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Abstract. When a natural hazard event like an earthquake af-
fects a region and generates a natural catastrophe (NatCat),
the following questions arise: how often does such an event
occur? What is its return period (RP)? We derive the com-
bined return period (CRP) from a concept of extreme value
statistics and theory – the pseudo-polar coordinates. A CRP
is the (weighted) average of the local RP of local event in-
tensities. Since CRP’s reciprocal is its expected exceedance
frequency, the concept is testable. As we show, the CRP is
related to the spatial characteristics of the NatCat-generating
hazard event and the spatial dependence of corresponding lo-
cal block maxima (e.g., annual wind speed maximum). For
this purpose, we extend a previous construction for max-
stable random fields from extreme value theory and consider
the recent concept of area function from NatCat research.
Based on the CRP, we also develop a new method to estimate
the NatCat risk of a region via stochastic scaling of histori-
cal fields of local event intensities (represented by records of
measuring stations) and averaging the computed event loss
for defined CRP or the computed CRP (or its reciprocal) for
defined event loss. Our application example is winter storms
(extratropical cyclones) over Germany. We analyze wind sta-
tion data and estimate local hazard, CRP of historical events,
and the risk curve of insured event losses. The most destruc-
tive storm of our observation period of 20 years is Kyrill
in 2002, with CRP of 16.97± 1.75. The CRPs could be suc-
cessfully tested statistically. We also state that our risk esti-
mate is higher for the max-stable case than for the non-max-
stable case. Max-stable means that the dependence measure
(e.g., Kendall’s τ ) for annual wind speed maxima of two
wind stations has the same value as for maxima of larger
block size, such as 10 or 100 years since the copula (the
dependence structure) remains the same. However, the spa-
tial dependence decreases with increasing block size; a new
statistical indicator confirms this. Such control of the spatial

characteristics and dependence is not realized by the previ-
ous risk models in science and industry. We compare our risk
estimates to these.

1 Introduction

After a natural hazard event such as a large windstorm or an
earthquake has occurred in a defined region (e.g., in a coun-
try) and results in a natural catastrophe (NatCat), the follow-
ing questions arise: how often does such a random event oc-
cur? What is the corresponding return period (RP, also called
recurrence interval)? Before discussing this issue, we under-
line that the extension of river flood events or windstorms in
time and space depends on the scientific and socioeconomic
event definition. This definition may vary by peril and is not
our topic even though they influence our research object –
the RP of a hazard and NatCat event.

The RP of an event magnitude or index is frequently used
as a stochastic measure of a catastrophe. For example, there
are different magnitude scales for earthquakes (Bormann and
Saul, 2009). However, their RP may not correspond with the
local consequences since the hypocenter position also deter-
mines local event intensities and effects. For floods, regional
or global magnitude scales are not in use (Guse et al., 2020).
For hurricanes, the Saffir–Simpson scale (National Hurricane
Centre, 2020) is a magnitude measure; however, the ran-
dom storm track also influences the extent of destruction.
Extratropical cyclones hitting Europe, called winter storms,
are measured by a storm severity index (SSI; Roberts et
al., 2014) or extreme wind index (EWI; Della-Marta et al.,
2009). Their different definitions result in quite different RPs
for the same events. In the rare scientific publications about
risk modeling for the insurance industry, such as by Mitchell-
Wallace et al. (2017), better and universal approaches for the
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RP are not offered. In sum, previous approaches are not sat-
isfactory regarding the stochastic quantification of a hazard
or NatCat event. This is our motivation to develop a new
approach. Building on results of extreme value theory and
statistics, we mathematically derive the concept of combined
return period (CRP), which is the average of RPs of local
event intensities. As we will show by a combination of ex-
isting and new approaches from stochastic and NatCat re-
search, the concept of CRP is strongly related to the spatial
association/dependence between the local event intensities,
their RPs, and corresponding block maxima, such as annual
maxima.

Spatial dependence is not suitably considered in previous
research about NatCat. The issue is only a marginal topic
in the book by Mitchell-Wallace et al. (2017, Sect. 5.4.2.5)
about NatCat modeling for the insurance industry. Jongman
et al.’s (2014) model for European flood risk considers such
dependence explicitly. However, their assumptions and esti-
mates are not appropriate according to Raschke (2015b). In
statistical journals, max-stable dependence models have been
applied to natural hazards without a systematic test of the
stability assumption. Examples are the snow depth model by
Blanchet and Davison (2011) for Switzerland and the river
flood model by Asadi et al. (2015) for the Upper Danube
River system. Max-stable dependence means that the copula
(the dependence structure of a bi- or multivariate distribu-
tion) and corresponding value of dependence measures are
the same for annual maxima as for 10-year maxima or those
of a century (Dey et al., 2016). Also, Raschke et al. (2011)
proposed a winter storm risk model for a power transmis-
sion grid in Switzerland without validation of the stability
assumption. The sophisticated model for spatial dependence
between local river floods by Keef et al. (2009) is very flex-
ible. However, it needs a high number of parameters, and
the spatial dependence cannot be simply interpolated as is
possible with covariance and correlation functions (Schaben-
berger and Gotway, 2005, Sect. 2.4). Besides, the random
occurrence of a hazard event is more like a point event of a
Poisson process than the draw/realization of a random vari-
able. For instance, the draw of the annual random variable is
certain; the occurrence of a Poisson point event in this year
is not certain but random.

In the research of spatial dependence by Bonazzi et
al. (2012) and Dawkins and Stephenson (2018), the local
extremes of European winter storms are sampled by a pre-
defined list of significant events. Such sampling is not fore-
seen in (multivariate) extreme value statistics; block maxima
and (declustered) peaks over thresholds (POT) are the estab-
lished sampling methods (Coles, 2001, Sects. 3.4 and 4.4;
Beirlant et al., 2004, Sect. 9.3 and 9.4). Event-wise spatial
sampling is a critical task; the variable time lag between
the occurrences at different measuring stations, such as river
gauging stations, makes it confusing. The corresponding as-
signment of Jongman et al. (2014) of one local/regional flood
peak to peaks at other sites is not convincing, according to the

comments by Raschke (2015b). The sampling of multivariate
block maxima is simpler. However, the univariate sampling
and analysis are also not trivial. An example is the trend over
decades in the time series of a wind station in Potsdam (Ger-
many). Wichura (2009) assumes a changed local roughness
condition over the time as the reason; Mudelsee (2020) cites
climate change as the reason.

The research of spatial dependence of natural hazards is
not an end in itself; the final goal is an answer to the question
about the NatCat risk. What is the RP of events with aggre-
gate damage or losses in a region equal to or higher than a de-
fined level? By using CRP, we quantify the risk via stochastic
scaling of fields of local intensities of historical events and
averaging corresponding risk measures. This new approach
significantly extends the methods to calculate a NatCat risk
curve. Previous opportunities and approaches for a risk esti-
mate are the conventional statistical models that are fitted to
observed or re-analyzed aggregated losses (also called as-if
losses) of historical events, as used by Donat et al. (2011) and
Pfeifer (2001) for annual sums. The advantages of such sim-
ple models are the controlled stochastic assumptions and the
small number of parameters; the disadvantages are high un-
certainty for widely extrapolated values and limited possibil-
ities to consider further knowledge. The NatCat models in the
(re-)insurance industry combine different components/sub-
models for hazard, exposure (building stock or insured port-
folio), and corresponding vulnerability (Mitchell-Wallace et
al., 2017, Sect. 1.8; Raschke, 2018); additionally, they of-
fer better opportunities for knowledge transfer such as the
differentiated projection of a market model on a single in-
surer. However, the corresponding standard error of the risk
estimates is frequently not quantified (and cannot be quan-
tified). The numerical burden of such complex models is
high. Tens of thousands of NatCat events must be simulated
(Mitchell-Wallace eta al., 2017, Sect. 1). Thus, the question
arises of what the stochastic criterion for the simulation of
a reasonable event set in NatCat modeling is. As far as we
know, scientific NatCat models for European winter storms
(extratropical cyclones) are based on numerical simulations
(Della-Marta et al., 2010; Osinski et al., 2016; Schwierz et
al., 2010) and are not intensively validated regarding spatial
dependence.

To answer our questions, we start with topics of extreme
value statistics in Sect. 2, where we recall the concept of
max-stability for single random variables, bivariate depen-
dence structures (copulas), and random fields. We also ex-
tend Schlather’s (2002) first theorem with a focus on spatial
dependence. The more recent approaches to area functions
(Raschke, 2013) and survival functions (Jung and Schindler,
2019) of local event intensities within a region are imple-
mented therein. In Sect. 3, we derive the CRP from the con-
cept of pseudo-polar coordinates of extreme value statistics
and explain its testability, possibility of scaling, and cor-
responding risk estimate. Subsequently, in Sect. 4, we ap-
ply the new approaches to winter storms (extratropical cy-
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clones) over Germany to demonstrate their potential. This ap-
plication implies several elements of conventional statistics,
which are explained in Sect. 5. Finally, we summarize and
discuss our results and provide an outlook in Sect. 6. Some
stochastic and statistical details are presented in the Supple-
ment and Supplement data. In the entire paper, we must con-
sider several stochastic relations. Therefore, the same mathe-
matical symbol can have different meanings in different sub-
sections. We also expect that the reader is familiar with statis-
tical and stochastic concepts such as statistical significance,
goodness-of-fit tests, random fields, and Poisson (point) pro-
cesses (Upton and Cook, 2008).

2 Max-stability in statistics and stochastic

2.1 The univariate case

Before introducing CRP and its properties, we discuss and
extend the concept of max-stability in extreme value statis-
tics, with a focus on random processes and fields. Max-
stability has its origin in univariate statistics. The cumu-
lative distribution functions (CDFs) Fn(x) of maximum
Xn =Max(X1 . . .Xn) of n independent and identically dis-
tributed (iid) random variables Xi with CDF F(x) (for the
non-exceedance probability Pr(X ≤ x)) is

Fn(x)= F(x)
n. (1)

A CDF F(x) is max-stable if the linear transformed maxi-
mum (with parameters an and bn) has the same distribution
(Coles, 2001, Def. 3.1):

Fn (anx+ bn)= F(anx+ bn)
n
= F(x). (2)

The Fréchet distribution (Beirlant et al., 2004, Table 2.1) is
such a max-stable distribution, also called extreme value dis-
tribution, with the following CDF:

G(x)= exp
(
−

1
xα

)
,x ≥ 0,α > 0. (3)

For the unit Fréchet distribution, the parameter is α = 1, and
the transformation parameters are bn = 0 and an = n. Most
distribution types are not max-stable, but their distribution
of maxima (1) converges to an extreme value distribution by
increasing sample size n, called the block size in this context
(Beirlant et al., 2004, Sect. 3). We can only refer to some
of a very high number of corresponding publications (e.g.,
De Haan and Ferrira, 2007; Falk et al., 2011). Coles (2001)
gives a good overview for practitioners.

2.2 Max-stable copulas

It is also well-known that a bivariate CDF F(xy) can be
replaced by a copula C(uv) and the marginal CDFs Fx(x)
and Fy(y):

F(x,y)= C
(
Fx(x),Fy(y)

)
= Pr(X ≤ x,Y ≤ y). (4)

The copula approach represents a basic distinction between
the marginal distributions and the dependence structure;
it was introduced by Sklar (1959). As there are different
univariate distributions (types), there are different copulas
(types). Mari and Kotz (2001) present a good overview about
copulas, their construction principles, and different views on
dependence. Max-stability is also a property of some cop-
ulas, called max-stable copula or extreme copula. A max-
stable copula remains the same for pairs of component-
wise maxima (XnYn) as it was already for the underlying
pairs (XY); the copula parameters including dependence
measure such as Kendall’s (1938) rank correlation are equal.
The formal definition is (Dey et al., 2016, Sect. 2.3)

Cn(u,v)= C
(
u1/n,v1/n

)n
. (5)

2.3 Max-stability of stochastic processes

The spatial extension of the bivariate situation and corre-
sponding distribution is the random field Z(x) at points x
in the space Rd with d dimensions (e.g., Schlather, 2002).
In our application, R2 is the geographical space, and x is
the corresponding coordinate vector. At one point/site, x

in Rd, Fx(z) is the marginal distribution of the local ran-
dom variable Z. There are various differentiations and vari-
ants such as (non-)stationarity or (non-)homogeneity. A max-
stable random field has max-stable marginal distributions
and the copulas between two margins are also max-stable.
Schlather (2002) has formulated and proofed a construction
of a max-stable random field (we cite his first theorem with
nearly the same notation).

Theorem 1: Let Y be a measurable random function
and µ= E

∫
Rd

max{0,Y (x)}dx ∈ (0,∞) . Let 5 be a Poisson

process on Rd
× (0,∞) with intensity measure d3(y, s)=

µ−1dys−2ds , and Yy,s i.i.d. copies of Y ; then

Z(x)=
sup

(y,s)∈5sYy,s(x− y)

=
sup

(y,s)∈5smax
{
Yy,s(x− y),0

}
(6)

is a stationary max-stable process with unit Fréchet margins.
Extreme value statistics is interested in the max-stable de-

pendence structure (copula) between the margins, the unit
Fréchet distributed random variables Z at fixed points x in
space Rd. From the perspective of NatCat modeling in the ge-
ographical space R2 and with Y (x)≥ 0, the entire generating
process is interesting. The Poisson (point) process 5 repre-
sents all hazard events (e.g., storms) of a unit period such as
a hazard season or a year; it has two parts, s and y. The point
events s on (0,∞) are a stochastic event magnitude and scale
the field of local event intensity sx(x):

sx(x)= sYy,s(x− y), (7)

which represents all point events sx(x) at sites x. The ran-
dom coordinate y is a kind of epicenter in the meaning of
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NatCat with the (tendentiously) highest local event intensity
such as maximum wind speed, maximum hail stone diame-
ter, or peaks of earthquake ground accelerations. The copied
random function Y (x) determines the pattern of a single ran-
dom event in the space Rd. Y (x) or its local expectation con-
verges to 0 or is 0 if the magnitude ||x|| of the coordinate
vector converges to infinity due to the measurability condi-
tion in Theorem 1. This also applies to NatCat events with
limited geographical extend.

Schlather (2002) has demonstrated the flexibility of his
construction by presenting realizations of maximum fields
for different variants of Y (x). Its measurability condition
is fulfilled by classical probability density functions (PDFs,
first derivative of the CDF; Coles, 2001, Sect. 2.2) of random
variables. For instance, Smith (1990, an unpublished and fre-
quently cited paper) used the PDF of the normal distribution.
We present some examples of the random function Y (x) in
the Supplement, Sect. 4, to illustrate the universality of the
approach. Y (x) can also imply random parameters such as
variants of standard deviation of applied PDF, and it can be
combined with a random field.

Both s and sx(x) with fixed x are point events of Pois-
son processes with intensity s−2ds. This is the expected point
density and determines the exceedance frequency. The latter
is the expected number of point events sx(x) > z and s > z:

3(z)=

∞∫
z

s−2ds = 1/z. (8)

The entire construction of Theorem 1 is also a kind of shot
noise field according to the definitions of Dombry (2012).
Furthermore, Schlather (2002) has also published a construc-
tion of a max-stable random field without a random function
but with a stationary random field. The logarithmic variant
of Theorem 1 (logarithm of Eqs. 6 and 7) also results in a
max-stable random field; however, the marginal maxima are
unit Gumbel distributed, and Eq. (8) would be an exponential
function. The Brown–Resnick process – well-known in ex-
treme value statistics (e.g., Engelke et al., 2011) – generates
a max-stable random field with such unit Gumbel distribu-
tions as a result of random walk processes (Pearson, 1905).
It is implicitly a construction according to Theorem 1, as for
exponential transformation (inverse of logarithmic transfor-
mation), and the random walk with drift is the random func-
tion of Theorem 1. The origin of a Brown–Resnick process
in Rd can be fixed but can also be a random coordinate as
y is in Theorem 1.

The construction of Theorem 1 is already used to model
natural hazards in the geographical space. Smith (1990) has
applied the bivariate normal distribution as Y (x) in a rain-
storm modeling. The Brown–Resnick process has already
been applied to river flood (Asadi et al., 2015). Blanchet
and Davison’s (2011) model for snow depth and Raschke et
al.’s (2011) model for winter storms, both in Switzerland, are
also max-stable. There are also similarities to conventional

hazard models. Punge et al.’s (2014) hail simulation includes
maximum hail stone diameter that acts like ln(s) in Eqs. (6)
and (7). Raschke (2013) already stated similarity between
earthquake ground motion models and Schlather’s construc-
tion. However, the earthquake magnitude can have a wider
influence on the geographical event pattern than simple scal-
ing. This was one of our motivations to extend and generalize
the Schlather’s construction (Eq. 7) with dimension d of Rd:

sx(x)= s
1+βYy,s

((
(1+β)s−β

)− 1
d (x− y)

)
,β >−1, (9)

and for the corresponding field of maxima (Eq. 6), we write

Z(x)=
sup

(y,s)∈5s
1+βYy,s

((
(1+β)s−β

)− 1
d (x− y)

)
,

β >−1. (10)

As we show in the Supplement, Sect. 2, the marginal Pois-
son processes sx(x) in Eq. (9) have the same exceedance fre-
quency (Eq. 8) as Eq. (7). Correspondingly, Z(x) in Eq. (10)
is also unit Fréchet distributed as in Eq. (6). Schlather’s con-
struction is a special case of Eqs. (9) and (10) with β = 0;
Eqs. (9) and (10) only imply max stability of spatial depen-
dence in this case, which is what we discuss in the following
section.

2.4 Spatial characteristics and dependence

We now illustrate spatial max-stability and its absence by ex-
amples of Eqs. (9) and (10) with standard normal PDF as
random function Y (x) in a one-dimensional parameter space
Rd=1. For this purpose, we apply the simulation approach
of Schlather (2002) and generate random events within a
range (−10, 10) for local event intensities within the re-
gion/range (−4, 4) in R1 by a Monte Carlo simulation. Ac-
cording to Schlather’s procedure, which processes a series of
random numbers from a (pseudo-)random generator, only the
events for the large s are simulated; this implies incomplete-
ness for smaller events. This does not significantly affect the
simulated field Z(x) of maxima. However, we can only con-
sider this simulation for β ≥ 0 in Eqs. (9) and (10) since the
edge effects increase for increasing s if β < 0. In Fig. 1a,
we show fields for one realization 5 of Schlather’s theorem
(n= 1, equivalent to 1 year or one season in NatCat model-
ing) for the max-stable case with β = 0 in Eqs. (9) and (10).
With the same series of random numbers, we generate fields
of n= 100 realizations of 5 in Fig. 1b. It has the same pat-
tern n= 1 and is the same when we linear transform the local
intensities sx , with division by n= 100. The entire generat-
ing processes are max-stable, just as the resulting marginals
and association/dependence between marginals are. In con-
trast to this total max-stability, the example with β = 0.1 re-
sults in different patterns for n= 1 and n= 100 in Fig. 1c
and d. The shape of the event fields gets sharper for larger s;
only the marginals are max-stable, not their spatial relations.
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Figure 1. Examples of simulated fields of local event intensities and enveloping field of maxima (bold green line) generated with standard
normal PDF as Y (x) in (6, 7, 9, 10) and the same series of numbers from pseudo-random generator: (a) max-stable and n= 1, (b) max-stable
and n= 100, (c) non-max-stable and n= 1, and (d) non-max-stable and n= 100. The strongest event has a broken red line.

Figure 2. Spatial dependence in relation to the distance measured by Kendall’s τ : (a) max-stable fields of Fig. 1, (b) non-max-stable fields
of Fig. 1, and (c) limit cases.

To illustrate the effect on spatial dependence quantita-
tively, we have generated local maxima Z(x) from Eq. (10)
by Monte Carlo simulation with 100 000 repetitions and the
computed corresponding dependence measure Kendall’s τ
(Kendall, 1938; Mari and Kotz, 2001, Sect. 6.2.6). As de-
picted in Fig. 2a and b, the functions are the same if β = 0
and differ if β = 0.1; the dependence is decreasing by in-
creasing n if β > 0. In Fig. 2c, the functions are shown for the
limit cases of full dependence with the same value of sx(x)
at each point x and full independence with sx(x)= 0 every-
where except one point.

Beside our extension of Schlather’s theorem, we also con-
sider a more recent approach from NatCat research to under-
stand the spatial characteristics. Raschke (2013) described an
earthquake event by its area function for the peak ground ac-
celerations. This is a cumulative function and measures the
set of points in the geographical space (the area) with an
event intensity higher than the argument of the function. The
area function is limited here to a region and is normalized as
follows (u and l symbolizes the region’s bounds, the integral
in the denominator is the area of the region in R2, IA is an
indicator function):

A(z)=

u∫
l

IA (sx(x) > z)dx

u∫
l

dx
. (11)

It is now like a survival function of a random variable (de-
creasing with the value of functions between 0 and 1), which
describes the exceedance probability in contrast to a CDF for
non-exceedance probability (Upton and Cook, 2008). Jung
and Schindler (2019) have already applied such aggregat-
ing functions to German winter storm events and call them
explicitly a survival function. However, not every normal-
ized aggregating decreasing function is based on an actual
random variable. Moreover, survival functions are not used
in statistics to describe regions of random fields or random
function as far as we know. Nonetheless, we use the area
function (Eq. 11) to characterize and research the spatiality
of the event field sx(x) in a defined region. As an example,
the area function for the strongest events in Fig. 1 is shown
in Fig. 3a. The differences between the variants n= 1 versus
n= 100 and β = 0 versus β = 0.1 correspond with the dif-
ferences between these events in Fig. 1. In Fig. 3b, the limit
cases are depicted to illustrate the underlying link between
area function and spatial dependence.

We also use the parameters of a random variable Z

with PDF f (x) and CDF F(z), as well as survival func-
tion F̄ (z)= 1−F(z), to characterize our area function.
These parameters are expectation E[Z] (estimated by sample
mean/average), variance Var[Z], standard deviation SD[Z]
(the square root of variance), and a coefficient of varia-
tion (CV) Cv[Z] (Coles, 2001, Sect. 2.2; Upton and Cook,
2008) with
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Figure 3. The area function and corresponding characteristics: (a) area function of the biggest event of Fig. 1, (b) area functions for the limit
cases (examples), and (c) relation of CV to average for the max-stable case of Fig. 1b and (d) for the non-max-stable case of Fig. 1d (for
events with average> 1, the distance between the support points is 0.1 for the computation of the average in the region [−4, 4]).

E[Z] =
∞∫
−∞

zf (z)dz=

0∫
IA

zdF̄ (z),

Var[Z] =

0∫
IA

(z−E[Z])2dF̄ (z), SD[Z] =
√

Var[Z],

CV=
SD[Z]
E[Z]

. (12)

According to Eq. (12), any scaling of Z by a factor S > 0
results in proportional scaling of expectation and standard
deviation in Eq. (12), and the CV remains constant. Corre-
spondingly, random magnitude s in Eqs. (9) and (10) only
scales the field sx(x) in the max-stable case with β = 0 and
influences the expectation of A(z) but not the CV. Thus, the
CV is independent from the expectation. This does not apply
to the non-max-stable case with β 6= 0 in Eqs. (9) and (10).
These different behaviors are detectable for the examples of
Fig. 1b and d in Fig. 3c and d. For the max-stable case, the
scale/slope parameter of the linearized regression function
does not differ significantly from 0 according to the t test
(Fahrmeir et al., 2013, Sect. 3.3). For the max-stable case, the
regression function is statistically significant with a p value
of 0.00. Linearization is provided by the logarithm of CV and
expectation/average. For completeness, the full dependence
case of Fig. 3b corresponds with a CV of 0.

As per Sect. 2, Schlather’s first theorem has parallels to
NatCat models, is used already in hazard models, and was
extended here to the non-max-stable case regarding the spa-
tial dependence and characteristics. Statistical indication for
max-stability is the independence of the spatial dependence
measure from the block size (e.g., 1 versus 10 years) and in-
dependence between CV and expectation of the area function
(Eq. 11). Otherwise, non-max-stability is indicated.

3 The combined return period (CRP)

3.1 The stochastic derivation

Let the point event Yx,i be the local intensity at site x of a
hazard event and i be a member of the set of all events of a
defined unit period such as a year, hazard season, or half sea-
son. This local event intensity might be the maximum river
discharge of a flood, the peak ground acceleration of an earth-
quake, or the maximum wind gust of a windstorm event. The
entire number of events with Yx,i > y during the unit period
is K =

∑
∞

i=1IA(Yx,i > y). K is (at least approximately) a
Poisson-distributed (Upton and Cook, 2008) discrete random
variable with an expectation – the expected exceedance fre-
quency – that is the local hazard function in a NatCat model
(this is not the hazard function/hazard rate of statistical sur-
vival analysis; Upton and Cook, 2008):

3y(y)= E[K]. (13)

This is the bijective frequency function and the local hazard
curve. Its reciprocal determines the hazard curve for the RP:

Ty(y)=
1

3y(y)
=

1
E[K]

. (14)

As Yx is a point event, its RP T = Ty(Yx) is also a point
event of a point process with frequency function according
to Eq. (14) but now with the argument/threshold variable z
since the scale unit is changed:

3T (z)= 1/z. (15)

Since Eq. (15) is the same as Eq. (8), Schlather’s theorem and
our extensions directly apply to RP with T = sx in Eqs. (7)
and (9). For completeness, the marginal maxima have a CDF
for n unit periods (a unit Fréchet distribution for n= 1 ac-
cording to Eq. 3):

Gn(z)= exp(−n3T (z))= exp(−n/z). (16)

This is applicable because the probability of non-exceedance
for level z of the block maxima is the same probability as per
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which no events occur with T > z, which is determined by
the Poisson distribution; Eq. (6) also implies this link, and
Coles (2001, p. 249 “yp”) has also mentioned this. The same
applies to the relation between frequency and maxima of lo-
cal event intensity.

Schlather’s theorem is also based on and implies
the concept of pseudo-polar coordinates. According to
De Haan (1984) and explained well by Coles (2001,
Sect. 8.3.2), two linked max-stable point processes with ex-
pected exceedance frequency (Eq. 15) and point events T1
and T2 are also represented by pseudo-polar coordinates with
radius R and angle V :{
R = T1+ T2,V =

T1

T1+ T2

}
⇐⇒{

T1 = RV,T2 = R(1−V )= T1
1−V
V

}
. (17)

As we describe in the Supplement, Sect. 1, the expectation
of (1−V )/V is 1 and for the conditional expectation of
unknown RP T2 with known T1 applies (association is pro-
vided):

E [T2 |T1 ]= T1. (18)

The interest in extreme value theory and statistics (Coles,
2001, Sect. 3.8; Beirlant et al., 2004, Sect. 8.2.3; Falk
et al., 2011, Sect. 4.2) is focused on the distribution of
pseudo-angle V with CDF H(z). As Coles (2001) writes
“the angular spread of points of N [the entire point pro-
cesses] is determined by H , and is independent of radial dis-
tance [R]”, angle and radius occur independently from each
other, and H determines the copula between two marginal
maxima Z(x) in Theorem 1.

According to Coles (2001, Sect. 3.8), the pseudo-radius R
in Eq. (17) is a point event of a Poisson process with fre-
quency 3(z)= 2/z – the double of Eq. (15). This means the
average of two RPs, T1 and T2, results in a combined return
period (CRP) Tc,

Tc =
T1+ T2

2
, (19)

with exceedance frequency function (Eqs. 8 and 15). We do
not have a mathematical proof that Eqs. (18) and (19) also ap-
ply to non-max-stable-associated point processes. However,
max-stable and non-max-stable cases have the same limits:
full dependence (T1 = T2) and no dependence/full indepen-
dence (T1 = 0 if T2 > 0 and vice versa; T = 0 represents the
lack of a local event). Therefore, Eq. (19) should also apply
to the non-max-stable case between these limits. This can be
heuristically validated as we demonstrate by an example in
the Supplement, Sect. 3.

More than one RP can be averaged since the averaging of
two RPs can be done in serial (and the pseudo-polar coordi-
nates are also applied to more than two marginal processes).

Serial averaging (averaging the last result with a further RP)
also implies a weighting; the first considered RPs would be
less weighted than the last in the final CRP. The general for-
mulation of averaging of RP with weight w is

Tc =

∑n
i=1Tiwi∑n
i=1wi

. (20)

The corresponding continuous version within the region’s
bounds u and l in space Rd is

Tc =

u∫
l

T (x)w(x)dx

u∫
l

w(x)dx
. (21)

If w(x)= 1 applies in Eq. (21), then the denominator is the
area of the region. Furthermore, the CRP TC is the expecta-
tion of the area function (Eq. 11). This also applies to other
weightings if we consider it in the area function, here written
for RP T (x),

A(z)=

u∫
l

w(x)IA(T (x)≥ z)dx

u∫
l

w(x)dx
, (22)

with empirical version for n measuring stations in the ana-
lyzed region:

A(z)=

∑n
i=1wiIA (Ti ≥ z)∑n

i=1wi
. (23)

The weighting, especially the empirical one, can be used in
hazard research to compensate for an inhomogeneous geo-
graphical distribution of measurement stations or a different
focus than the covered geographical area such as the inhomo-
geneous distribution of exposed values or facilities in NatCat
research. It has the same effect on the area function as a dis-
tortion of the geographical space as used by Papalexiou et
al. (2021). Weighted or not, CRP and CV are parameters of
the area function.

3.2 Testability

Before the CRP is applied in stochastic NatCat modeling,
it should be tested statistically to validate the appropriate-
ness. A sample of CRPs can be tested by a comparison of
its exceedance frequency function (Eq. 15) and their em-
pirical variant. Therein the empirical exceedance frequency
of the largest CRP in the sample is the reciprocal of the
length of the observation period. The second largest CRP
is hence associated with twice the exceedance frequency of
the largest CRP and so on. It is the same as for empirical
exceedance frequency for earthquake (e.g., the well-known
Gutenberg–Richter relation in seismology; Gutenberg and
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Richter, 1956). However, not all small events are recorded;
the sample is thinned and incomplete. This completeness
issue is well known for earthquakes and is less important
here if only the distribution (Eq. 16) of maximum CRPs
is tested. There are several goodness-of-fit tests (Stephens,
1986, Sect. 4.4) for the case of known distribution. The
Kolmogorov–Smirnov test is a popular variant.

3.3 The scaling property of CRP

The CRP also offers the opportunity of stochastic scaling.
The CRP Tc and all n local RPs Ti in Eq. (20) (and T (z) in
Eq. 21) are scaled by a factor S > 0:

Tcs = STc =

∑n
i=1STiwi∑n
j=1wi

,Ts,i = STi . (24)

This means for the pseudo-polar coordinates in Eq. (17),
which applies to the max-stable case, that

Rs = ST1+ ST2 = SR,

Vs =
Ts,1

Ts,1+ Ts,2
=

ST1

S (T1+ T2)
= V. (25)

The pseudo-angle V is not changed as expected since
pseudo-radius and pseudo-angle are independent in the
pseudo-polar coordinate for the max-stable case (Sect. 3.1).
This also means that a scaling must be more complex
if there is non-max-stability. We cannot offer a general
scaling method for this situation; however, it must con-
sider/reproduce the pattern of the relation CV versus CRP
(example in Fig. 3d) adequately. Irrespective of this, the cor-
responding event field of local intensities (e.g., maximum
wind gust speed) can be computed for the scaled local RPs
via the inverse of the local hazard function: T (z) in Eq. (14)
or 3(z) in Eq. (13).

3.4 Risk estimates by scaling and averaging

The main goal of a NatCat risk analysis is the estimate of
a risk curve (Mitchell-Wallace et al., 2017, Sect. 1), the bi-
jective functional of event loss in a region, and the cor-
responding RP, which is called the event loss return pe-
riod (ELRP) TE. As mentioned, there are two approaches for
such estimates with corresponding pros and cons.

We introduce an alternative method. Under the assumption
of max-stability between ELRP TE and CRP TC, according to
Eq. (18) with T1 = TC and T2 = TE, the expectation of an un-
known ELRP TE is the CRP TC of the local event intensities.
This means that the CRP is an estimate of ELRP. We can av-
erage the CRP of many events with the same event loss to get
a good estimate of ELRP. However, observations of events
with the same loss are not available. Nonetheless, we can ex-
ploit the stochastic scaling property of CRP to rescale the
local intensity observations of historical events to get the re-
quired information. The modeled event loss LE is the sum of

the product of local loss ratio LR, determined by local event
intensity yx,i and local exposure value Ei over all sites i
(Klawa and Ulbrich, 2003; Della-Marta et al., 2010),

LE =

n∑
i=1

LR,i
(
yx,i

)
Ei, (26)

with the local vulnerability function LR,i(yx,i). To get the
event loss for the scaled event, the observed yx,i is replaced
by

yxs,i =3
−1
y,i

(
3y,i

(
yx,i

)
S

)
= T −1

y,i

(
STy,i

(
yx,i

))
, (27)

with local hazard function (Eqs. 13 and 14) and its inverse
function. The scaling factor S in Eq. (27) is the same for all
sites/locations i, as it is in Eq. (24) for the CRP. This fac-
tor S must be adjusted iteratively until the result of Eq. (26)
converges to the desired event loss. The scheme in Fig. 4a
includes all elements and relations of the scaling approach.
Therein, the numerical determination in the scaling scheme
has only one direction, from scaled CRP to the event loss.
The idea of CRP averaging is also illustrated by Fig. 4b.
The standard error of the averaging is the same as for the
estimates of an expectation by the sample mean (Upton and
Cook, 2008, keyword central limit theorem).

According to the delta method (Coles, 2001, Sect. 2.6.4),
statistical estimates and their standard error can be approxi-
mately transferred in another parameter estimation and corre-
sponding standard error by the determined transfer function
and its derivatives. A condition of this linear error transfer
is a relatively small standard error of the original estimates.
The delta method could be used to compute the reciprocal of
ELRP – the exceedance frequency and corresponding stan-
dard error – or the exceedance frequency is computed di-
rectly by averaging the reciprocal of scaled CRPs, and the
transfer proxy acts implicitly. We also apply the idea of lin-
ear transfer proxy when we average the modeled event loss
for the historical events being scaled to the same defined
CRP. The unknown sample of ELRPs, which represents the
ELRP’s distribution for a fixed CRP, is implicitly transferred
to a sample of event loss. If the proxies perform well, the
difference to the risk estimates via CRP averaging should be
small.

There is a further chain of thoughts as argument for the
different variants of averaging. The scaling implies subsets
of intensity fields of all possible intensity fields. The links
between the fields of a subset are determined by the scal-
ing of their CRPs. Correspondingly, every subset generates
a risk curve with CRP (now also an ELRP) versus event
loss. We also assume a certain unknown probability per sub-
set that is applied if all these subsets generate the entire risk
curve via an integral like the expectation of a random variable
(Eq. 12). The corresponding empirical variant (estimator) is
the averaging. However, we can average three values: CRP,
exceedance frequency, or event loss.
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Figure 4. Schemes of the scaling approach: (a) elements and relations, (b) schematic example for estimation of RP of event loss by averaging
of CRP.

All mentioned estimators for risk curve via scaling and
averaging over n events are

T̂E (LE)=
1
n

n∑
i=1

Tcs,i (LE) ,

3̂E (LE)=
1
n

n∑
i=1

1/Tcs,i (LE)

L̂E (TE)=
1
n

n∑
i=1

LE,i (Tcs = TE) . (28)

The right side of the equations in Eq. (28) implies actual val-
ues which can be and are being replaced by estimates. Corre-
sponding uncertainties must be considered in the final error
quantification.

We draw attention to the fact that the explained scaling
does not change the CV of Eq. (23); this implies indepen-
dence between CRP and CV (Sect. 2.4). Therefore, the pre-
sented scaling only applies to the max-stable case of local
hazard. For the non-max-stable case, the scaling factor S in
Eq. (27) must be replaced event-wise by Si , which repro-
duces the observed relation between CRP and CV. An exam-
ple without max-stability was already shown in Fig. 3d.

4 Application to German winter storms

4.1 Overview about data and analysis

We have selected the peril of winter storms (also called ex-
tratropical cyclones or winter windstorms) over Germany
to demonstrate the opportunities of the CRP because of
good data access and since we are familiar with this peril
(Raschke et al., 2011; Raschke, 2015a). Our analysis follows
the scheme in Fig. 4a, important results are presented in the
subsequent sections, and the technical details are explained
in Sect. 5. At first, we provide an overview.

We analyzed 57 winter storms over 20 years from au-
tumn 1999 to spring 2019 (Supplement data, Tables 1 and 2)
to validate the CRP approach. Different references (Klawa
and Ulbrich, 2003; Gesamtverband Deutscher Versicherer,
2019; Deutsche Rück, 2020) have been considered to select
the time window per event. In our definition, the winter storm
season is from September to April of the subsequent year. It
accepts a certain opportunity of contamination of the sam-
ple of block maxima by extremes from convective windstorm
events and a certain opportunity of incompleteness from ex-
tratropical cyclones outside our season definition. The term
winter storm is only based on the high frequency of extrat-
ropical cyclones during the winter. The seasonal maximum
is also the annual maximum of this peril.

The maxima per half season (bisected by the turn of the
year) are analyzed to double the sample size and to in-
crease estimation precision. The appropriateness of this sam-
pling is discussed in Sect. 5.1. We considered records of
wind stations in Germany of the German meteorological ser-
vice (DWD, 2020; FX_MN003, a daily maximum of wind
peaks (m s−1), usually wind gust speed) that include mini-
mum record completeness of 90 % for analyzed storms, at
least 90 % completeness for the entire observation period,
and minimum 55% completeness per half season. Therefore,
we only consider 141 of 338 DWD wind stations (Supple-
ment data, Table 3). We think this is a good balance between
large sample size and high level of record completeness.

The intensity field per event is represented by the maxi-
mum wind gust for the corresponding time window of the
event at each considered wind station. The local RP per event
is computed by a hazard model per wind station. This is
an implicit part of the estimated extreme value distribution
per station, as explained in Sect. 5.1. The resulting CRPs
per event and corresponding statistical tests are presented in
the following Sect. 4.2. We have considered two weightings
per station, capital, and area. Both are computed per wind
station by assigning the grid cells with capital data of the
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Figure 5. Results of the analysis: (a) comparison of area and capital-weighted CRPs, (b) comparison of theoretical and observed exceedance
frequency of capital-weighted CRP, and (c) test of distribution of seasonal maxima of CRP.

Global Assessment Report (GAR data; UNISDR, 2015) via
the smallest distance to a wind station. We also use these
capital data to spatially distribute our assumed total insured
sum of EUR 15.23 trillion for property exposure (residential
building, content, commercial, industrial, agriculture, and
business interruption) in Germany in 2018. This is based
on Waisman’s (2015) assumption for property insurance in
Germany and is scaled to exposure year 2018 under con-
sideration of inflation in the building industry (Statistisches
Bundsamt, 2020) and increasing building stock according to
the German insurance union (GDV; GDV, 2019). It is con-
firmed by the assumptions of Perils AG (2021); however,
their data product is not public. We also used loss data of
the GDV (2019) for property insurance when we fitted the
vulnerability parameters for the NatCat model. These event
loss data of 16 storms during a period of 17 years are already
scaled by GDV to exposure year 2018.

The spatial characteristics are analyzed in Sect. 4.3 accord-
ing to Sect 2.4, focusing on the question of if there is max-
stability or not in the spatial dependence and characteristics.
Finally, we present the estimated risk curve for the portfolio
of the German insurance market in Sect. 4.4 including a com-
parison with previous estimates. Details of the vulnerability
model are documented in Sect. 5.2. The concrete numerical
steps, the applied methods to quantify the standard error of
estimates, and the consideration of the results from vendor
models are explained in Sect. 5.3–5.5, respectively.

4.2 The CRP of past events and validation

As announced, we have computed the CRP according to
Eq. (20) with the wind gust peaks listed in the Supplement
data, Table 2, and local hazard models according to Eq. (30).
Our local hazard models are discussed in Sect. 5.1 and pa-
rameters are presented in the Supplement data, Table 4. An
example for a complete CRP calculation is also provided
therein (Table 8). We have considered two weightings for the
CRP, a simple area weighting and a capital weighting (Sup-
plement data, Table 3). In Fig. 5a, we compare the estimates
which do not differ so much; the approach is robust in the
example. The most significant winter storm of the observa-

tion period is Kyrill that occurred in 2007. It has CRPs of
16.97± 1.75 and 17.64± 1.81 years (area and capital). Both
are around the middle of the estimated range of 15 to 20 years
(Donat et al., 2011). Further estimates are listed in the Sup-
plement data, Table 1.

In Fig. 5b, the results are validated according to Sect. 3.2.
The empirical exceedance frequency matches well with the
theoretical one for Tc ≥ 1.65. Small CRPs are affected by
the incompleteness of our record list. In the medium range,
the differences between the model and empiricism are not
statistically significant. In detail, we observe 27 storms with
Tc ≥ 1 within 20 years; 20 storms were expected. According
to the Poisson distribution, the probability of 27 exceedances
or more is 7.8 %. A two-sided test with α = 5 % would re-
ject the model if this exceedance probability were 2.5 % or
smaller.

The seasonal and annual maxima of CRP must follow
a unit Fréchet distribution (α = 1 in Eq. 3) according to
Eq. (16). We plot this and the empirical distribution in
Fig. 5c. The Kolmogorov–Smirnov (KS) test (Stephens,
1986, Sect. 4.4) for the fully specified distribution model
does not reject our model at the very high significance level
of 25 % for the capital-weighted variant. Usually, only the
level of 5 % is considered. This result should not be affected
seriously by the absence of one (probably the smallest) max-
imum due to incompleteness issues. In summary, we state
that the CRP offers a stable, testable, and robust method to
stochastically quantify winter storms over Germany.

4.3 Spatial characteristics and dependence

As discussed in Sect. 2.4, the spatial characteristics is an im-
portant aspect from a stochastic perspective. Therefore, we
have analyzed the relation between distance and dependence
measure. We have applied Kendall’s τ (Kendall, 1938; Mari
and Kotz, 2001, Sect. 6.2.6) and show the dependence be-
tween the maxima of the half of a season and maxima of two
seasons for 9870 pairs of stations in Fig. 6a. Since the sample
size is relatively small, the spreading is strong; it is caused by
estimation error.
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Figure 6. Spatial characteristics of winter storms over Germany: (a) estimated Kendall’s τ versus distance, (b) differences between
Kendall’s τ for different block sizes, (c) estimated Kendall’s τ versus distance for seasonal maxima in Germany and Switzerland (Raschke
et al., 2011), (d) area functions for storm Kyrill with scaling to CRP 100 years, (e) relation CV to CRP of capital-weighted area functions,
and (f) approximation of this relation by special stochastic scaling.

Furthermore, the differences between the estimates of
Kendall’s τ for maxima of one and two hazard seasons are
almost perfectly normally distributed (CDF in Fig. 6b) and
should be centered to 0 in case of max stability (Fig. 2b).
This does not apply with sample mean of 0.051 and standard
deviation of 0.182. The corresponding normally distributed
confidence range for the expectation has a standard deviation
of 0.002 and a probability of 0.00 that the actual expectation
is 0 or smaller.

For completeness, we compare the current estimates of
Kendall’s τ with those for Switzerland from Raschke et
al. (2011) in Fig. 6c. The spatial dependence is higher for
Germany. A reason might be differences in the topology.

We have also computed the area functions and show exam-
ples in Fig. 6d for winter storm Kyrill. The different weight-
ings result in similar area functions. Figure 6e plots the CRP
and CV of all events. The regression analysis reveals the sta-
tistical dependence between CRP and CV. For the linearized
regression function, the p value is 0.002 (t test; Fahrmeir
et al., 2013, Sect. 3.3). Due to two statistical indications of
non-max-stability, we develop a local scaling that considers
the global scaling factor and the ratio between local RP and
CRP for every event with loss information. In this way, we
could reproduce the observed pattern (Fig. 6f). Details of this
workaround are presented in the Supplement data, Sect. 7.
The differences between the scaling variants (max-stable or
not) for storm Kyrill do not seem to be strong (Fig. 6d).

4.4 The risk estimates

Before we estimated risk curves according to the approach of
Sect. 3.4, we must estimate a vulnerability function (Eq. 31)
which determines the local loss ratio LR in the event loss ag-
gregation (Eq. 26). First, we fit the scaling parameter on the
event loss data of the General Association of German Insur-
ers (GDV, 2019) for 16 historical events from 2002 to 2018,
as plotted in Fig. 7a. The details of the vulnerability function
and its parameter fit are explained in Sect. 5.2. Then, we use
the vulnerability function in the three variants of risk curve
estimates of Sect. 3.4 – averaging event loss, CRP, or its re-
ciprocal, the exceedance frequency. Details of the numerical
procedure are explained in Sect. 5.3, which corresponds with
the scheme in Fig. 4a.

In Fig. 7b, the three estimated risk curves according to
the three estimators in Eq. (28) are presented for max-stable
scaling and differ less from each other, which indicates the
robustness of our approach. The empiricism is presented by
the historical event losses and their empirical RP (observa-
tion period 17 years of GDV loss data) and capital-weighted
CRP. In addition, we present the range of two standard er-
rors of the estimates of loss averaging which imply the sim-
plest numerical procedure. Details of uncertainty quantifica-
tion are explained in Sect. 5.4.

The differences between max-stable and non-max-stable
scaling in the risk estimates are demonstrated in Fig. 7c. For
smaller RP, no significant difference can be stated in contrast
to higher RP. This corresponds with the differences between
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Figure 7. Estimates for insured losses from winter storms in Germany: (a) reported versus modeled event losses, (b) current risk curves and
observations, and (c) influence of max-stable and non-max-stable scaling and comparison to scaled, previous estimates (Donat et al., 2011;
Waisman, 2015; European Commission, 2014).

the CV in relation to the CRP for max-stable and non-max-
stable cases in Fig. 6f. These are also higher for higher CRP.

We also compare our results with previous estimates in
Fig. 7c. For this purpose, we must scale these to provide
comparability as well as possible. The relative risk curve of
Donat et al. (2011) is scaled simply by our assumption for
the total sum insured (TSI) for the exposure year 2018. The
vendor models of Waisman (2015) are scaled by the average
of ratios between modeled and observed event losses from
storm Kyrill since a scaling via TSI was not possible (uncer-
tain market share and split between residential, commercial,
and industry exposure). The result of the standard model of
European Union (EU) regulations (European Commission,
2014), also known as Solvency II requirements, is also based
on our TSI assumption, split into the CRESTA zones by the
GAR data. The CRESTA zones (https://www.cresta.org/, last
access: 12 October 2020) are an international standard in the
insurance industry and correspond to the two-digit postcode
zones in Germany.

The risk estimate of Donat et al. (2011) is based on a
combination of frequency estimation and event loss distri-
bution by the generalized Pareto distribution, which is fitted
on a sample of modeled event losses for historical storms.
The corresponding risk curve differs very much from other
estimates and overestimates the risk of winter storms over
Germany. The standard model of the EU only estimates the
maximum event loss for RP of 200 years; the estimated event
loss is very high. The vendor models vary but have a similar
course as our risk curves. The non-max-stable scaling is in
the lower range of the vendor models, whereas the unreal-
istic max-stable scaling is more in the middle. The concrete
names of the vendors can be found in Waisman’s (2015) pub-
lication. The reader should be aware that the vendors might
have updated their winter storm model for Germany in the
meantime.

The major result of Sect. 5 is the successful demonstra-
tion that the CRP can be applied to estimate reasonable risk
curves under controlled stochastic conditions. In addition, we
have discovered the strong influence of the underlying de-

pendence model (max-stable or not) and the corresponding
spatial characteristics to loss estimates for higher ELRP.

5 Technical details of the application example

5.1 Modeling and estimation of local hazard

As mentioned, the maximum wind gusts of half seasons of
winter storms (extratropical cyclones) – block maxima –
have been analyzed. Therein, the generalized extreme value
distribution (Beirlant et al., 2004, Sect. 5.1) is applied:

G(y)=

exp
(
−exp

( y−µ
σ

))
, if γ = 0

exp
(
−
(
1+ γ y−µ

σ

)−1/γ
)
, if γ 6= 0, with y > µ− σ

γ

if γ > 0, and
y < µ− σ

γ
if γ < 0

. (29)

As discussed below, the Gumbel distribution (Gumbel, 1935,
1941), as a special case in Eq. (29) with extreme value γ = 0,
is an appropriate model. The scale parameter is σ , and the
location parameter is µ. The local hazard function (Eqs. 13
and 14) can be derived directly from the estimated variant of
Eq. (29) according to the link between extreme value distri-
bution and exceedance frequency (Eq. 16) (the accent sym-
bolizes the point estimation):

T̂y(y)= 1/3̂y(y)= exp
(
y− µ̂

σ̂cor

)
. (30)

We apply the maximum likelihood (ML) method for the pa-
rameter estimation (Clarke, 1973; Coles, 2001, Sect. 2.6.3).
The wind records’ incompleteness per half season has been
considered in the ML estimates by modifying the procedure
as explained in the Supplement data, Sect. 5. A Monte Carlo
simulation confirms the good performance of our modifica-
tion. The biased estimate of σ for our sample size n= 40
was also detected, in which we considered σ̂cor = σ̂/0.98 as
the corrected estimation. Landwehr et al. (1979) have already
stated such bias. In addition, the exceedance frequency is
well estimated by Eq. (30) in contrast to the RP T̂ . The latter
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is strongly biased. We also corrected this as documented in
the Supplement data, Sect. 6. The analyzed half-season max-
ima, record completeness, and parameter estimates are listed
in the Supplement data, Tables 4–6.

We have validated the sampling of block maxima per
half season. The opportunity of correlation between the first
and second half-season maxima has been tested for signif-
icance level α = 5 % and hypothesis H0: uncorrelated sam-
ples. Around 6 % fail the test with Fisher’s z transformation
(Upton and Cook, 2008). This corresponds to the error of
the first kind (Type I error, e.g., Lindsey, 1996, Sect. 7.2.3),
the falsely rejected correct models. Therefore, we inter-
pret the correlation as statistical insignificant. Similarly, the
Kolmogorov–Smirnov homogeneity test rejects 4 % of the
sample pairs for the period September to December and Jan-
uary to April (first half season to subsequent second half sea-
son) for a significance level of 5 %. There are no significant
differences between the samples.

To optimize the intensity measure of the hazard model, we
have considered the wind speed with power 1, 1.5, and 2 as
the local event intensity in a first fit of the Gumbel distribu-
tion by the maximum likelihood method. According to these,
power 1.5 offers the best fit of wind gust data to the Gumbel
distribution. Such wind measure variants were already sug-
gested by Cook (1986) and Harris (1996).

We do not apply the generalized extreme value distribu-
tion in Eq. (29) with extreme value index γ 6= 0 but the
Gumbel case with γ = 0 for the following reasons. Differ-
ent stochastic regimes γ < 0 and γ ≥ 0 for different wind
stations imply fundamental physical differences: finite and
infinite upper bounds of wind speed. Such fundamental dif-
ferences between different wind stations would need reason-
able explanations (especially for very low bounds versus in-
finite bounds). River discharges at different gauging stations
could imply such physical differences since there are vari-
ants with laminar and turbulent stream or very different re-
tention/storage capacities of catchment areas (e.g., Salazar
et al., 2012). Similar significant physical differences do not
exist for wind stations that are placed and operated under
consideration of rules of meteorology (World Meteorologi-
cal Organization, 2008, Sect. 5.8.3) to provide homogeneous
roughness conditions. Besides, we also found several statisti-
cal indications for our modeling. Akaike and Bayesian infor-
mation criteria (Lindsey, 1996; here over all stations) indicate
that the Gumbel distribution is the better model than the vari-
ant with a higher degree of freedom. Furthermore, the share
of rejected Gumbel distributions of the goodness-of-fit test
(Stephens, 1986, Sect. 4.10) is with 6 % around the defined
significance level of 5 % (the error of the first kind – falsely
rejected correct models). We have also estimated γ for each
station and got a sample of point estimates. The sample mean
is 0.002, very close to γ = 0; this confirms our assumption.
Moreover, the sample variance is 0.018 which is around the
same as what we get for a large sample of estimates γ̂ for
samples of Monte-Carlo-simulated and Gumbel-distributed

random variables (n= 40). All statistics validate the Gumbel
distribution.

To provide reproducible results, we also present a compu-
tational example for the CRP in Table 1 with reference to all
needed equations and information. The entire calculation for
storm Kyrill is presented in the Supplement data, Table 8.

5.2 Modeling and estimation of vulnerability

To quantify the loss ratio LR at location (wind station) j and
event i in the loss aggregation (Eq. 26), we use the approach
of Klawa and Ulbrich (2003) for Germany with a certain
modification. The event intensity is the maximum wind gust
speed v. v98 % is the upper 2 % percentile from the empiri-
cal distribution of all local wind records. The relation with
vulnerability parameter aL is

LR,i,j = aLmax
{
0,
(
vi,j − v98 %

)}3
. (31)

Donat et al. (2011) have used a similar formulation but
with an additional location parameter. This is discarded here
since the loss ratio must be LR = 0 for local wind speed
v < v98 %. This is also a reason why a simple regression anal-
ysis (Fahrmeir et al., 2013) is not applied to estimate aL. We
formulate and use the estimator

âL =
1
n

k∑
i=1

∑n
j=1Ej,imax{0, (v− v98 %)}

3

LE reported,i
, (32)

with k historical storms, corresponding reported event
losses LE, n wind stations, and local exposure value Ej,i
being assigned to the wind station. Ej,i would be fixed for
every station j if there were wind records for every storm i

at each station j . However, the wind records are incomplete,
and the assumed TSI must be split and assigned to the sta-
tions a bit differently for some storms. The exposure share
of the remaining stations is simply adjusted so that the sum
over all stations remains the TSI.

Our suggested estimator (Eq. 32) has the advantage that
it is less affected by the issue of incomplete data (smaller
events with smaller losses are not listed in the data) than the
ratio of sums over all events, and the corresponding standard
error can be quantified (as for the estimation of an expecta-
tion). The current point estimate is âL = 9.59×10−8

±5.97×
10−9.

An example of our vulnerability function (with the aver-
age of v98 % over the wind stations) is depicted in Fig. 8 and
compared with previous estimates for Germany. It is in the
range of previous models. Differences might be caused by
different geographical resolutions of corresponding loss and
exposure data. A power parameter of 2 in Eq. (31) might also
be reasonable since the wind load of building design codes
(EU, 2005, Eurocode 1) is proportional to the squared wind
speed. The influence of deductibles (Munich Re, 2002) per
insured object is not explicitly considered but smoothed in
our approach.
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Table 1. Example for the computation of a CRP at Station #303 (Baruth) for storm Kyrill.

No. Step Equation Supplement data

1 Event definition: Kyrill, time window 18–19 January 2007 – Table 1: Considered storm events

2 Wind speed maximum: Station #303 (Baruth) 34.7 m s−1 – Table 2: Event maxima

3 Transformation to local intensity measure – the 1.5 power of wind speed: – –
34.71.5 m1.5 s−1.5

= 204.4 m1.5 s−1.5

4 Computation of local RP for the unit period: 58.07 half season (half of a year) (30) with σ̂cor Table 4: Gumbel parameters

5 Bias correction of RP for the unit period: 46.58 half season (half of a year) (16) in Supplement –

6 RP for unit period 1 year: 46.58/2= 23.29 season (year) – –

7 Capital weighting: 23.29 · 0.0008988= 0.021 (20) Table 1: Considered storm events

8 Aggregation over all stations: 17.65 years (20) Table 8: CRP example Kyrill

9 Final capital-weighted CRP for event Kyrill – normalization by the sum of (20) Table 8: CRP example Kyrill
weighting: 17.65/1.0= 17.65 years

Figure 8. Vulnerability functions: current estimate with the av-
erage of local parameters and previous estimates by Heneka and
Ruck (2008) and Munich Re (2002) for residential buildings.

5.3 Numerical procedure of scaling

Here, we briefly explain the numerical procedure to calcu-
late a risk curve via averaging the event loss. For any sup-
porting point of a risk curve during an event loss averaging,
the ELRP TE is defined and determines the scaled CRP Tcs
for all historical events. For each historical event, the scaling
factor is S = TE/Tc according to Eq. (24) and is applied in
Eq. (27) together with local hazard function (Eq. 30) and its
inverse. The hazard parameters are listed in the Supplement
data, Table 4. For the scaled local intensity, the local loss ra-
tio LR,i is computed with the vulnerability function (Eq. 31).
The corresponding parameter v98 % is also listed in the Sup-
plement data, Table 2. The local loss ratio LR,i and the lo-
cal exposure value Ei are used in Eq. (26) to compute the
event loss. The considered values of Ei per event are listed
in the Supplement data, Table 7. The incompleteness of wind
observation is considered therein. Finally, for the supporting

point, the modeled event losses of all scaled historical events
are averaged according to Eq. (28).

The historical events are also scaled for a defined event
loss and the corresponding scaled CRP is averaged. However,
the “goal seek” function in MS Excel is applied to find the
correct scaled CRP Tsc and corresponding scaling factor S.
For the averaging of the exceedance frequency, the reciprocal
of Tsc is averaged. All these apply to max-stable scaling. For
the non-max-stable scaling, the scaling factor S is adjusted
to a local variant according to the description in the Supple-
ment data, Sect. 7. Therein, the factor S is adjusted for each
station and depends on the relation of local RP to CRP of the
historical event. This adjustment is made for each historical
storm individually.

5.4 Error propagation and uncertainties

The uncertainty of the local hazard models influences the ac-
curacy of the CRP since the CRP is an average of estimates
of local RP. The issue is that there is a certain correlation be-
tween the estimated hazard parameters of neighboring wind
stations. We consider this by application of the jackknife
method (Efron and Stein, 1981). According to these, the root
of mean squared error (RMSE, which is the standard error if
the estimate is bias free as we assume here) of the original
estimated parameter θ̂ is (accents symbolize estimations)

RMSE(θ̂)=

√√√√n− 1
n

n∑
i=1

(
θ̂−i − θ̂

)2
, (33)

with the estimates θ̂−i for the jackknife sample i of obser-
vations being the original sample but without one of the ob-
servations/realizations. Therefore, it is also called the leave-
one-out method. The estimator (Eq. 33) implies a parameter
sample of θ̂−i of size n, with one estimated parameter or pa-
rameter vector for each jackknife sample i of observations.
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To consider any correlation in the error propagation of
CRP estimate, the maximum of the same half-season i is left
out synchronously when the parameter sample is computed
for each wind station. Without changing the order in the pa-
rameter sample of each wind station, the CRP T̂c−i of the
concrete historical event is computed with the hazard param-
eters θ̂−i of each station. Finally, for this storm, the standard
error of point estimate T̂c is computed according to Eq. (33).

We use the same approach to consider the error propaga-
tion from local hazard models to the risk estimate for the
max-stable case in Sect. 4.4. But the finally estimated pa-
rameter θ̂ in Eq. (33) is the averaged event loss L̂E(TE) for
scaled CRP. This only covers a part of the uncertainties in
the risk estimate. We consider two further sources of uncer-
tainty and assume that they influence the risk estimate inde-
pendently from each other. The uncertainty of loss averaging
is the same as during an estimation of an expectation from a
sample mean and is determined by sample variance and sam-
ple size (number of scaled events). The propagation of the
uncertainty of the vulnerability parameter is computed via
the delta method (Coles 2001, Sect. 2.6.4). The aggregated
standard error is the square root of the sum of squared er-
rors. This implies a simple variance aggregation according to
the convolution of independent random variables (Upton and
Cook, 2008).

The computed standard errors in Fig. 7b are in the range
of 7.5 % to 8.5 % of estimated event loss per defined ELRP.
The shares of uncertainty components on the error variance
(squared SE) of our risk estimates depend on the RP. On av-
erage for our supporting point, these are 15 % for the limited
sample of scaled historical events, 24 % for the uncertainty
of local hazard parameters, and 61 % for the vulnerability
model’s parameter. Unfortunately, we do not know a pub-
lished error estimation for a vendor model for winter storm
risk in Germany. Therefore, we can only compare our esti-
mates with Donat et al.’s (2011). Their confidence range in-
dicates a smaller precision than ours.

5.5 RP of vendor’s risk estimate

We have compared our results with vendor models in
Sect. 4.4. These have estimated the risk curve for the max-
imum event loss within a year. This is a random variable, and
their RP is the reciprocal of the exceedance probability and
can never be smaller than 1. We transform the RP of annual
maxima to the RP of event loss according to the relations in
Sect. 3.1 and the explanations by Coles (2001, p. 249, with
yp as exceedance frequency of events). The relative differ-
ences between the RPs are around 5 % for ELRP of 10 years
and 0.5 % for ELRP of 100 years.

6 Conclusion, discussion, and outlook

6.1 General

In the beginning, we asked the questions about the RP of
a hazard event in a region, the corresponding NatCat risk,
and necessary conditions for a reasonable NatCat modeling.
To answer our questions, we have mathematically derived
the CRP of a NatCat-generating hazard event from previous
concepts of extreme value theory, the pseudo-polar coordi-
nates (Eq. 17). This implies the important fact that the av-
erage of the RPs of random point events remains a RP with
exceedance frequency (Eqs. 8 and 15). Furthermore, we ex-
tended Schlather’s first theorem for max-stable random fields
to the non-max-stable spatial dependence and characteristics.
We have also considered the normalized variant of the area
function of all local RPs of the hazard event in a region with
parameters CRP and CV. The absence of max-stability in
the spatial dependence results in a correlation between CRP
and CV, which is a further indicator for non-max-stability be-
side changes in measures for spatial dependence by changed
block size (e.g., annual maxima versus 2-year maxima).

The derived CRP is a universal, simple, plausible, and
testable stochastic measure for a hazard and NatCat event.
The weighting of local RP in the computation of the CRP
can be used to compensate for an inhomogeneous distri-
bution of corresponding measuring stations if the physical-
geographical hazard component of a NatCat, the field of lo-
cal event intensity, is of interest. However, the concentration
of human values in the geographical space could also be con-
sidered in the weighting to obtain a higher association of the
CRP with the ELRP of a risk curve. This link implies the
conditional expectation (Eq. 18) under the assumption of a
max-stable association between CRP and ELRP and offers
a new opportunity to estimate risk curves, the bijective func-
tion event loses to ELRP, via a stochastic scaling of historical
intensity fields and averaging of corresponding risk parame-
ter. The averaged parameter can be the scaled CRP for a de-
fined event loss, corresponding exceedance frequency, or the
event loss for a defined/scaled CRP.

The differences between the three estimators are small in
our application example, insured losses from winter storms
over Germany. In contrast, the influence of the stochastic as-
sumptions regarding the spatial dependence and characteris-
tics (max-stable or not) is significant in the range of higher
ELRPs. This highlights the importance of a realistic con-
sideration of the spatial dependence and characteristics of
the hazard in a NatCat model. Besides, our risk curves for
Germany have a similar course as those derived by vendors
(Fig. 7d). The risk assumption by the EU for Germany with
ELRP of 200 years is significantly higher than ours. The es-
timate by Donat et al. (2011) differs significantly and seems
to be implausible for higher ELRP. A reason might be their
statistical modeling by the generalized Pareto distribution as
already applied for wind losses by Pfeifer (2001). The ta-
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pered Pareto distribution (Schoenberg and Patel, 2012), also
called tempered Pareto distribution (Albrecher et al., 2021),
or a similar approach (Raschke, 2020) provide more appro-
priate proxies for our risk curve’s tail.

According to our results, necessary conditions for appro-
priate NatCat modeling are the realistic consideration of lo-
cal hazard and their spatial dependence (max-stable or not?).
Correspondingly, the spatial characteristics of NatCat events,
described here by relation CRP to CV, must be reproduced.
In addition, the CRPs of a simulated set of hazard events in
a NatCat model should have an empirical exceedance fre-
quency that follows the theory (Eq. 15). Finally, the stan-
dard error of an estimate should be quantified, the sampling
should be appropriate, and overfitting (over parametrization
and parsimony) should be avoided. This principle applies to
all scientific models with a statistical component (e.g., Lind-
sey, 1996).

The advantage of our approach over vendor models is
the simplicity and clarity of the stochastic assumptions. The
numerical simulations for models in the insurance industry
(Mitchell-Wallace et al., 2017, Sect. 1.8) and science (e.g.,
Della-Marta et al., 2010) need tens of thousands of simu-
lated storms with unpublished or even unknown (implicit)
stochastic assumptions. We have only scaled 16 event fields
of historical storms with controlled stochastics and could
even quantify the standard error.

6.2 Requirements of the new approaches

Our approach to CRP is based on two assumptions. At first,
the local and global events occur as a Poisson process. This is
a common assumption or approximation in applied extreme
value statistics (Coles, 2001, Sect. 7), and the corresponding
Poisson distribution of the number of events can be statisti-
cally tested (Stephens, 1986, Sect. 4.17). Moreover, the ver-
ified clustering (overdispersion) of winter storms over Ger-
many (Karremann et al., 2014) is statistically not relevant for
higher RP (Raschke, 2015a). With increasing RP, the num-
ber of winter storms occurring converges to a Poisson distri-
bution. Clustering is also influenced by the event definition,
which is not the topic here (keyword declustering; Coles,
2001). We also point out that the assumed Poisson process
does not need to be homogenous during a defined unit period
(year, hazard season, or half season).

The second prerequisite is robust knowledge about the lo-
cal RP by a local hazard curve. Unfortunately, there are no
appropriate and comprehensive models for the local hazard
of every peril and region, for example, hail in Europe; we
only know local hazard curves for Switzerland by Stucki and
Egli (2007), and these were roughly estimated. There are
public hazard maps of flooding areas for defined RP; cor-
responding local hazard curves are rarer.

Furthermore, existing models for local hazard are partly
questionable according to our discussion about local model-
ing of wind hazard from winter storms in Sect. 5.1. We have

assumed a Gumbel case of the generalized extreme value dis-
tribution for local block maxima with extreme value index
γ = 0 for several statistical indicators and physical consis-
tency. Youngman and Stephenson’s (2016) modeling of win-
ter storms over Europe implies an extreme value index γ < 0
for the region of Germany, which means a short tail with a
finite upper bound. They have not depicted the spatial distri-
bution of the corresponding finite upper bounds and do not
provide a physical explanation for the spatially varying up-
per physical limit of wind speed maxima. The plausibility of
such physical details in a NatCat model should be shown and
discussed.

6.3 Opportunities for future research

Since the current model for the local hazard of winter storms
over Germany results in considerable uncertainty, it should
be improved in the future. This could be realized by a kind
of regionalization of the hazard as already known in flood
research (Merz and Blöschl, 2003; Hailegeorgis and Alfred-
sen, 2017) or a spatial model (Youngman and Stephenson,
2016). Besides, more wind stations could be considered in
the analysis with better consideration of incompleteness in
the records. An extension of the observation period is con-
ceivable if homogeneity of records and sampling is ensured.
A more sophisticated approach might be used to discriminate
the extremes of winter storms from other windstorm perils at
the level of wind station records. The POT methods (Coles,
2001, Sect. 4.3; Beirlant et al., 2004, Sect. 5.3) could then
be used in the analysis even though the spatial sampling is
complicated as stated in the “Introduction”.

Further opportunities for improvements in the winter
storm modeling are conceivable. The event field might be re-
produced/interpolated in more detail, as done by Jung and
Schindler (2019). They have considered the roughness of
land cover at a regional scale besides further attributes. How-
ever, they did not consider the local roughness of immediate
surroundings, as Wichura (2009) discussed for a wind sta-
tion.

Besides, our approach could be used for further haz-
ards such as earthquake, hail, or river flood. The reasonable
weighing would not be trivial for river flood. It may be that
the local expected annual flood loss would be a reasonable
weighting if the final goal is a risk estimate for a region. The
numerical handling of the case that an event does not occur
everywhere in the researched region but local RP T = 0 must
be discussed for some perils, such as hail or river flood.

We also see research opportunities for the community of
mathematical statistics, especially extreme value statistics.
Does Eq. (18) for conditional expected RP also apply to
the non-max-stable case? A deeper theoretical understanding
of non-max-stable random fields with max-stable margins is
of great interest from practitioners’ perspectives. Research
about the link between normalized area functions (expecta-
tion versus CV) and spatial dependence could increase un-
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derstanding of natural hazard and risk, and our construction
for the non-max-stable scaling is just a workaround to illus-
trate the consequences of dependence characteristics; for risk
models in practice, a transparent stochastic construction is
needed. Furthermore, estimation methods could be extended
and examined, such as the bias in estimates of local RP.

Code and data availability. A special code was not generated
or used. MS Excel carried out our computations. The wind data
were downloaded from the server of the German meteorological
service (https://cdc.dwd.de/portal/; Deutscher Wetter Dienst,
2020), and the exposure data were provided by UNISDR (2015)
(https://data.humdata.org/dataset/exposed-economic-stock. The
loss data are part of the General Association of German Insur-
ers’ (https://www.gdv.de/de/zahlen-und-fakten/publikationen/
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report. The considered wind stations and storms are listed in the
Supplement data.
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