Articles | Volume 22, issue 1
https://doi.org/10.5194/nhess-22-245-2022
https://doi.org/10.5194/nhess-22-245-2022
Research article
 | 
31 Jan 2022
Research article |  | 31 Jan 2022

About the return period of a catastrophe

Mathias Raschke

Related authors

Statistical detection and modeling of the over-dispersion of winter storm occurrence
M. Raschke
Nat. Hazards Earth Syst. Sci., 15, 1757–1761, https://doi.org/10.5194/nhess-15-1757-2015,https://doi.org/10.5194/nhess-15-1757-2015, 2015
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024,https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024,https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024,https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024,https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024,https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary

Cited articles

Albrecher, H., Araujo-Acuna, J., and Beirlant, J.: Tempered Pareto-type modelling using Weibull distributions, ASTIN Bull., 51, 509–538, https://doi.org/10.1017/asb.2020.43, 2021. 
Asadi, P., Engelke, S., and Davison, A. C.: Extremes on river networks, Ann. Appl. Stat., 9, 2023–2050, 2015. 
Beirlant, J., Goegebeur, Y., Teugels, J., and Segers, J.: Statistics of Extremes – Theory and Application, in: Book Series: Wiley Series in Probability and Statistics, John Wiley & Sons, ISBN 978-0-471-97647-9, 2004. 
Blanchet, J. and Davison, A. C.: Spatial Modelling of extreme snow depth, Ann. Appl. Stat., 5, 1699–1725, 2011. 
Bonazzi, A., Cusack, S., Mitas, C., and Jewson, S.: The spatial structure of European wind storms as characterized by bivariate extreme-value Copulas, Nat. Hazards Earth Syst. Sci., 12, 1769–1782, https://doi.org/10.5194/nhess-12-1769-2012, 2012. 
Download
Short summary
We develop the combined return period to stochastically measure hazard and catastrophe events. This is used to estimate a risk curve by stochastic scaling of historical events and averaging corresponding risk parameters in combination with a vulnerability model. We apply the method to extratropical cyclones over Germany and estimate the risk for insured losses. The results are strongly influenced by assumptions about spatial dependence.
Altmetrics
Final-revised paper
Preprint