Articles | Volume 21, issue 3
https://doi.org/10.5194/nhess-21-893-2021
https://doi.org/10.5194/nhess-21-893-2021
Research article
 | Highlight paper
 | 
10 Mar 2021
Research article | Highlight paper |  | 10 Mar 2021

A statistical–parametric model of tropical cyclones for hazard assessment

William C. Arthur

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024,https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024,https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024,https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Surprise floods: the role of our imagination in preparing for disasters
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024,https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024,https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary

Cited articles

Arthur, C.: (2018, October 12). Tropical Cyclone Risk Model version 2.1 (Version v2.1), Zenodo, https://doi.org/10.5281/zenodo.4579937, 2018. 
AS/NZS 1170.2: Standards Australia/Standards New Zealand – Structural design actions, Part 2: Wind actions, SAI Global Limited, Sydney, Australia, 2011. 
Arthur, W. C., Schofield, A., and Cechet, R. P.: Assessing the impacts of tropical cyclones, Aust. J. Emerg. Manage., 23, 14–20, 2008. 
Bieli, M., Camargo, S. J., Sobel, A. H., Evans, J. L., and Hall, T.: A Global Climatology of Extratropical Transition. Part I: Characteristics across Basins, J. Climate, 32, 3557–3582, https://doi.org/10.1175/jcli-d-17-0518.1, 2019. 
Chen, K.: Relative Risk Rating for Local Government Areas, Risk Front. Quart., 3, 1–2, 2004. 
Download
Short summary
We have developed a statistical–parametric model of tropical cyclones (TCs), to undertake hazard and risk assessments at continental scales. The model enables users to build an understanding of the likelihood and magnitude of TC-related wind speeds across full ocean basins but at a fine spatial resolution. The model can also be applied to single events, either scenarios or forecast events, to inform detailed impact assessments.
Altmetrics
Final-revised paper
Preprint