Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multilayer-HySEA model validation for landslide-generated tsunamis – Part 2: Granular slides
Departamento de Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada,
Facultad de Ciencias, Universidad de Málaga, 29080 Málaga, Spain
Cipriano Escalante
Departamento de Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada,
Facultad de Ciencias, Universidad de Málaga, 29080 Málaga, Spain
current affiliation: Departamento de Matemáticas, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
Manuel J. Castro
Departamento de Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada,
Facultad de Ciencias, Universidad de Málaga, 29080 Málaga, Spain
Related authors
Jorge Macías, Cipriano Escalante, and Manuel J. Castro
Nat. Hazards Earth Syst. Sci., 21, 775–789, https://doi.org/10.5194/nhess-21-775-2021, https://doi.org/10.5194/nhess-21-775-2021, 2021
Short summary
Short summary
The validation of numerical models is a first unavoidable step before their use as predictive tools. This requirement is even more necessary when the developed models are going to be used for risk assessment in natural events where human lives are involved. The present work is the first step in this task for the Multilayer-HySEA model, a novel dispersive multilayer model of the HySEA suite developed at the University of Malaga, following the standards proposed by the NTHMP of the US.
Cléa Lumina Denamiel, Alexis Marboeuf, Anne Mangeney, Anne Le Friant, Marc Peruzzetto, Antoine Lucas, Manuel J. Castro Díaz, and Enrique Fernández-Nieto
EGUsphere, https://doi.org/10.5194/egusphere-2025-5671, https://doi.org/10.5194/egusphere-2025-5671, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Landslide-Tsurrogate v1.0 is an open-source Python/MATLAB tool that rapidly estimates tsunami hazards from submarine landslides using surrogate models instead of costly numerical simulations. Based on polynomial chaos expansions, it enables sensitivity analyses, fast probabilistic results, and user-friendly visualization. Tested in Mayotte, it runs in seconds and can be applied to any coastal region.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
Jorge Macías, Cipriano Escalante, and Manuel J. Castro
Nat. Hazards Earth Syst. Sci., 21, 775–789, https://doi.org/10.5194/nhess-21-775-2021, https://doi.org/10.5194/nhess-21-775-2021, 2021
Short summary
Short summary
The validation of numerical models is a first unavoidable step before their use as predictive tools. This requirement is even more necessary when the developed models are going to be used for risk assessment in natural events where human lives are involved. The present work is the first step in this task for the Multilayer-HySEA model, a novel dispersive multilayer model of the HySEA suite developed at the University of Malaga, following the standards proposed by the NTHMP of the US.
Cited articles
Abadie, S., Morichon, D., Grilli, S., and Glockner, S.: Numerical simulation of waves generated by landslides using a multiple-fluid Navier–Stokes model,
Coast. Eng., 57, 779–794, https://doi.org/j.coastaleng.2010.03.003, 2010. a
Abadie, S. M., Harris, J. C., Grilli, S. T., and Fabre, R.: Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja
Volcano (La Palma, Canary Islands): Tsunami source and near field effects, J. Geophys. Res.-Oceans, 117, C05030, https://doi.org/10.1029/2011JC007646, 2012. a
Adsuara, J., Cordero-Carrión, I., Cerdá-Durán, P., and Aloy, M.: Scheduled relaxation Jacobi method: Improvements and applications, J. Comput. Phys., 321, 369–413, https://doi.org/10.1016/j.jcp.2016.05.053, 2016. a
Ataie-Ashtiani, B. and Najafi-Jilani, A.: Laboratory investigations on
impulsive waves caused by underwater landslide, Coast. Eng., 55, 989–1004, https://doi.org/10.1016/j.coastaleng.2008.03.003, 2008. a, b
Ataie-Ashtiani, B. and Shobeyri, G.: Numerical simulation of landslide
impulsive waves by incompressible smoothed particle hydrodynamics, Int. J. Numer. Meth. Fluids, 56, 209–232, https://doi.org/10.1002/fld.1526, 2008. a
Castro, M. and Fernández-Nieto, E.: A class of computationally fast first
order finite volume solvers: PVM methods, SIAM J. Scient. Comput., 34, A2173–A2196, 2012. a
Castro, M., Ortega, S., de la Asunción, M., Mantas, J., and Gallardo, J.:
GPU computing for shallow water flow simulation based on finite volume schemes, Comptes Rendus Mécanique, 339, 165–184, 2011. a
Escalante, C., Fernández-Nieto, E., Morales, T., and Castro, M.: An efficient two–layer non-hydrostatic approach for dispersive water waves, J. Scient. Comput., 79, 273–320, https://doi.org/10.1007/s10915-018-0849-9, 2018a. a, b, c
Escalante, C., Morales, T., and Castro, M.: Non-hydrostatic pressure shallow
flows: GPU implementation using finite volume and finite difference scheme,
Appl. Math. Comput., 338, 631–659, https://doi.org/10.1016/j.amc.2018.06.035, 2018b. a, b, c
Fernández-Nieto, E., Bouchut, F., Bresch, D., Castro, M., and Mangeney, A.: A new Savage-Hutter type model for submarine avalanches and generated
tsunami, J. Comput. Phys., 227, 7720–7754, 2008. a
Ferreiro-Ferreiro, A., García-Rodríguez, J., López-Salas, J., Escalante, C., and Castro, M.: Global optimization for data assimilation in landslide tsunami models, J. Comput. Phys., 403, 109069, https://doi.org/10.1016/j.jcp.2019.109069, 2020. a
Fine, I. V., Rabinovich, A. B., and Kulikov, E. A.: Numerical modelling of
landslide generated tsunamis with application to the Skagway Harbor tsunami of November 3, 1994, in: Proc. Intl. Conf. on Tsunamis, Paris, 211–223, 1998. a
Fritz, H. M., Hager, W. H., and Minor, H.-E.: Near field characteristics of
landslide generated impulse waves, J. Waterway Port Coast. Ocean Eng., 130, 287–302, https://doi.org/10.1061/(ASCE)0733-950X(2004)130:6(287), 2004. a
Garres-Díaz, J., Fernández-Nieto, E. D., Mangeney, A., and de Luna, T. M.: A weakly non-hydrostatic shallow model for dry granular flows, J. Scient. Comput., 86, https://doi.org/10.1007/s10915-020-01377-9, 2021. a, b, c
González-Vida, J., Macías, J., Castro, M., Sánchez-Linares, C.,
Ortega, S., and Arcas, D.: The Lituya Bay landslide-generated mega-tsunami.
Numerical simulation and sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 369–388, https://doi.org/10.5194/nhess-19-369-2019, 2019. a, b, c, d
Grilli, S. T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, D., Ma, G.,
Kirby, J. T., and Shi, F.: Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case
studies off the US East Coast, Nat. Hazards, 86, 353–391, https://doi.org/10.1007/s11069-016-2692-3, 2017. a, b, c, d
Harbitz, C. B., Pedersen, G., and Gjevik, B.: Numerical simulations of large
water waves due to landslides, J. Hydraul. Eng., 119, 1325–1342, https://doi.org/10.1061/(ASCE)0733-9429(1993)119:12(1325), 1993. a
Heinrich, P.: Nonlinear water waves generated by submarine and aerial
landslides, J. Waterway Port Coast. Ocean Eng., 118, 249–266, https://doi.org/10.1061/(ASCE)0733-950X(1992)118:3(249), 1992. a
Heller, V. and Hager, W.: Impulse product parameter in landslide generated
impulse waves, J. Waterway Port Coast. Ocean Eng., 136, 145–155, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037, 2010. a
Horrillo, J., Wood, A., Kim, G.-B., and Parambath, A.: A simplified 3-D
Navier–Stokes numerical model for landslide-tsunami: Application to the Gulf of Mexico, J. Geophys. Res.-Oceans, 118, 6934–6950, https://doi.org/10.1002/2012JC008689, 2013. a
Kirby, J. T., Shi, F., Nicolsky, D., and Misra, S.: The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: a comparison of modeling approaches, Landslides, 13, 1421–1434, https://doi.org/10.1007/s10346-016-0682-x, 2016. a, b
Kirby, J. T., Grilli, S. T., Zhang, C., Horrillo, J., Nicolsky, D., and Liu, P. L.-F.: The NTHMP Landslide Tsunami Benchmark Workshop, Galveston, January 9–11, 2017, Tech. rep., Research Report CACR-18-01, available at: http://www1.udel.edu/kirby/landslide/report/kirby-etal-cacr-18-01.pdf
(last access: 20 February 2021), 2018. a, b, c
Ma, G., Shi, F., and Kirby, J. T.: Shock-capturing non-hydrostatic model for
fully dispersive surface wave processes, Ocean Model., 43–44, 22–35,
https://doi.org/10.1016/j.ocemod.2011.12.002, 2012. a
Ma, G., Kirby, J. T., and Shi, F.: Numerical simulation of tsunami waves
generated by deformable submarine landslides, Ocean Model., 69, 146–165,
https://doi.org/10.1016/j.ocemod.2013.07.001, 2013. a
Ma, G., Kirby, J. T., Hsu, T.-J., and Shi, F.: A two-layer granular landslide
model for tsunami wave generation: Theory and computation, Ocean Model., 93, 40–55, https://doi.org/10.1016/j.ocemod.2015.07.012, 2015. a, b, c
Macías, J.: HySEA codes web page, available at: https://edanya.uma.es/hysea/, last access: 21 February 2021. a
Macías, J., Vázquez, J., Fernández-Salas, L., González-Vida, J., Bárcenas, P., Castro, M., del Río, V. D., and Alonso, B.: The Al-Borani submarine landslide and associated tsunami. A modelling approach, Mar. Geol., 361, 79–95, https://doi.org/10.1016/j.margeo.2014.12.006, 2015. a, b
Macías, J., Castro, M., Ortega, S., Escalante, C., and González-Vida,
J.: Performance Benchmarking of Tsunami-HySEA Model for NTHMP's Inundation Mapping Activities, Pure Appl. Geophys., 174, 3147–3183, https://doi.org/10.1007/s00024-017-1583-1, 2017. a
Macías, J., Escalante, C., Castro, M., González-Vida, J., and Ortega,
S.: HySEA model, Landslide Benchmarking Results, NTHMP report, Tech. rep., Universidad de Málaga, Málaga, https://doi.org/10.13140/RG.2.2.27081.60002, 2017. a, b
Macías, J., Escalante, C., and Castro, M.: Performance assessment of
Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data, Coast. Eng., 158, 103667, https://doi.org/10.1016/j.coastaleng.2020.103667, 2020a. a
Macías, J., Escalante, C., and Castro, M.: Numerical results in
Multilayer-HySEA model validation for landslide generated tsunamis. Part II Granular slides, Dataset on Mendeley, https://doi.org/10.17632/94txtn9rvw.2, 2020b. a
Macías, J., Ortega, S., González-Vida, J., and Castro, M.: Performance assessment of Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Field cases, Ocean Model., 152, 101645, https://doi.org/10.1016/j.ocemod.2020.101645, 2020c. a
Macías, J., Escalante, C., and Castro, M. J.: Multilayer-HySEA model
validation for landslide-generated tsunamis – Part 1: Rigid slides, Nat. Hazards Earth Syst. Sci., 21, 775–789, https://doi.org/10.5194/nhess-21-775-2021, 2021.
a, b, c, d
Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J. P., and Bristeau, M. O.:
Numerical modeling of self-channeling granular flows and of their
levee-channel deposits, J. Geophys. Res.-Earth, 112, F02017,
https://doi.org/10.1029/2006JF000469, 2007. a, b
Mohammed, F. and Fritz, H. M.: Physical modeling of tsunamis generated by
three-dimensional deformable granular landslides, J. Geophys. Res.-Oceans, 117, C11015, https://doi.org/10.1029/2011JC007850, 2012. a, b, c, d
Rzadkiewicz, S. A., Mariotti, C., and Heinrich, P.: Numerical simulation of
submarine landslides and their hydraulic effects, J. Waterway Port Coast. Ocean Eng., 123, 149–157, https://doi.org/10.1061/(ASCE)0733-950X(1997)123:4(149), 1997. a, b
Sánchez-Linares, C., de la Asunción, M., Castro, M., Vida, J. G., Macías, J., and Mishra, S.: Uncertainty quantification in tsunami modeling using multi-level Monte Carlo finite volume method, J. Math. Indust., 6, 5, https://doi.org/10.1186/s13362-016-0022-8, 2016. a
Savage, S. and Hutter, K.: The motion of a finite mass of granular material
down a rough incline, J. Fluid Mech., 199, 177–215, https://doi.org/10.1017/S0022112089000340, 1989. a
Weiss, R., Fritz, H. M., and Wünnemann, K.: Hybrid modeling of the
mega-tsunami runup in Lituya Bay after half a century, Geophys. Res. Lett., 36, L09602, https://doi.org/10.1029/2009GL037814, 2009. a
Yavari-Ramshe, S. and Ataie-Ashtiani, B.: Numerical modeling of subaerial and
submarine landslide-generated tsunami waves–recent advances and future
challenges, Landslides, 13, 1325–1368, https://doi.org/10.1007/s10346-016-0734-2, 2016. a
Short summary
Numerical models need to be validated prior to their use as predictive tools. This requirement becomes even more necessary when these models are going to be used for risk assessment in natural hazards where human lives are involved. The present work aims to benchmark the novel Multilayer-HySEA model for landslide-generated tsunamis produced by granular slides, in order to provide to the tsunami community with a robust, efficient, and reliable tool for landslide tsunami hazard assessment.
Numerical models need to be validated prior to their use as predictive tools. This requirement...
Altmetrics
Final-revised paper
Preprint