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Abstract. We present the formulation of an open-source,
statistical–parametric model of tropical cyclones (TCs) for
use in hazard and risk assessment applications. The model
derives statistical relations for TC behaviour (genesis rate
and location, intensity, speed and direction of translation)
from best-track datasets, then uses these relations to create a
synthetic catalogue based on stochastic sampling, represent-
ing many thousands of years of activity. A parametric wind
field, based on radial profiles and boundary layer models, is
applied to each event in the catalogue that is then used to
fit extreme-value distributions for evaluation of return period
wind speeds. We demonstrate the capability of the model to
replicate observed behaviour of TCs, including coastal land-
fall rates which are of significant importance for risk assess-
ments.

Copyright statement. The author’s copyright for this publication is
transferred to the Commonwealth of Australia (Geoscience Aus-
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1 Introduction

Tropical cyclones (TCs) present a significant physical and
economic threat to Australian communities. Around 20 % of
reported costs from natural disasters arise from TCs (Hand-
mer et al., 2016), while over 30 % of insured loss is caused
by TCs (Chen, 2004), due to extreme winds and riverine and
coastal storm surge flooding. Minimising the losses in the
built environment from these events can be approached in
a range of ways. In Australia, the Wind Loading Standard
(AS/NZS 1170.2, 2011) specifies minimum design loads for
buildings under the action of wind loading. Design loads

vary across the country, depending on the sources and mag-
nitude of winds, in an effort to minimise average annual
losses across the country. Areas around the northern coastline
have higher design loads, due to the exposure to TCs which
generate higher wind speeds than mid-latitude storms. De-
sign criteria are defined with reference to a likelihood of ex-
ceedance over the expected lifetime of residential structures
– this is a 10 % likelihood in 50 years, commonly described
as an (approximately) 1-in-500-year average recurrence in-
terval (ARI).

The historical record of TCs in the Australian region cov-
ers barely 100 years (Kuleshov et al., 2010). Of that record,
only the last 30 years includes reasonably consistent infor-
mation based on satellite data to assess the intensity of TCs.
The short length of record makes it difficult to infer ARI wind
speeds due to TCs at ARIs greater than 100 years (Emanuel
and Jagger, 2010; Jagger and Elsner, 2006; Sanabria and
Cechet, 2007). It is a common approach to use stochastic
simulations to estimate the wind speeds to establish building
design standards and for assessing TC risk (Vickery et al.,
2009). Many of these models exploit the statistical charac-
teristics of TC behaviour to generate catalogues of synthetic
events (Emanuel et al., 2006; Hall and Jewson, 2007; James
and Mason, 2005; Li and Hong, 2014; Nakajo et al., 2014;
Powell et al., 2005; Rumpf et al., 2007).

In this vein, Geoscience Australia has developed a
statistical–parametric model of TC behaviour – called
the Tropical Cyclone Risk Model (TCRM) – to generate
synthetic-event sets that represent many thousands of years
of TC activity. TCRM is designed to run on desktop com-
puters with modest computational resources available but
is scalable to large multi-processor systems. As such, the
model forgoes the more computationally intensive dynam-
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ical approach used in some TC hazard models (Emanuel
et al., 2006). Instead, we use an autoregressive process to
model synthetic TC tracks, including intensity, and use a
two-dimensional parametric model to describe the TC wind
field.

TCRM is unique in that it is freely available for use in
hazard and risk assessment applications. There are a number
of published stochastic models (noted above); however these
models are, as a general rule, not publicly available (excep-
tions include the model of Powell et al., 2005) or free. Fur-
ther, the formulation of these models may preclude applica-
tion in regions other than those demonstrated in publications.
That is, they may be tailored to the region where they are
applied. TCRM is formulated such that it is largely indepen-
dent of the region being simulated, though some components
are derived using regionally specific data. Where there are
region-specific formulations in a component of the model,
these can be readily adapted for different regions. TCRM is
also an open-source software package, enabling users to con-
tribute to ongoing development of the model and influence
the future directions of development priorities.

While the primary purpose for developing the model is
to evaluate TC severe wind hazard, it can be configured to
rapidly evaluate the swath of destructive winds from a sin-
gle TC at a high temporal and spatial resolution. In this con-
figuration, a two-dimensional wind field at a 0.02◦ horizontal
resolution, covering the entire track of a TC, is calculated
in a matter of minutes. Using TCRM in this manner, we
have evaluated the impact of individual TCs on Australian
communities, with applications in emergency management
and urban planning (Arthur et al., 2008; Krause and Arthur,
2018).

In Sect. 2, we describe the data used to develop and evalu-
ate TCRM. Section 3 provides details of the track generation
component of the model, and Sect. 4 describes the wind field
modelling process. Section 5 describes the use of extreme-
value distributions to calculate ARI wind speeds, and Sect. 6
presents some initial results using TCRM in the Australian
region.

2 Data

The analysis of TC wind hazard is based on historical obser-
vations of TC events and their characteristics. Specifically,
the essential fields required for running the model include
the date and time of TC observations, the location (longitude
and latitude), intensity (central pressure), and a flag identi-
fying unique TC events. Additional fields, such as the radius
to maximum wind (Rmax) and the pressure of the outermost
closed isobar (poci), can be included, though they are not es-
sential.

For the Australian region, we use the International Best
Track Archive for Climate Stewardship (IBTrACS – Knapp
et al., 2010), which provides the most complete global set

of historical TCs (Fig. 1). IBTrACS provides the date, time,
position (longitude and latitude) and estimated central pres-
sure of TCs in the Southern Hemisphere every 6 h (or more
frequently) for seasons between 1981 and 2016 (36 years).
The data have been quality controlled and provide a ho-
mogeneous set of TC records from World Meteorological
Organization-sanctioned forecast agencies. This time period
does exclude some historically significant storms, which is
more due to their impacts on the community rather than to
any physical characteristics. However, for testing and devel-
opment, homogeneity of the input dataset is prioritised over
the length of record.

Further, the absolute accuracy of the input data is viewed
as a source of uncertainty in the hazard values presented
here. For example, Courtney and Burton (2019) reported on
progress to improve the best-track archive in Australia, not-
ing the reassessment of intensity due to improved reanaly-
sis methods. Such changes in the intensity values will flow
through the hazard model to produce changes in the likeli-
hood of extreme wind speeds. A thorough treatment of the
accuracies arising from changes in the best track is warranted
(Harper et al., 2008), and the hazard values herein should
be considered only one view of the true wind hazard aris-
ing from TC events. Yet another aspect that remains to be
explored is the effect of centennial and longer variability in
TC activity (Haig et al., 2014; Nott et al., 2007).

There are some attributes of TCs that are not reported in
the IBTrACS dataset. The radius to maximum wind (Rmax)
and pressure of the outermost closed isobar (poci) are two
useful values that can provide additional constraints on the
intensity and size of TCs. For these variables, we use data ob-
tained from the Joint Typhoon Warning Center (2017), span-
ning 2002–2016 (15 years). These data are used to develop
parametric models for these variables (described in Sect. 3),
which are then used in the stochastic track generation pro-
cess.

It is possible to use data sources other than observational
best-track archives as input to TCRM. For example, Siqueira
et al. (2014) used tropical-cyclone-like vortices (TCLVs) ex-
tracted from global circulation models as a source of track
data for evaluating TC wind hazard in the southwest Pacific.
After correcting the intensity distribution of the TCLV data,
the resulting hazard assessment provided quantitative esti-
mates of the projected change in TC wind hazard.

3 Model software

The TCRM software has been developed at Geoscience Aus-
tralia as a free, open-source software package. It is writ-
ten in Python (version 2.7), utilising the Numerical Python
“NumPy” (van der Walt et al., 2011), Scientific Python
“SciPy” (Oliphant, 2007), netcdf4-python (Unidata, 2018),
pandas (McKinney, 2010), Matplotlib (Hunter, 2007) and
seaborn (Waskom et al., 2018) packages for statistical and
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Figure 1. Historical TC tracks (1981–2016), simulation domain, track domain, automatic weather stations (with station number) and coastal
gates (50 km offshore, 200 km wide) used for landfall analysis (selected gates labelled).

visualisation functions. Additionally, we use some C code
for optimisation. The software is available from Geoscience
Australia’s GitHub repository (Geoscience Australia, 2018),
and users can contribute to further development of the model.
For this study, we used TCRM version 2.1 (commit ref-
erence 8cd4c22 – https://github.com/GeoscienceAustralia/
tcrm/releases/tag/v2.1, last access: 12 October 2018), and
made use of the National Computational Infrastructure’s
high-performance computing systems for executing the sim-
ulations and analysis of the results.

Simulation times are dependent on the extent of the do-
main and the number of simulated years. For the domain
used in this paper, the data processing and statistical anal-
ysis stages take around 15 min to complete on a modern
desktop computer. The generation of tracks for a 10 000-
year simulation takes around 5 to 6 CPU hours (2.6 GHz
clock speed), while the corresponding wind fields (a total
of around 160 000 separate events for this simulation) take
around 3000 CPU hours. The determination of ARI wind
speeds requires a similar amount of CPU time, but the major-
ity is consumed in reading the required data from the wind
field files.

4 Tropical cyclone track model

TCs in the Australian region often display complex
behaviour, with many tracks exhibiting sudden turns
(e.g. TC George, 2007) and loops (e.g. TC Hamish, 2009).

Despite this behaviour, the translation speed and bearing
of TCs still display significant autocorrelation (Figs. 2 and 3),
while there is also a moderate autocorrelation in the rate of
pressure change across the entire region (Fig. 4).

The track model is based on the approach used by Hall
and Jewson (2007) and Rumpf et al. (2007), utilising a lag-
1 autoregressive technique to model the future behaviour of
each synthetic TC. We extend this autoregressive technique
and apply it to the intensity (minimum central pressure) of
the simulated TCs as well as to the track behaviour.

Users specify a simulation domain, over which the
TC wind hazard will be evaluated (Fig. 1). To ensure the sim-
ulated events capture the complete range of potential tracks
entering this domain, an expanded track domain is defined.
The track domain is determined by examining the extent of
all historical tracks that enter the simulation domain. The fre-
quency and behaviour of simulated TCs is then determined
on the basis of observed events in the track domain.

The model is trained on the observed track data, using a se-
ries of 1◦ by 1◦ grid cells across the track domain to capture
spatial variability in the descriptive statistics (mean, standard
deviation and lag-1 autocorrelation coefficient) for selected
TC parameters (speed of forward motion; bearing; intensity;
and, where available,Rmax). For each grid cell, a minimum of
100 valid observations are required before descriptive statis-
tics are calculated. If there are insufficient valid observations,
then the search area is expanded in steps of 1◦ zonally (east–
west) and 0.5◦ meridionally (north–south) – to the maximum
extent of the track domain – until sufficient observations
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Figure 2. Lag-1 autocorrelation of TC translation speed, based on IBTrACS v03r09 (1981–2016). Values are calculated on a 1× 1◦ grid.

Figure 3. Lag-1 autocorrelation of TC bearing (direction of movement), based on IBTrACS v03r09 (1981–2016).

Figure 4. Lag-1 autocorrelation of central pressure rate of change, based on IBTrACS v03r09 (1981–2016).

are found. Distributions for at-sea and over-land conditions
are calculated separately to allow for different behaviours in
these circumstances – specifically intensity in near-coastal
areas.

Regression models are used to control specific sub-
components of the track model – Rmax, poci and landfall de-
cay rate. These regression models are derived from observed
data in the Australian region but could equally be adapted

to other regions. The code repository provides access to the
analysis tools used to determine these regression models and
can be used to re-evaluate the regressions for other basins.
The model is intended to be applied to regional basins, rather
than to a global domain, but the ability to adapt these regres-
sion models allows users to run them in basins other than
Australia.
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Figure 5. TC genesis points for historical TC events (1981–2016) and the corresponding probability density function (TCs per year). Points
do not represent the first observation of TC intensity – rather, they represent the first point recorded in the best-track database.

4.1 Genesis

Genesis of TCs is modelled as a Poisson process based on
historic frequency in the track domain, with locations of gen-
esis randomly sampled from a two-dimensional probability
density function (PDF) of historic genesis points (Fig. 5).
The PDF is generated using multivariate kernel density esti-
mation (Silverman, 1986), utilising a two-dimensional Gaus-
sian kernel. The PDF for genesis at a location (λ, φ) is

f (λ,φ)=
1

2πN |L|2

N∑
i=1

exp

(
−

d2
i

2L2L

)
, (1)

whereN is the number of genesis points and di is the distance
between genesis point i and the point (λ, φ) (latitude and
longitude). L is a two-by-two bandwidth matrix determined
automatically from the covariance of observed genesis points
using a cross-validated maximum-likelihood approach and is
held constant over the entire simulation domain. The annual
cycle of genesis is included in determining the start time of
TC events.

This can result in simulation of genesis over land in the
stochastic sampling step. In the Australian region, it is not
unusual to observe the formation of precursor tropical lows
over land. To allow for this in TCRM, weak lows are main-
tained if their central pressure deficit increases above 5 hPa
within 12 h of the initial time. This allows for initial forma-
tion over land (or in areas of positive pressure tendency), as
long as the incipient TC intensifies sufficiently (through the
stochastic process described in the next section) – usually as-
sociated with a move over open water.

The resulting genesis distribution of simulated events does
not exactly match the historical distribution for a number of
reasons (Fig. 6). Firstly, the stochastic sampling of the distri-
bution for each simulated year will produce a different spa-

tial pattern. In the case of simulating a large number of years,
this would intuitively converge to the observed distribution.
However, the subsequent track behaviour determines if the
track is retained – for example the simulated genesis density
may be reduced in regions where tracks are excluded due to
rapid weakening or exiting the domain.

4.2 Tracks

Following determination of the initial location, intensity,
translation speed and bearing of a TC event, the model ap-
plies an autoregressive process to step the TC forward in
time. Equations (2) and (3) describe the translation speed of
the TC located in grid cell i at time t (for the translation
speed v):

v(t)= µiv + σ
i
vχ

i(t), (2)

χ i(t)= αivχ
i(t − 1)+φivε, (3)

where µiv is the observed mean translation speed v in grid
cell i, σ iv is the observed standard deviation of v, αiv is the
observed lag-1 autocorrelation, and χ i(t = 0)= 0. φiv con-
trols the magnitude of the random variation ε and is related
to αiv through Eq. (4) (noting the change in use for the sym-
bol φ from Eq. 1):

φ2
vi
= 1−α2

vi
. (4)

ε is a random value sampled from a logistic distribution with
zero mean and unit variance. A logistic distribution is used
because the heavier tails provide a better representation of the
distribution of residuals. Further, comparisons of full track
simulations gave qualitatively better results when using the
logistic distribution. A corresponding approach is used for
the bearing (direction of movement) of simulated TCs.
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Figure 6. TC genesis points and corresponding probability density function for a sample of 35 simulated years of TC activity. Note the
different scale compared to Fig. 5.

Intensity, measured as the minimum central pressure p(t),
is also modelled in a similar manner, except it is the rate of
change in intensity ṗ(t) that is predicted at each time step t ,
rather than the intensity itself as described by Eqs. (5)–(7):

p(t)= p(t − 1)+ ṗ(t)1t, (5)

ṗ(t)= µiṗ + σ
i
ṗχ

i(t), (6)

χ i(t)= αiṗχ
i(t − 1)+φiṗε, (7)

where 1t is the model time step in hours. The statistics for
central pressure rates of change (µiṗ and σ iṗ) are normalised
to be in units of hPa h−1. αiṗ and φiṗ are dimensionless and
have the corresponding definitions to those for αiv and φiv .
The maximum achievable central pressure of a TC is set
to µip − 5σ ip and is a purely statistical bound. However, we
note that potential intensity (Holland, 1997) is potentially a
more instructive limit, and we are presently working on en-
hancements that will consider this.
ṗ is preferred to the absolute pressure deficit due to the

lower lag-1 autocorrelation in the tendency values, making it
more akin to a true Markov process than to simulating the ab-
solute pressure deficit. Figure 7 shows the autocorrelation for
both ṗ and p for a selected grid cell in the Coral Sea. In this
case, the lag-1 autocorrelation of ṗ is 0.3, compared to that
of p which is 0.79. Using absolute values leads to rapid and
almost one-way variation (i.e. constant increase or decrease)
in the intensity. There remains a strong autocorrelation be-
yond lag 1 for absolute pressure values but not for pressure
tendency values (Fig. 8). Figure 9 shows the time history of
central pressure of a small sample of tracks that are gener-

Figure 7. Autocorrelation values for minimum central pressure and
pressure rate of change, for a single grid cell in the Coral Sea.

ated from a single genesis point (20◦ S, 155◦ E) and the same
initial central pressure (995 hPa). One storm weakens rapidly
over the first 12 h. The remaining storms take between 30 and
200 h to attain maximum lifetime intensity.

Initial values for ṗ, v and storm bearing θ are sampled
from the observed distributions of initial values in the initial
grid cell, based on the randomly selected genesis point.

4.3 Radius to maximum winds

Where sufficient observed data are available, Rmax is mod-
elled in a similar manner to intensity – i.e. an autoregres-
sive model of the rate of change in Rmax, with statistics
calculated from the observed values. In the Southern Hemi-
sphere, Rmax has only been recorded consistently since 2002
by the Joint Typhoon Warning Center (JTWC) (Fig. 10). This
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Figure 8. Autocorrelation of minimum central pressure (a) and
pressure rate of change (b) for lagged observations between 1 and
10 steps. The solid blue line is the mean for all grid cells in the track
domain, and the shading is 1 standard deviation.

means there are generally insufficient data to develop the au-
toregressive model with confidence across the entire model
domain.

In the case of insufficient observations, a parametric
model of Rmax is used, based on the model of Powell et
al. (2005) and derived using recorded Rmax values from
2002–2016 JTWC records for the South Pacific and south
Indian Ocean basins (n= 3033):

lnRmax= 3.543− 0.003781p+ 0.813exp
(
−0.00221p2

)
+0.00157λ2

+ ε, (8)

where 1p is the central pressure deficit (hPa); λ is the lati-
tude (◦); and ε is a random normal variate with mean µ= 0
and variance σ = 0.335, which is held constant for the life
of each individual simulated TC. The functional form is se-
lected to ensure the Rmax values remain bounded at high in-
tensity (large 1p). Coefficients were fitted using non-linear
least-squares regression. Figure 11 presents modelled and
observed values of Rmax versus 1p, where the modelled
values are derived using randomly selected values of 1p
and λ. The model slightly overpredicts Rmax at low inten-
sity (20<1p < 40 hPa) but otherwise provides an excellent
match to the observations.

4.4 Pressure of outermost closed isobar

The central pressure deficit1p used to quantify the intensity
of synthetic TCs is the difference between the central pres-

sure and the pressure of the outermost closed isobar poci.
We initially considered the daily long-term mean sea level
pressure at the location of the TC (pltm) as a proxy for poci .
However, there are substantial and systematic differences be-
tween the two (Fig. 12). Using pltm will lead to synthetic TCs
generating sufficient wind speeds to remain defined as TCs
at higher central pressure values than observed. To define
poci for the synthetic TCs, we modify pltm based on the cen-
tral pressure, latitude and day of year, plus a random innova-
tion:

poci = 2324.2− 0.65399pltm− 1.398pc+ 0.000740p2
c

+ 0.00445λ2
− 1.434cos

(
2πdyear/365

)
+ ε, (9)

where pltm is the daily long-term mean sea level pressure at
the location of the TC, pc is the central pressure, λ is the
latitude and dyear is the day of year. ε is a random inno-
vation sampled from a normal distribution with µ= 0 and
σ = 2.572. The coefficients were determined using ordinary
least-squares fitting to the parameters, using observed values
of poci from 2002–2016 JTWC records (n= 1833).

Modelled values of poci qualitatively match the observed
values (Fig. 13), with l2 norm values all less than 0.4. Closer
inspection however reveals subtle differences. When plot-
ted against pltm (Fig. 13a), the maximum density of mod-
elled values of poci is skewed to lower values (approximately
3 hPa lower). For pc versus poci (Fig. 13b), the comparison
is much closer, with the peaks in the PDF for both modelled
and observed poci coinciding near weak intensity (high pc)
and poci near 1006 hPa. Comparison by latitude (Fig. 13c) is
very good, with the peak of the PDF of modelled values over-
laying the observed peak. The PDF of modelled poci against
day of year (Fig. 13d) is also very close to the observed dis-
tribution.

4.5 Landfall

Initial testing using only the autoregressive model for inten-
sity after landfall resulted in unrealistically long-lived tracks
after landfall. Instead, the filling rate of TCs after landfall
is modelled in the same manner as Vickery (2005), where
the central pressure deficit 1p decreases as an exponential
function of time over land t , the central pressure deficit at
landfall 1p0 and the translation speed at landfall v0:

1p(t)=1p0 exp(−αt), (10)

where

α = α0+α11p0+α2v0 . (11)

To determine an optimum value for the parameters α0, α1
and α2, the decay behaviour of 174 landfalling TCs recorded
in the IBTrACS dataset was analysed (Fig. 14). 1p0 is the
last observation of the central pressure deficit prior to land-
fall, and all observations of 1p after landfall are normalised
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Figure 9. Central pressure, normalised intensity, and tracks of 10 events with a common genesis point (20◦ S, 155◦ E) and initial intensity
(995 hPa). The lower left panel presents the normalised intensity 1p /max(1p). Colours are for clarity only.

Figure 10. Distribution of radius to maximum wind for all Southern
Hemisphere TCs (2002–2016). “KDE” is the empirical distribution
determined using kernel density estimation; “Lognormal fit” is a
fitted lognormal distribution using maximum-likelihood estimation.
Data source: JTWC (2017).

Figure 11. Modelled (o) and observed (x)Rmax for Southern Hemi-
sphere TCs (2002–2016), plotted against central pressure deficit.
Modelled values are based on a random selection of observed com-
binations of central pressure deficit and latitude.

Nat. Hazards Earth Syst. Sci., 21, 893–916, 2021 https://doi.org/10.5194/nhess-21-893-2021
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Figure 12. Difference between pltm and poci for Southern Hemi-
sphere TCs (2002–2016). Solid line is the empirical distribution
determined using kernel density estimation. Dashed line is a fitted
lognormal distribution. Data source: JTWC (2016).

by this value. Differences in the decay rate of TCs can be
identified between those making landfall on the northwest
Australian coastline and the eastern coastline (Fig. 15). We
hypothesise that this is due to the presence of the Great Di-
viding Range along the eastern coast of Australia, with el-
evations exceeding 1400 m in places (e.g. Mt Bartle Frere
and Mt Bellenden Ker). Further, the mean central pressure of
landfalling cyclones in eastern Australia is higher than those
along the western Australian coastline (Fig. 16). In the inter-
est of minimising the data demands (especially with a view
to application in other basins), topography was not included
in the regression such that we do not have to source suitable
topographic data for all potential basins. However this is an
area for future development.

An exponential decay function was fitted to the nor-
malised pressure deficit1p/1p0 for the 174 landfalling TCs
(Fig. 17). In general, 1p follows the expected exponential
decay form with α defined as

α = 0.03515+0.0004351p0+0.002865v0+ ε(µ,σ ), (12)

where ε is a random variate sampled from a lognormal dis-
tribution with µ= 0.6953 and σ = 0.0471 and held fixed for
each event. Coefficients were fitted using non-linear least-
squares optimisation. This gives a decay rate parameter that
is influenced by central pressure at landfall and replicates the
observed decay rates well (Fig. 18). The effect of the land-
fall decay model can also be seen in several of the storms in
Fig. 9. Storms that move back over open water revert back
to the stochastic intensity model, with some storms showing
reintensification. For example, track 0 makes landfall after
about 220 h and weakens but reverts back to the stochastic
intensity model near 235 h, before a second landfall at 242 h.

4.6 Lysis

Lysis of a synthetic TC occurs when 1p falls below an ar-
bitrary threshold, set to be 5 hPa, either due to the decline

in intensity following landfall or through the autoregressive
process described above. TCs are also terminated on exiting
the track domain.

5 Tropical cyclone wind field model

Parametric wind fields are calculated for each event in the
synthetic catalogue to enable a high-spatial-resolution under-
standing of the ARI wind speeds. The additional benefit of
this calculation is that users can select individual synthetic
events from the catalogue and obtain a wind field for use in
scenario simulations.

5.1 Radial wind profile

The wind field around each TC is calculated at high spatial
resolution (up to 0.01◦) to ensure the peak wind speeds near
the eye are accurately captured. TCRM first uses a radial
profile to estimate the gradient level wind associated with
the vortex. To allow users to explore the range of variability
in ARI wind speeds associated with different radial profiles,
we have implemented a number of profiles in TCRM. These
include the Holland (1980), Schloemer (1954), Willoughby
and Rahn (2004), Powell et al. (2005), and Jelesnian-
ski (1966) profiles; the McConochie et al. (2004) dou-
ble exponential profile; and a Rankine vortex profile. The
Willoughby, Schloemer and Powell et al. profiles are all vari-
ants of the Holland profile – the difference being the defini-
tion of the peakedness or β parameter. While more complex
radial profiles are available in the literature, we have chosen
to implement simpler models that rely only on readily avail-
able best-track parameters (e.g. central pressure, latitude).
For this verification study, the Powell et al. (2005) profile
was used, with β defined as

β = 1.881093− 0.010917|λ| − 0.005561Rmax+ ε, (13)

where λ is the latitude of the TC centre and ε is a random
variate sampled from a normal distribution with zero mean
and a standard deviation of 0.286. The random innovation
term is held fixed for each storm event.

5.2 Boundary layer model

In addition to the range of radial profiles, users can also select
one of three boundary layer models. These boundary layer
models relate the winds at the gradient level to those near
the surface, taking into account the asymmetry induced by
the forward motion of the TC and surface friction effects. In
parametric TC models, this is often achieved by vector addi-
tion of the forward motion and the gradient winds together
with a surface wind reduction factor. Examples of this type
include the McConochie et al. (2004) model, which varies
the inflow angle as a function of radial distance, or the Hub-
bert model (Hubbert et al., 1991). Alternatively, a linear ana-
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Figure 13. Observed (shaded) and modelled (contours) distribution of poci for Southern Hemisphere TCs, plotted against (a) pltm, (b) pc,
(c) latitude and (d) day of year. Modelled values are based on a random selection of observed combinations of pc, pltm, latitude and day of
year. Contour interval is 0.01. Note the different horizontal scale in each panel.

Figure 14. Landfalling tropical cyclones in Australia, 1981–2016. Source: IBTrACS v03r09 (1981–2016).
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Figure 15. Mean (a) and standard deviation (b) of rate of change
in central pressure (hPa h−1), based on IBTrACS v03r09 (1981–
2016).

Figure 16. Mean central pressure (hPa), based on IB-
TrACS v03r09 (1981–2016).

lytic model (Kepert, 2001) of the boundary layer flow can be
applied with minimal computational cost.

In this study, the linear boundary layer model of
Kepert (2001) was applied to relate gradient level winds to
surface winds. This model utilises a bulk formulation for the
boundary layer with the drag coefficient set to a constant
value of 0.002 and the turbulent diffusivity for momentum set
to 50 m2 s−1, as recommended by Kepert (2001). The model
assumes Vtangential� Vtranslation, which may be violated for
low-intensity storms (e.g. incipient TCs). The boundary layer
model is modified to linearly reduce the effects of transla-
tion speed when Vtranslation > 0.2Vtangential. The effects are

also reduced to zero at distances greater than 2Rmax, using
an inverse-square decay function.

The linear analytic model generates a surface wind speed
corresponding to a 1 min mean wind speed (Khare et al.,
2009). This is converted to a 0.2 s gust wind speed using a
wind speed conversion factor determined using the approach
outlined in Harper et al. (2010). The resulting wind fields
represent a 10 m above ground, 0.2 s gust wind speed over
flat terrain with an aerodynamic roughness length of 0.02 m.
This is carried across the entire simulation domain, includ-
ing over-water areas. This choice is made to enable direct
comparison to other measures of regional-scale wind haz-
ard such as weather station observations. For more localised
wind speeds that can be used for detailed wind impact calcu-
lations (e.g. Krause and Arthur, 2018), local site conditions
can be incorporated via an offline calculation that can incor-
porate local accelerations over topography and varying sur-
face roughness conditions (Yang et al., 2014).

Throughout the simulations, it is assumed the gradient
level wind is axisymmetric. However, the simulated tracks
can extend to mid-latitudes, where TCs undergo transition
to extra-tropical cyclones and the gradient level wind be-
comes asymmetric (Foley and Hanstrum, 1994; Jones et al.,
2003; Loridan et al., 2013). Further, the assumption in the
linear boundary layer model that Vtangential� Vtranslation does
not hold for transitioning storms, where Vtranslation can ex-
ceed 70 km h−1 (Foley and Hanstrum, 1994). This means the
simulated hazard values in the mid-latitudes (approximately
poleward of 30◦ in the southeastern Indian Ocean) are likely
not indicative of the true wind hazard associated with (transi-
tioning) TCs. It is also likely in these regions that other phe-
nomena (e.g. thunderstorms) are the predominant source of
extreme wind gusts. There are promising developments in the
area of extra-tropical transition (Loridan et al., 2015; Bieli
et al., 2019), which have direct application in probabilistic
modelling frameworks and may be integrated into TCRM in
future releases.

6 Extreme-value distribution fitting

Once wind swaths for the simulated TCs have been gener-
ated using the wind field module, the maximum wind speed
from all simulated events, irrespective of direction, for each
grid point is stored. Because of the large number of events
simulated, it is possible to estimate average recurrence in-
tervals (ARIs) for the wind speeds at each grid point. The
simplest approach is to use an empirical approach based on
Eq. (14):

ARI=
nobs

1− ri
nevents+1

, (14)

where ri is the wind speed rank of the ith event, nobs =

365.25 is the number of values per simulated year and
nevents = 10000× nobs is the total number of simulated
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Figure 17. Observed pressure deficit versus time after landfall (a) and normalised by pressure deficit at landfall (t = 0, b). Colours are for
clarity only.

Figure 18. Observed and modelled pressure deficit decay rates (α)
as a function of landfall pressure deficit (1p0). The regression line
includes the approximate 95 % confidence interval (shaded) based
on bootstrap resampling of the observed values. 1p0 values used
for the modelled decay rates are randomly sampled from the ob-
served values. See text for details of the model equation.

“daily” observations for the 10 000-year simulation. For each
point across the simulation domain, we treat each simulated
event as an individual daily observation and rank the sim-
ulated wind speeds from all events. This usually produces
around 105 records (depending on the frequency of TCs at
that location). The remaining daily records are zero filled.

A more sophisticated approach is also implemented,
where the simulated maximum wind speed values are fitted to
a generalised Pareto distribution (GPD) using a peaks-over-

threshold approach. ARI wind speeds are estimated from the
GPD parameters using Eq. (15):

w(t;µ,σ,ξ)= µ+
σ

ξ

[
(nobsρt)

ξ
− 1

]
, (15)

where w is the wind speed with an ARI of t years. µ, σ and
ξ are the location, scale and shape parameters of the fit-
ted GPD distribution respectively, and ρ is the rate of ex-
ceedances above the threshold u. The threshold is set to the
99.5th percentile of the simulated wind speed values. As
wind speeds are considered a bounded phenomenon (Lech-
ner et al., 1992), the fitted shape parameter ξ can be con-
strained to be positive to ensure the resulting distribution is
bounded at long return periods (Holmes and Moriarty, 1999).
Again, this parameter fitting is performed at each point across
the region of interest, leading to a spatial representation of
ARI wind speeds.

Confidence intervals are estimated from the covariance
matrix of the parameter fit. This method is useful for esti-
mating winds speeds at very long ARIs, where the frequency
of events is very low. ARI wind speeds estimated using this
method tend to be underestimated at lower ARIs compared
to the empirical approach, largely because the threshold se-
lection excludes lower, more frequent wind speeds.

7 Results

7.1 Track model verification

To evaluate the performance of the model, we run a series of
comparisons between the observed tracks and a large num-
ber of simulated track sets. A total of 1000 synthetic-event
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sets were generated, each representing 35 years of TC activ-
ity, mimicking the length of the input historical record. For
each metric, historical values are compared to the mean value
for the collection of synthetic-event sets, with 90th-percentile
confidence intervals calculated using bootstrapping methods.

The distribution of observed longitude crossing rates is
well modelled for both eastward- and westward-moving
storms (Fig. 19). The values represent the probability den-
sity of events crossing each longitude in 2◦ latitudinal seg-
ments. In general, the model simulates the longitude crossing
rates well. Near 15◦ S, 150◦ E, the model does not capture
the rate of TCs crossing the Cape York Peninsula, which is
related to the termination of TCs due to low intensity. Sim-
ilar overall results are obtained for longitude crossing rates
when the model is tested in the western North Pacific and
Atlantic basins (not shown), including in middle to high lati-
tudes, capturing the paths of recurving TCs.

TCRM simulations of minimum central pressure perform
well, especially for the more intense (lower minimum cen-
tral pressure) TC events (Fig. 20). The lower tail of the simu-
lated distribution closely follows the observed tail. For weak
TC events (> 980 hPa), the observed distributions lie outside
the 90th percentile of the simulations. This has little impact
on the derived extreme wind speeds, which are generated by
the most intense TCs.

The spatial distribution of minimum central pressure is
presented in Fig. 21. Values represent the lowest minimum
central pressure value observed in each 1◦ by 1◦ grid cell
in the historical record. We apply the same process to each
1000 synthetic-event set, and the mean of those is presented.
There is general agreement between the synthetic and ob-
served (historic) distributions, though individual events in the
historic record do result in greater variability. The spatial dis-
tribution of the mean central pressure (Fig. 22), calculated
in a similar manner to the minimum central pressure, again
shows good agreement between the synthetic and observed
event sets, without the large variability seen in the historic
minima.

Lifetime maximum intensity (LMI), defined as the maxi-
mum wind speed for the life of the TC, can be used to eval-
uate how well the model simulates the evolution of intensity
of TCs. Figure 23 shows the mean location of LMI in the
observed (top) and simulated (bottom) records. There is little
discernible pattern in the location of LMI for observed TCs.
This may in part be due to the small numbers of events avail-
able for the analysis (n= 377), as only those events with a
maximum wind speed recorded were used. The mean LMI is
generally evenly distributed throughout the domain, though
lower LMI values can be seen over Cape York (145◦ E) and
south of Indonesia at low latitudes. For the simulated events,
there is a clear trend towards higher LMI at higher latitudes
in the Indian Ocean, with the highest LMI simulated at 20–
25◦ S. There are also indications that LMI increases towards
the south in the Coral Sea to the east of Australia.

The average time taken to achieve LMI for observed TCs
(Fig. 24, top) shows little clear pattern, though the areas off
the western coast of Australia do tend to be slightly higher.
The simulated tracks (bottom) display a strong tendency to
achieve LMI at higher latitudes (> 17.5◦ S) and take longer
to achieve LMI in these areas. This may lead to higher ARI
wind speeds at these higher latitudes. Comparing geograph-
ical areas, the observed time to reach LMI off the northwest
coastline is around 96–144 h, while the mean time to reach
LMI is only around 48–72 h for simulated events. On the east
coast, there appears to be less difference between observed
and simulated time to reach LMI, but there are a greater range
of values, ranging between 48 and 120 h.

Figure 25 presents the landfall probabilities around the
Australian coastline. Each gate is 200 km wide and located
approximately 50 km off the coast (Fig. 1). TCRM repli-
cates the observed probability of landfall well, with the mean
of the synthetic-event sets generally close to the observed
probability. The relatively low occurrence of landfall around
the Australian coastline (on average only four TCs cross the
coast each year) means there is large variability in the land-
fall count for any given synthetic-event set. Again, qualita-
tively similar results are obtained for simulations in the west-
ern North Pacific and Atlantic basins (not shown).

At all times the 80th-percentile range captures the ob-
served landfall probability, as expected. However, the mean
landfall probability in the simulations for the region between
Coral Bay and Port Hedland is substantially lower than the
observed landfall probability. This is possibly linked to lower
genesis probabilities directly to the north of this area. His-
torically, there is a local maximum in genesis probability
between 120 and 130◦ E, extending westward into the In-
dian Ocean near 10◦ S (Fig. 5). The mean genesis density
for the simulations does not show the same local maximum
or the westward extension. This lower genesis density is
likely translating into lower track densities in the region and
therefore lowers landfall rates along the northwest Australian
coast. This in turn acts to reduce ARI wind speeds along this
part of the coastline compared to observed ARI wind speeds.

When examining the distribution of intensity at landfall
(Fig. 26), the proportion of category-5 landfalls along the
lower west coast is high, representing around 25 % of land-
falls through gates between Cape Leeuwin and Coral Bay.
This is hypothesised to be linked to the poor representation of
transitioning TCs in this region. The region from Coral Bay
to Port Hedland (noted previously for a low landfall proba-
bility) displays a similar landfall intensity distribution to ob-
servations, where the majority of landfalling TCs are severe
(category 3–5). Along the east coast, between Mackay and
Coffs Harbour, the proportion of category-5 landfalls is also
high (around 20 %). Additionally, the probability of any land-
fall in this region is significantly higher than for the observa-
tions. These two factors contribute to an overestimate of the
ARI wind speeds in southern Queensland and northern New
South Wales.
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Figure 19. Distribution of longitude crossing rates for synthetic and observed TCs. Values represent 100 times the probability density of
events crossing each longitude in 2◦ latitudinal segments. (a) TCs moving east to west; (b) TCs moving west to east. Red lines are the
observed distribution (IBTrACS v03r09 1981–2016); black lines are the mean of 1000 simulations each representing 30 years of activity.
Shaded band indicates the 90th-percentile range of the simulations.

Figure 20. Distribution of minimum central pressure values (hPa).
Red line is the observed distribution (IBTrACS v03r09 1981–
2016); black line is the mean of 1000 simulations each represent-
ing 35 years of activity. Shaded band indicates the 90th-percentile
range of the simulations.

7.2 Wind field model verification

To demonstrate the reliability of the wind field model, we
modelled a number of historical TC events using the para-
metric wind field and compared to observed wind speeds
recorded at Bureau of Meteorology weather stations near to

the track of the TC. We select stations that are within 100 km
of the track, in an effort to verify the modelled events against
the strongest winds of the TC and provide a meaningful re-
sult. In total, 29 stations and 14 TCs are examined, providing
a cursory analysis of the wind field model performance.

The configuration is kept consistent with that used to de-
rive the ARI wind speeds, so no calibration of the parame-
ters (e.g. peakedness parameter) is performed for individual
TCs used in the verification (cf. McConochie et al., 2004).
We chose not to calibrate for each individual event so as to
quantify the capability of the wind field model to reproduce
gross features of observed TCs. In a stochastic model such
as TCRM, it is important that the wind field model displays
no significant bias in wind speed and errors in the mean wind
field are minimised. By using a consistent configuration for
verifying the wind field model, it is possible to quantify the
bias in the wind field that might arise from applying that con-
figuration to a set of synthetically generated TCs. This will
generally result in a poorer simulation of each individual TC
when assessed using metrics such as root mean square error,
since the parameters have not been optimised for the evo-
lution of each individual event. The reader is directed to the
references for the profiles and boundary layer model for more
thorough validation of those models.

Simulated wind speeds are matched to corresponding ob-
servations from weather stations based on the time of obser-
vation. The wind field model provides data at 5 min intervals,
so it is possible that absolute peak observed values may not
match the time interval. Observed wind speeds are corrected
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Figure 21. Historic and synthetic minimum central pressure val-
ues over the simulation domain. Synthetic values are the mean of
1000 simulations of 35 years of TC activity.

for gust averaging time periods (Harper et al., 2010), as the
default configuration for TCRM is to produce wind speeds
representing a 0.2 s gust wind speed. No corrections for site
exposure (e.g. topographic enhancement, surface roughness
changes) are made.

Weather station wind histories

For each simulated event, time histories of wind speed and
direction at all weather stations within the modelled do-
main are recorded. Figures 27–30 present the time history for
four stations (Mardie, Carnarvon, Lucinda Point and Flinders
Reef) during the passage of four separate TCs (Glenda, Ol-
wyn, Yasi and Larry respectively). For each of these events,
the TCRM wind field simulation captures the increase in
wind speed as the TC approaches the station, with the time
of peak wind speeds accurately modelled.

Changes in wind direction follow the observations closely,
except for Lucinda Point (Fig. 29) where the observed winds
quickly returned to a southerly direction after the passage of
TC Yasi. The simulation shows winds turning anti-clockwise
as the TC passes at around 00:00 Z on 3 February 2011, con-
sistent with a cyclonic vortex passing north of the observa-
tion site. It appears a similar shift occurs in the observa-

Figure 22. Historic (a) and synthetic (b) mean central pressure val-
ues across the simulation domain. Synthetic values are the mean of
1000 simulations of 35 years of TC activity.

Figure 23. Historic (a) and synthetic (b) mean lifetime maximum
intensity. Synthetic values are the mean of 1000 simulations of
35 years of TC activity.

tions several hours earlier, but winds turn back to the south
rapidly at around 18:00 Z on 2 February. This difference is
likely due to the model not containing any other sources of
pressure gradient winds from synoptic-scale weather patterns
such as high-pressure ridging into the Coral Sea following
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Figure 24. Mean time taken (h) to achieve lifetime maximum in-
tensity for historical (a) and synthetic (b) TCs. Synthetic values are
the mean of 1000 simulations of 35 years of TC activity.

the passage of the TC (for example, see the discussion in
McConochie et al., 1999).

Peak wind speeds are closely simulated, except for Lu-
cinda Point in TC Yasi, where the wind field model under-
estimates the peak wind speed by nearly 20 m s−1. Among
other events (Fig. 29, lower right panel), the tendency is for
the TCRM wind field simulation to overestimate peak wind
speeds. There are likely several factors (for example, instru-
ment failure or site exposure) leading to this overestimation,
which may be drawn out in a more thorough validation of
the wind field model and analysis of those events. The re-
sults here are likely due to our decision not to correct the
observed wind speeds for site exposure, which would reduce
the modelled wind speeds.

For the complete time histories (all corresponding time
records, not just the peak), Fig. 31 presents the root mean
square error, bias and mean absolute error for all 29 stations
and 14 events modelled. The average RMSE is 9.2 m s−1

and the bias 1.2 m s−1. In the context of a stochastic model
where many thousands of events will be simulated, the aver-
age RMSE outcome is acceptable, but the tendency for peak
wind speeds to be overestimated requires further investiga-
tion.

7.3 ARI wind speed verification

ARI wind speeds for the Australian region are calculated
from a simulation of 10 000 simulated TC seasons, or over
160 000 individual simulated TC events. Two ARI wind
speeds are examined – the 50-year ARI wind speeds are
compared to observed TC-related wind speeds, while the
500-year ARI wind speed is compared to the regional de-
sign wind speeds detailed in AS/NZS 1170.2 (2011). We use
the 500-year ARI wind speed for comparison, as it repre-
sents the regional design wind speed for residential housing
in AS/NZS 1170.2 (2011).

Table 1. Observed and simulated 50-year ARI wind speeds for se-
lected locations. Simulated ARI wind speeds are taken to be the
empirical ARIs. All values are in m s−1.

Simulated Observed AS/NZS
1170.2

Carnarvon (94300) 33.1 45.3 66
Port Hedland (94312) 48.9 56.8 66
Broome (94203) 45.4 41.2 55
Darwin (94120) 34.5 43.8 55
Cairns (94287) 40.4 40.0 55
Townsville (94294) 40.9 43.8 55
Rockhampton (94374) 41.9 35.0 55
Willis Island (94299) 46.3 56.4 55

Observed ARI wind speeds were estimated from daily
maximum gust wind speed observations that may be at-
tributable to the passage of a TC, recorded at Bureau of Me-
teorology weather stations (Fig. 1). All TCs passing within
200 km of the station, when the station was open, were
recorded. Daily maximum wind gusts corresponding to the
closest passage of each TC were then extracted and empir-
ical ARI values determined based on Eq. (14). Corrections
are made for gust wind speed averaging times where instru-
mentation is known (Harper et al., 2010).

The 500-year ARI wind speed map (Fig. 32) displays
qualitative similarities to existing design wind-loading stan-
dards (see Fig. 3.1A in AS/NZS 1170.2), at least over con-
tinental Australia (the design standard does not define wind
speeds over the ocean). The highest wind speeds are esti-
mated along the northwest coast of Australia, with a peak
value near 70 m s−1 near Port Hedland (near 120◦ E) for
the 500-year ARI. The remainder of the northern and much
of the eastern coastline indicates lower wind speeds, gener-
ally between 50 and 60 m s−1. The wind speeds drop below
45 m s−1 across Cape York (142◦ E), where there is also a
marked decrease in TC frequency. The highest values of 500-
year ARI wind speed along the east coast occur around the
Rockhampton region, reaching 60 m s−1. ARI wind speeds
steadily decline further south, reaching around 50 m s−1 in
northern New South Wales. The comparatively high values
at higher latitudes (cf. AS/NSZ 1170.2) are likely indicative
of the model failing to correctly simulate the extra-tropical
transition process noted in Sect. 5.2.

ARI curves for selected locations are presented in Fig. 33,
along with estimated ARI wind speeds for observed TC-
related wind speeds (see below) at those locations. The solid
line is a GPD fitted to the simulated wind speeds using peaks
over threshold with a 99.5th-percentile threshold, but here
we have relaxed the constraint of ξ > 0. The 90th-percentile
confidence intervals are determined from the covariance ma-
trix of the fitting routine.

For locations along the west coast (Carnarvon, Port Hed-
land), the model underestimates the hazard profile compared
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Figure 25. Probability of a TC making landfall around the Australian coastline. Black line is the observed distribution (IBTrACS
v03r09 1981–2016); red line is the mean of 1000 simulations each representing 35 years of activity. Shaded band indicates the 80th-percentile
range of the simulations.

Figure 26. Mean distribution of landfall intensity (by TC intensity category) for synthetic TCs. Categories are based on the Australian
TC intensity scale. The observed landfall probability is shown in black.

to the observed hazard profile. For Port Hedland (64 years
of records), the simulated 50-year ARI wind speed is just
under 50 m s−1, while the observed 50-year ARI is approxi-
mately 57 m s−1 (Table 1). Similarly at Carnarvon (65 years
of records), the simulated 50-year ARI is 35 m s−1 and the
observed 50-year ARI is close to 45 m s−1. This is a signif-
icant discrepancy between the simulation and observations.
In part, this is attributed to the comparatively low landfall
rates along this section of the coastline (Figs. 25 and 26) and
so points to additional work on improving the simulation of

intense TCs along this section of the Australian coastline, in
terms of both event rates and intensity.

In other parts of the country, model performance is much
better. Simulated ARI wind speeds at Darwin closely match
the observed ARI wind speeds, but the outlying observation
of TC Tracy (1974 – 67 m s−1) is cause for further investiga-
tion. This analysis places the observed wind speed of Tracy
at around a 5000-year ARI, but there is significant uncer-
tainty regarding this estimate and conjecture about the most
appropriate way to estimate this from observations (Harper et
al., 2012). For east coast locations, the simulated ARI wind
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Figure 27. Modelled and observed wind speed (a) and direction (b) at Mardie (Western Australia) for the passage of TC Glenda (2006).

Figure 28. Modelled and observed wind speed (a) and direction (b) for Carnarvon (Western Australia) for the passage of TC Olwyn (2015).

speeds for Cairns, Townsville and Rockhampton are all close
to the observed ARI wind speeds, varying at the 50-year ARI
by at most a few percent. The observed ARI wind speeds
generally fall within the 95th-percentile confidence interval
of a GPD fitted to the simulated values (not shown). It is also
notable that observed and simulated ARI wind speeds lie be-
low the corresponding regional wind-loading design levels
specified in AS/NZS 1170.2 (2011) for all locations, except

for Port Hedland where observed ARI wind speeds are close
to the regional design level.

An important component of stochastic models is to check
for convergence in solutions (Shome et al., 2018). For
TCRM, this can be checked by splitting the synthetic cat-
alogue into two subsets, calculating ARI values from each
and examining the range of values. A large difference in
ARI wind speeds indicates the model has not converged. It
is expected that at large ARIs the model would not converge,
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Figure 29. Modelled and observed wind speed (a) and direction (b) at Lucinda Point (Queensland) for the passage of TC Yasi (2011).

Figure 30. Modelled and observed wind speed (a) and direction (b) for Flinders Reef (Queensland) for the passage of TC Larry (2006).

as variability in the tail of the distribution is to be expected
when modelling rare events. Significant difference in the ARI
values for the two subsamples indicates the variability in the
distribution is large. Figure 34 shows the convergence checks
for the locations mentioned above. Carnarvon, Port Hedland
and Willis Island show little difference in the subsets below
the 1000-year ARI level – generally differing by less than
2 %. Darwin, Townsville and Broome show divergence in the
subsets at around the 500-year ARI level. Cairns and Rock-

hampton both display weak convergence beyond the 100-
year ARI level but converge again above 1000 years. These
results suggest that it may be required to run larger cata-
logues to achieve robust convergence of the ARI values, in
line with other hurricane catastrophe models (Shome et al.,
2018).
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Figure 31. Root mean square error (RMSE), bias (Bias), mean absolute error (MAE) and scatter plot of observed versus modelled maximum
wind speed for 42 weather station observations associated with the passage of a TC.

Figure 32. The 500-year ARI wind speed due to tropical cyclones across Australia, using empirically estimated return period wind speeds
(Eq. 11).

8 Conclusion

The Tropical Cyclone Risk Model, developed at Geoscience
Australia, is a new statistical–parametric model of TC be-
haviour that is capable of delivering a high-resolution (ap-
proximately 2 km) spatial understanding of ARI gust wind
speeds due to TCs, at continental scales. It is a free and open-

source software model, with the goal of delivering TC wind
hazard information to the hazard and risk modelling commu-
nity in a free and transparent manner. Potential applications
include evaluation of risk, scenario modelling for emergency
management planning, informing wind-loading requirements
for building standards, and projections of future climate haz-
ard and risk. The model provides information that can read-
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Figure 33. Hazard profile for locations around Australia. Estimated ARI wind speeds derived from observed TC wind speeds are marked
by “×”. “Percentile threshold fit” (blue line) uses the 99.5th percentile as the threshold for the peaks over threshold for fitting the GPD to the
simulated wind speeds from the stochastic-event set (red circles). The blue shading is the 90th-percentile confidence interval of the GPD fit.
The title for each panel includes the years of available observational data for the location.
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Figure 34. ARI convergence tests for locations around Australia. The 95th-percentile range is determined using bootstrap resampling.

ily be used to guide other hazard assessments, such as wave
climate modelling and coastal storm surge, and there is po-
tential to include other perils such as rainfall through appro-
priate parametric models (Lonfat et al., 2007; Mudd et al.,
2015).

Initial evaluation of the model was performed using histor-
ical best-track data for the Australian region to generate a cat-
alogue of 10 000 years of events. The statistical track model
performs well in areas with a high density of TC events, but
confidence is reduced at higher latitudes and near the Equa-
tor due to the lower number of historical events. Simulated
ARI wind speeds are generally consistent with observations

of TC-generated winds around Australia, except in the north-
west of the country where the simulated ARI wind speeds
are significantly lower than observed. This deficit is linked to
low landfall rates in this part of the country and will be inves-
tigated in the future. There are also significant opportunities
to improve model performance at mid-latitudes, especially in
processes such as extra-tropical transition, where other types
of weather phenomena may have a substantial influence on
the wind hazard climate.
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