up of a possible Anak-Krakatau tsunami on planned
and optimized Jakarta Sea Dike, AIP Conf. Proc., 1857, 090004,
https://doi.org/10.1063/1.4987103, 2017.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B.,
Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S. H., Ladner, R.,
Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace,
G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc
Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371,
https://doi.org/10.1080/01490410903297766, 2009.
Belousov, A., Belousova, M., and Voight, B.: Multiple edifice failures,
debris avalanches and associated eruptions in the Holocene history of
Shiveluch volcano, Kamchatka, Russia, B. Volcanol., 61, 324–342,
https://doi.org/10.1007/s004450050300, 1999.
Belousov, A., Voight, B., Belousova, M., and Muravyev, Y.: Tsunamis
Generated by Subaquatic Volcanic Explosions: Unique Data from 1996 Eruption
in Karymskoye Lake, Kamchatka, Russia, Pure Appl. Geophys., 157,
1135–1143, https://doi.org/10.1007/s000240050021, 2000.
Bonaccorso, A., Calvari, S., Garfì, G., Lodato, L., and Patanè, D.:
Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano
inferred by volcanological and geophysical observations, Geophys.
Res. Lett. 30, 1941, https://doi.org/10.1029/2003GL017702, 2003.
Borrero, J. C., Solihuddin, T., Fritz, H. M., Lynett, P. J., Prasetya, G.
S., Skanavis, V., Husrin, S., Kushendratno, Kongko, W., Istiyanto, D. C.,
Daulat, A., Purbani, D., Salim, H. L., Hidayat, R., Asvaliantina, V., Usman,
M., Kodijat, A., Son, S., and Synolakis, C. E.: Field Survey and Numerical
Modelling of the December 22, 2018 Anak Krakatau Tsunami,
Pure Appl. Geophys., 177, 2457–2475, https://doi.org/10.1007/s00024-020-02515-y, 2020.
Brown, S. K., Jenkins, S. F., Sparks, R. S. J., Odbert, H., and Auker, M.
R.: Volcanic fatalities database: analysis of volcanic threat with distance
and victim classification, Journal of Applied Volcanology, 6, 15, https://doi.org/10.1186/s13617-017-0067-4, 2017.
Carey, S., Sigurdsson, H., Mandeville, C., and Bronto, S.: Volcanic hazards
from pyroclastic flow discharge into the sea: Examples from the 1883
eruption of Krakatau, Indonesia, in: Volcanic Hazards and Disasters in Human
Antiquity, edited by: McCoy, F. W. and Heiken, G., Geological Society of
America, https://doi.org/10.1130/0-8137-2345-0.1, 2000.
Choi, B. H., Pelinovsky, E., Kim, K. O., and Lee, J. S.: Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption, Nat. Hazards Earth Syst. Sci., 3, 321–332, https://doi.org/10.5194/nhess-3-321-2003, 2003.
Crisci, G. M., De Rosa, R., Esperança, S., Mazzuoli, R., and Sonnino,
M.: Temporal evolution of a three component system: the island of Lipari
(Aeolian Arc, southern Italy), B. Volcanol., 53, 207–221,
https://doi.org/10.1007/BF00301231, 1991.
Cronin, S. J., Lube, G., Dayudi, D. S., Sumarti, S., Subrandiyo, S., and
Surono: Insights into the October–November 2010 Gunung Merapi eruption
(Central Java, Indonesia) from the stratigraphy, volume and characteristics
of its pyroclastic deposits, J. Volcanol. Geoth. Res., 261, 244–259, https://doi.org/10.1016/j.jvolgeores.2013.01.005, 2013.
Darmawan, H., Mutaqin, B. W., Harijoko, A., Wibowo, H. E., Haerani, N.,
Surmayadi, M., Jati, R., and Asriningrum, W.: Topography and structural
changes of Anak Krakatau due to the December 2018 catastrophic events,
Indonesian Journal of Geography, 52, 402–410, https://doi.org/10.22146/ijg.53740, 2020.
Darmawan, H., Troll, V. R., Walter, T. R., Deegan, F. M., Geiger, H., Heap,
M. J., Seraphine, N., Harris, C., Humaida, H., and Müller, D.: Hidden
mechanical weaknesses within lava domes provided by buried high-porosity
hydrothermal alteration zones, Sci. Rep., 12, 3202, https://doi.org/10.1038/s41598-022-06765-9, 2022.
Di Traglia, F., Nolesini, T., Solari, L., Ciampalini, A., Frodella, W.,
Steri, D., Allotta, B., Rindi, A., Marini, L., Monni, N., Galardi, E., and
Casagli, N.: Lava delta deformation as a proxy for submarine slope
instability, Earth Planet. Sc. Lett., 488, 46–58, https://doi.org/10.1016/j.epsl.2018.01.038, 2018.
Dogan, G. G., Annunziato, A., Hidayat, R., Husrin, S., Prasetya, G., Kongko,
W., Zaytsev, A., Pelinovsky, E., Imamura, F., and Yalciner, A. C.: Numerical
Simulations of December 22, 2018 Anak Krakatau Tsunami and Examination of
Possible Submarine Landslide Scenarios, Pure Appl. Geophys., 178,
1–20, https://doi.org/10.1007/s00024-020-02641-7, 2021.
ESA: Copernicus Sentinel-2 data, https://apps.sentinel-hub.com/sentinel-playground, last access: 19 September 2022.
Euillades, L. D., Grosse, P., and Euillades, P. A.: NETVOLC: An algorithm
for automatic delimitation of volcano edifice boundaries using DEMs,
Comput. Geosci., 56, 151–160, https://doi.org/10.1016/j.cageo.2013.03.011, 2013.
Ewert, J. W.: System for Ranking Relative Threats of U.S. Volcanoes, Nat.
Hazards Rev., 8, 112–124, https://doi.org/10.1061/(ASCE)1527-6988(2007)8:4(112), 2007.
Ewert, J. W., Diefenbach, A. K., and Ramsey, D. W.: 2018 update to the U.S.
Geological Survey national volcanic threat assessment, Reston, VA, Report
2018-5140, U.S. Geological Survey Scientific Investigations, 50, https://doi.org/10.3133/sir20185140, 2018.
Fernández, D. S. and Lutz, M. A.: Urban flood hazard zoning in
Tucumán Province, Argentina, using GIS and multicriteria decision
analysis, Eng. Geol., 111, 90–98, https://doi.org/10.1016/j.enggeo.2009.12.006, 2010.
Fisher, R. V.: Transport and deposition of a pyroclastic surge across an
area of high relief: The 18 May 1980 eruption of Mount St. Helens,
Washington, GSA Bulletin, 102, 1038–1054, https://doi.org/10.1130/0016-7606(1990)102<1038:TADOAP>2.3.CO;2, 1990.
Fornaciai, A., Favalli, M., and Nannipieri, L.: Numerical simulation of the
tsunamis generated by the Sciara del Fuoco landslides (Stromboli Island,
Italy), Sci. Rep., 9, 18542, https://doi.org/10.1038/s41598-019-54949-7, 2019.
Francis, P. W.: The origin of the 1883 Krakatau tsunamis, J. Volcanol. Geoth. Res., 25, 349–363, https://doi.org/10.1016/0377-0273(85)90021-6, 1985.
Gertisser, R. and Keller, J.: Temporal variations in magma composition at
Merapi Volcano (Central Java, Indonesia): magmatic cycles during the past
2000 years of explosive activity, J. Volcanol. Geoth. Res., 123, 1–23, https://doi.org/10.1016/S0377-0273(03)00025-8, 2003.
Giachetti, T., Paris, R., Kelfoun, K., and Ontowirjo, B.: Tsunami hazard
related to a flank collapse of Anak Krakatau Volcano, Sunda Strait,
Indonesia, Geological Society, London, Special Publications, 361, 79,
https://doi.org/10.1144/SP361.7, 2012.
Global Volcanism Program: Volcanoes of the World, v. 4.10.6 (24 March 2020), edited by: Venzke, E., Smithsonian Institution, https://doi.org/10.5479/si.GVP.VOTW4-2013, 2013.
Gonzalez-Ollauri, A. and Mickovski, S. B.: Hydrological effect of vegetation
against rainfall-induced landslides, J. Hydrol., 549, 374–387,
https://doi.org/10.1016/j.jhydrol.2017.04.014, 2017.
Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F. L., Ward, S. N.,
Grilli, A. R., Engwell, S. L., Zhang, C., Kirby, J. T., Schambach, L., and
Muin, M.: Modelling of the tsunami from the December 22, 2018 lateral
collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia,
Sci. Rep., 9, 11946, https://doi.org/10.1038/s41598-019-48327-6, 2019.
Grilli, S. T., Zhang, C., Kirby, J. T., Grilli, A. R., Tappin, D. R., Watt,
S. F. L., Hunt, J. E., Novellino, A., Engwell, S., Nurshal, M. E. M.,
Abdurrachman, M., Cassidy, M., Madden-Nadeau, A. L., and Day, S.: Modeling
of the Dec. 22nd 2018 Anak Krakatau volcano lateral collapse and tsunami
based on recent field surveys: Comparison with observed tsunami impact,
Mar. Geol., 440, 106566, https://doi.org/10.1016/j.margeo.2021.106566, 2021.
Grosse, P., van Wyk de Vries, B., Petrinovic, I. A., Euillades, P. A., and
Alvarado, G. E.: Morphometry and evolution of arc volcanoes, Geology, 37,
651–654, https://doi.org/10.1130/G25734A.1, 2009.
Grosse, P., van Wyk de Vries, B., Euillades, P. A., Kervyn, M., and
Petrinovic, I. A.: Systematic morphometric characterization of volcanic
edifices using digital elevation models, Geomorphology, 136, 114–131,
https://doi.org/10.1016/j.geomorph.2011.06.001, 2012.
Guth, P. L. and Geoffroy, T. M.: LiDAR point cloud and ICESat-2 evaluation
of 1 second global digital elevation models: Copernicus wins, T. GIS, 25, 2245–2261, https://doi.org/10.1111/tgis.12825, 2021.
Hamzah, L., Puspito, N. T., and Imamura, F.: Tsunami Catalog and Zones in
Indonesia, Journal of Natural Disaster Science, 22, 25–43, https://doi.org/10.2328/jnds.22.25, 2000.
Hanka, W., Saul, J., Weber, B., Becker, J., Harjadi, P., Fauzi, and GITEWS Seismology Group: Real-time earthquake monitoring for tsunami warning in the Indian Ocean and beyond, Nat. Hazards Earth Syst. Sci., 10, 2611–2622, https://doi.org/10.5194/nhess-10-2611-2010, 2010.
Harig, S., Immerz, A., Weniza, Griffin, J., Weber, B., Babeyko, A.,
Rakowsky, N., Hartanto, D., Nurokhim, A., Handayani, T., and Weber, R.: The
Tsunami Scenario Database of the Indonesia Tsunami Early Warning System
(InaTEWS): Evolution of the Coverage and the Involved Modeling Approaches,
Pure Appl. Geophys., 177, 1379–1401, https://doi.org/10.1007/s00024-019-02305-1, 2020.
Harris, J. C., Grilli, S. T., Abadie, S., and Bakhsh, T. T.: Near- And
Far-field Tsunami Hazard From the Potential Flank Collapse of the Cumbre
Vieja Volcano, The Twenty-second International Offshore and Polar
Engineering Conference, 17–22 June 2012, Rhodes, Greece, ISBN 978-1-880653-94-4, 2012.
Heap, M. J. and Violay, M. E. S.: The mechanical behaviour and failure modes
of volcanic rocks: a review, B. Volcanol., 83, 33, https://doi.org/10.1007/s00445-021-01447-2, 2021.
Heap, M. J., Mollo, S., Vinciguerra, S., Lavallée, Y., Hess, K. U.,
Dingwell, D. B., Baud, P., and Iezzi, G.: Thermal weakening of the carbonate
basement under Mt. Etna volcano (Italy): Implications for volcano
instability, J. Volcanol. Geoth. Res., 250, 42–60,
https://doi.org/10.1016/j.jvolgeores.2012.10.004, 2013.
Heap, M. J., Baumann, T. S., Rosas-Carbajal, M., Komorowski, J. C., Gilg, H.
A., Villeneuve, M., Moretti, R., Baud, P., Carbillet, L., Harnett, C., and
Reuschlé, T.: Alteration-Induced Volcano Instability at La Soufrière
de Guadeloupe (Eastern Caribbean), J. Geophys. Res.-Sol. Ea., 126, e2021JB022514, https://doi.org/10.1029/2021JB022514, 2021.
Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., and Wijanarto, A.
B.: Numerical modeling of the subaerial landslide source of the 22 December
2018 Anak Krakatoa volcanic tsunami, Indonesia, Ocean Eng., 195,
106733, https://doi.org/10.1016/j.oceaneng.2019.106733, 2020.
Hidayat, A., Marfai, M. A., and Hadmoko, D. S.: Eruption on Indonesia's
volcanic islands: a review of potential hazards, fatalities, and management,
IOP C. Ser. Earth Env., 485, 012061, https://doi.org/10.1088/1755-1315/485/1/012061, 2020.
Karstens, J., Kelfoun, K., Watt, S. F. L., and Berndt, C.: Combining 3D
seismics, eyewitness accounts and numerical simulations to reconstruct the
1888 Ritter Island sector collapse and tsunami, Int. J. Earth Sci., 109, 2659–2677, https://doi.org/10.1007/s00531-020-01854-4, 2020.
Kieffer, S. W.: Blast dynamics at Mount St Helens on 18 May 1980, Nature,
291, 568–570, https://doi.org/10.1038/291568a0, 1981.
Korup, O., Seidemann, J., and Mohr, C. H.: Increased landslide activity on
forested hillslopes following two recent volcanic eruptions in Chile, Nat.
Geosci., 12, 284–289, https://doi.org/10.1038/s41561-019-0315-9, 2019.
Laiolo, M., Massimetti, F., Cigolini, C., Ripepe, M., and Coppola, D.:
Long-term eruptive trends from space-based thermal and SO2 emissions: a
comparative analysis of Stromboli, Batu Tara and Tinakula volcanoes,
B. Volcanol., 80, 68, https://doi.org/10.1007/s00445-018-1242-0, 2018.
Lauterjung, J., Münch, U., and Rudloff, A.: The challenge of installing a tsunami early warning system in the vicinity of the Sunda Arc, Indonesia, Nat. Hazards Earth Syst. Sci., 10, 641–646, https://doi.org/10.5194/nhess-10-641-2010, 2010.
Lipman, P. W. and Mullineaux, D. R.: The 1980 eruptions of Mount St. Helens,
Washington, Report 1250, United States Department of the Interior, https://doi.org/10.3133/pp1250, 1981.
Llanes, P., Silver, E., Day, S., and Hoffman, G.: Interactions between a
transform fault and arc volcanism in the Bismarck Sea, Papua New Guinea,
Geochem. Geophy. Geosy., 10, Q06013, https://doi.org/10.1029/2009GC002430, 2009.
Maeno, F. and Imamura, F.: Tsunami generation by a rapid entrance of
pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia,
J. Geophys. Res.-Sol. Ea., 116, B09205, https://doi.org/10.1029/2011JB008253, 2011.
Maeno, F., Imamura, F., and Taniguchi, H.: Numerical simulation of tsunamis
generated by caldera collapse during the 7.3 ka Kikai eruption, Kyushu,
Japan, Earth Planets Space, 58, 1013–1024, https://doi.org/10.1186/BF03352606, 2006.
Marchuk, A. G.: Minimizing computational errors of tsunami wave-ray and
travel time, Science of Tsunami Hazards, 27, 12–24, 2008.
McGuire, W. J.: Lateral collapse and tsunamigenic potential of marine
volcanoes, Geological Society, London, Special Publications, 269, 121,
https://doi.org/10.1144/GSL.SP.2006.269.01.08, 2006.
Morton, A., Airoldi, M., and Phillips, L. D.: Nuclear Risk Management on
Stage: A Decision Analysis Perspective on the UK's Committee on Radioactive
Waste Management, Risk Anal., 29, 764–779, https://doi.org/10.1111/j.1539-6924.2008.01192.x, 2009.
Mulia, I. E., Watada, S., Ho, T. C., Satake, K., Wang, Y., and Aditiya, A.:
Simulation of the 2018 Tsunami Due to the Flank Failure of Anak Krakatau
Volcano and Implication for Future Observing Systems, Geophys. Res.
Lett., 47, e2020GL087334, https://doi.org/10.1029/2020GL087334, 2020.
Murray, J. B. and Voight, B.: Slope stability and eruption prediction on the
eastern flank of Mount Etna, Geological Society, London, Special
Publications, 110, 111, https://doi.org/10.1144/GSL.SP.1996.110.01.08, 1996.
Mutaqin, B. W., Lavigne, F., Hadmoko, D. S., and Ngalawani, M. N.: Volcanic
Eruption-Induced Tsunami in Indonesia: A Review, IOP C. Ser.
Earth Env., 256, 012023, https://doi.org/10.1088/1755-1315/256/1/012023, 2019.
NGDC: NCEI/WDS Global Historical Tsunami Database, National Geophysical Data Center/World Data Service, https://doi.org/10.7289/V5PN93H7, 2021.
Nomanbhoy, N. and Satake, K.: Generation mechanism of tsunamis from the 1883
Krakatau Eruption, Geophys. Res. Lett., 22, 509–512, https://doi.org/10.1029/94GL03219, 1995.
Nutt, D. J., King, L. A., and Phillips, L. D.: Drug harms in the UK: a
multicriteria decision analysis, Lancet, 376, 1558–1565, https://doi.org/10.1016/S0140-6736(10)61462-6, 2010.
Omira, R. and Ramalho, I.: Evidence-Calibrated Numerical Model of December
22, 2018, Anak Krakatau Flank Collapse and Tsunami, Pure Appl. Geophys., 177, 3059–3071, https://doi.org/10.1007/s00024-020-02532-x, 2020.
OpenStreetMap: OSM Land polygons, https://www.openstreetmap.org, last access: 19 September 2022.
Pakoksung, K., Suppasri, A., and Imamura, F.: Probabilistic Tsunami Hazard
Analysis of Inundated Buildings Following a Subaqueous Volcanic Explosion
Based on the 1716 Tsunami Scenario in Taal Lake, Philippines, Geosciences,
11, 92, https://doi.org/10.3390/geosciences11020092, 2021.
Paris, A., Heinrich, P., Paris, R., and Abadie, S.: The December 22, 2018
Anak Krakatau, Indonesia, Landslide and Tsunami: Preliminary Modeling
Results, Pure Appl. Geophys., 177, 571–590, https://doi.org/10.1007/s00024-019-02394-y, 2020.
Paris, R.: Source mechanisms of volcanic tsunamis, Philos. T. Roy. Soc. A, 373, 20140380, https://doi.org/10.1098/rsta.2014.0380, 2015.
Paris, R. and Ulvrova, M.: Tsunamis generated by subaqueous volcanic
explosions in Taal Caldera Lake, Philippines, B. Volcanol., 81,
14, https://doi.org/10.1007/s00445-019-1272-2, 2019.
Paris, R., Switzer, A. D., Belousova, M., Belousov, A., Ontowirjo, B.,
Whelley, P. L., and Ulvrova, M.: Volcanic tsunami: a review of source
mechanisms, past events and hazards in Southeast Asia (Indonesia,
Philippines, Papua New Guinea), Nat. Hazards, 70, 447–470, https://doi.org/10.1007/s11069-013-0822-8, 2014.
Plank, S., Walter, T. R., Martinis, S., and Cesca, S.: Growth and collapse
of a littoral lava dome during the 2018/19 eruption of Kadovar Volcano,
Papua New Guinea, analyzed by multi-sensor satellite imagery, J. Volcanol. Geoth. Res., 388, 106704, https://doi.org/10.1016/j.jvolgeores.2019.106704, 2019.
Poland, M. P. and Orr, T. R.: Identifying hazards associated with lava
deltas, B. Volcanol., 76, 880, https://doi.org/10.1007/s00445-014-0880-0, 2014.
Poland, M. P., Peltier, A., Bonforte, A., and Puglisi, G.: The spectrum of
persistent volcanic flank instability: A review and proposed framework based
on Kīlauea, Piton de la Fournaise, and Etna, J. Volcanol. Geoth. Res., 339, 63–80, https://doi.org/10.1016/j.jvolgeores.2017.05.004, 2017.
Pranantyo, I. R., Heidarzadeh, M., and Cummins, P. R.: Complex tsunami
hazards in eastern Indonesia from seismic and non-seismic sources:
Deterministic modelling based on historical and modern data, Geoscience
Letters, 8, 20, https://doi.org/10.1186/s40562-021-00190-y, 2021.
Rahmati, O., Zeinivand, H., and Besharat, M.: Flood hazard zoning in Yasooj
region, Iran, using GIS and multi-criteria decision analysis, Geomatics,
Natural Hazards and Risk, 7, 1000–1017, https://doi.org/10.1080/19475705.2015.1045043, 2016.
Ren, Z., Wang, Y., Wang, P., Hou, J., Gao, Y., and Zhao, L.: Numerical study
of the triggering mechanism of the 2018 Anak Krakatau tsunami: eruption or
collapsed landslide?, Nat. Hazards, 102, 1–13, https://doi.org/10.1007/s11069-020-03907-y, 2020.
Romero, J. E., Polacci, M., Watt, S., Kitamura, S., Tormey, D., Sielfeld,
G., Arzilli, F., La Spina, G., Franco, L., Burton, M., and Polanco, E.:
Volcanic Lateral Collapse Processes in Mafic Arc Edifices: A Review of Their
Driving Processes, Types and Consequences, Front. Earth Sci., 9, 639825,
https://doi.org/10.3389/feart.2021.639825, 2021.
Scandone, R., Bartolini, S., and Martí, J.: A scale for ranking
volcanoes by risk, B. Volcanol., 78, 2, https://doi.org/10.1007/s00445-015-0995-y, 2015.
Siebert, L.: Large volcanic debris avalanches: Characteristics of source
areas, deposits, and associated eruptions, J. Volcanol. Geoth. Res., 22, 163–197, https://doi.org/10.1016/0377-0273(84)90002-7, 1984.
Silver, E., Day, S., Ward, S., Hoffmann, G., Llanes, P., Driscoll, N.,
Appelgate, B., and Saunders, S.: Volcano collapse and tsunami generation in
the Bismarck Volcanic Arc, Papua New Guinea, J. Volcanol. Geoth. Res., 186, 210–222, https://doi.org/10.1016/j.jvolgeores.2009.06.013, 2009.
Smith, M. S. and Shepherd, J. B.: Preliminary investigations of the tsunami
hazard of Kick'em Jenny submarine volcano, Nat. Hazards, 7, 257–277,
https://doi.org/10.1007/BF00662650, 1993.
Somerville, P., Blong, R., and Gissing, A.: Why the Tonga tsunami arrived much earlier and much larger than expected, Risk Frontiers Briefing Note 460, Risk Frontiers, https://riskfrontiers.com/insights/ why-the-tonga-tsunami-arrived-much-earlier-and-much-larger-than-expected/, last access: 19 September 2022.
Spina, L., Del Bello, E., Ricci, T., Taddeucci, J., and Scarlato, P.:
Multi-parametric characterization of explosive activity at Batu Tara Volcano
(Flores Sea, Indonesia), J. Volcanol. Geoth. Res., 413, 107199, https://doi.org/10.1016/j.jvolgeores.2021.107199, 2021.
Tibaldi, A.: Multiple sector collapses at stromboli volcano, Italy: how they
work, B. Volcanol., 63, 112–125, https://doi.org/10.1007/s004450100129, 2001.
Tinti, S., Pagnoni, G., Zaniboni, F., and Bortolucci, E.: Tsunami generation in Stromboli island and impact on the south-east Tyrrhenian coasts, Nat. Hazards Earth Syst. Sci., 3, 299–309, https://doi.org/10.5194/nhess-3-299-2003, 2003.
Toosi, A. S., Calbimonte, G. H., Nouri, H., and Alaghmand, S.: River
basin-scale flood hazard assessment using a modified multi-criteria decision
analysis approach: A case study, J. Hydrol., 574, 660–671,
https://doi.org/10.1016/j.jhydrol.2019.04.072, 2019.
Turner, M. B.: Eruption cycles and magmatic processes at a reawakening
volcano, Mt. Taranaki, New Zealand: a thesis presented in partial
fulfilment of the requirements for the degree of Doctor of Philosophy in
Earth Science at Massey University, Palmerston North, New Zealand, Doctoral,
Massey University, 2008.
van Wyk De Vries, B. and Borgia, A.: The role of basement in volcano
deformation, Geological Society, London, Special Publications, 110, 95,
https://doi.org/10.1144/GSL.SP.1996.110.01.07, 1996.
Walter, T. R., Haghshenas Haghighi, M., Schneider, F. M., Coppola, D.,
Motagh, M., Saul, J., Babeyko, A., Dahm, T., Troll, V. R., Tilmann, F.,
Heimann, S., Valade, S., Triyono, R., Khomarudin, R., Kartadinata, N.,
Laiolo, M., Massimetti, F., and Gaebler, P.: Complex hazard cascade
culminating in the Anak Krakatau sector collapse, Nat. Commun., 10,
4339, https://doi.org/10.1038/s41467-019-12284-5, 2019.
Ward, S. N. and Day, S.: Ritter Island Volcano – lateral collapse and the
tsunami of 1888, Geophys. J. Int., 154, 891–902, https://doi.org/10.1046/j.1365-246X.2003.02016.x, 2003.
Watters, R. J., Zimbelman, D. R., Bowman, S. D., and Crowley, J. K.: Rock
Mass Strength Assessment and Significance to Edifice Stability, Mount
Rainier and Mount Hood, Cascade Range Volcanoes, Pure Appl. Geophys., 157, 957–976, https://doi.org/10.1007/s000240050012, 2000.
Watts, P. and Waythomas, C. F.: Theoretical analysis of tsunami generation
by pyroclastic flows, J. Geophys. Res.-Sol. Ea., 108, 2563,
https://doi.org/10.1029/2002JB002265, 2003.
Yokoyama, I.: A geophysical interpretation of the 1883 Krakatau eruption,
J. Volcanol. Geoth. Res., 9, 359–378, https://doi.org/10.1016/0377-0273(81)90044-5, 1981.
Yokoyama, I., Tilling, R. I., and Scarpa, R.: International Mobile
Early-Warning System (s) for Volcanic Eruptions and Related Seismic
Activities: Report of an Unesco/UNEP Sponsored Preparatory Study in 1982–84,
Unesco, OCLC Number 38664828, 1984.
Yoshida, H., Sugai, T., and Ohmori, H.: Size–distance relationships for
hummocks on volcanic rockslide-debris avalanche deposits in Japan,
Geomorphology, 136, 76–87, https://doi.org/10.1016/j.geomorph.2011.04.044, 2012.
Yudhicara, Y., Bani, P., and Darmawan, A.: Geothermal System as the Cause of
the 1979 Landslide Tsunami in Lembata Island, Indonesia, Indonesian Journal
on Geoscience, 2, 91–99, https://doi.org/10.17014/ijog.2.2.91-99, 2015.
Zengaffinen, T., Løvholt, F., Pedersen, G. K., and Muhari, A.: Modelling
2018 Anak Krakatoa Flank Collapse and Tsunami: Effect of Landslide Failure
Mechanism and Dynamics on Tsunami Generation, Pure Appl. Geophys.,
177, 2493–2516, https://doi.org/10.1007/s00024-020-02489-x,
2020.
Short summary
Tsunamis caused by volcanoes are a challenge for warning systems as they are difficult to predict and detect. In Southeast Asia there are many active volcanoes close to the coast, so it is important to identify the most likely volcanoes to cause tsunamis in the future. For this purpose, we developed a point-based score system, allowing us to rank volcanoes by the hazard they pose. The results may be used to improve local monitoring and preparedness in the affected areas.
Tsunamis caused by volcanoes are a challenge for warning systems as they are difficult to...
Special issue
Altmetrics
Final-revised paper
Preprint