Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-775-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-775-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multilayer-HySEA model validation for landslide-generated tsunamis – Part 1: Rigid slides
Departamento de Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada,
Facultad de Ciencias, Universidad de Málaga, 29080 Málaga, Spain
Cipriano Escalante
Departamento de Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada,
Facultad de Ciencias, Universidad de Málaga, 29080 Málaga, Spain
currently at: Departamento de Matemáticas, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
Manuel J. Castro
Departamento de Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada,
Facultad de Ciencias, Universidad de Málaga, 29080 Málaga, Spain
Related authors
Jorge Macías, Cipriano Escalante, and Manuel J. Castro
Nat. Hazards Earth Syst. Sci., 21, 791–805, https://doi.org/10.5194/nhess-21-791-2021, https://doi.org/10.5194/nhess-21-791-2021, 2021
Short summary
Short summary
Numerical models need to be validated prior to their use as predictive tools. This requirement becomes even more necessary when these models are going to be used for risk assessment in natural hazards where human lives are involved. The present work aims to benchmark the novel Multilayer-HySEA model for landslide-generated tsunamis produced by granular slides, in order to provide to the tsunami community with a robust, efficient, and reliable tool for landslide tsunami hazard assessment.
Cléa Lumina Denamiel, Alexis Marboeuf, Anne Mangeney, Anne Le Friant, Marc Peruzzetto, Antoine Lucas, Manuel J. Castro Díaz, and Enrique Fernández-Nieto
EGUsphere, https://doi.org/10.5194/egusphere-2025-5671, https://doi.org/10.5194/egusphere-2025-5671, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Landslide-Tsurrogate v1.0 is an open-source Python/MATLAB tool that rapidly estimates tsunami hazards from submarine landslides using surrogate models instead of costly numerical simulations. Based on polynomial chaos expansions, it enables sensitivity analyses, fast probabilistic results, and user-friendly visualization. Tested in Mayotte, it runs in seconds and can be applied to any coastal region.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
Jorge Macías, Cipriano Escalante, and Manuel J. Castro
Nat. Hazards Earth Syst. Sci., 21, 791–805, https://doi.org/10.5194/nhess-21-791-2021, https://doi.org/10.5194/nhess-21-791-2021, 2021
Short summary
Short summary
Numerical models need to be validated prior to their use as predictive tools. This requirement becomes even more necessary when these models are going to be used for risk assessment in natural hazards where human lives are involved. The present work aims to benchmark the novel Multilayer-HySEA model for landslide-generated tsunamis produced by granular slides, in order to provide to the tsunami community with a robust, efficient, and reliable tool for landslide tsunami hazard assessment.
Cited articles
Adsuara, J., Cordero-Carrión, I., Cerdá-Durán, P., and Aloy, M.: Scheduled relaxation Jacobi method: Improvements and applications,
J. Comput. Phys., 321, 369–413, 2016. a
Ataie-Ashtiani, B. and Najafi-Jilani, A.: Laboratory investigations on
impulsive waves caused by underwater landslide, Coast. Eng., 55, 989–1004, https://doi.org/10.1016/j.coastaleng.2008.03.003, 2008. a
Bai, Y. and Cheung, K. F.: Linear shoaling of free–surface waves in
multi–layer non–hydrostatic models, Ocean Model., 121, 90–104,
https://doi.org/10.1016/j.ocemod.2017.11.005, 2018. a
Castro, M. and Fernández-Nieto, E.: A class of computationally fast first
order finite volume solvers: PVM methods,
SIAM J. Sci. Comput., 34, A2173–A2196, https://doi.org/10.1137/100795280, 2012. a
Castro, M., Ortega, S., de la Asunción, M., Mantas, J., and Gallardo, J.:
GPU computing for shallow water flow simulation based on finite volume
schemes, C. R. Mécanique, 339, 165–184, 2011. a
Chorin, A. J.: Numerical solution of the Navier-Stokes equations,
Math. Comput., 22, 745–762, https://doi.org/10.2307/2004575, 1968. a
Cui, H., Pietrzak, J., and Stelling, G.: Optimal dispersion with minimized
Poisson equations for non–hydrostatic free surface flows, Ocean Model.,
81, 1–12, https://doi.org/10.1016/j.ocemod.2014.06.004, 2014. a
de la Asunción, M., Castro, M., González-Vida, J., Macías, J., Ortega,
S., and Sánchez-Linares, C.: East Coast Non-Seismic Tsunamis: A first
landslide approach, Tech. Rep., NOAA report, https://doi.org/10.13140/2.1.4645.1520, Universidad de Málaga, Málaga, 9 pp., 2013. a
Escalante, C., Dumbser, M., and Castro, M. J.: An efficient hyperbolic
relaxation system for dispersive non-hydrostatic water waves and its solution
with high order discontinuous Galerkin schemes, J. Comput. Phys., 394, 385–416, https://doi.org/10.1016/j.jcp.2019.05.035, 2019. a
Fritz, D., Hager, W., and Minor, H.-E.: Lituya Bay case: rockslide impact and wave runup, Science of Tsunami Hazards, 19, 3–22, 2001. a
González-Vida, J. M., Macías, J., Castro, M. J., Sánchez-Linares, C., de la Asunción, M., Ortega-Acosta, S., and Arcas, D.: The Lituya Bay landslide-generated mega-tsunami – numerical simulation and sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 369–388, https://doi.org/10.5194/nhess-19-369-2019, 2019. a
Grilli, S. and Watts, P.: Modeling of waves generated by a moving submerged
body, Applications to underwater landslides,
Eng. Anal. Bound. Elem., 23, 645–656, https://doi.org/10.1016/S0955-7997(99)00021-1, 1999. a
Grilli, S. and Watts, P.: Tsunami Generation by Submarine Mass Failure, I:
Modeling, Experimental Validation, and Sensitivity Analyses, J. Waterw. Port. Coast., 131, 283–297,
https://doi.org/10.1061/(ASCE)0733-950X(2005)131:6(283), 2005. a, b, c, d
Grilli, S., Vogelmann, S., and Watts, P.: Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides, Eng. Anal. Bound. Elem., 26, 301–313, https://doi.org/10.1016/S0955-7997(01)00113-8, 2002. a
Heller, V. and Hager, W.: Waves types of landslide generated impulse waves,
Ocean Eng., 38, 630–640, 2011. a
Horrillo, J., Grilli, S., Nicolsky, D., Roeber, V., and Zhang, J.: Performance Benchmarking Tsunami Models for NTHMP's Inundation Mapping Activities, Pure Appl. Geophys., 172, 869–884, https://doi.org/10.1007/s00024-014-0891-y, 2015. a
Iglesias, O.: Generación y propagación de tsunamis en el mar
Catalano-Balear, PhD thesis, Universitat de Barcelona, Barcelona, Spain,
available at: http://hdl.handle.net/2445/68704 (last access: 20 February 2021), 2015. a
Kazolea, M. and Delis, A. I.: A well-balanced shock-capturing hybrid finite
volume-finite difference numerical scheme for extended 1D Boussinesq models,
Appl. Numer. Math., 67, 167–186,
https://doi.org/10.1016/j.apnum.2011.07.003, 2013. a
Liu, P. L.-F., Wu, T.-R., Raichlen, F., Synolakis, C. E., and Borrero, J. C.:
Runup and rundown generated by three-dimensional sliding masses,
J. Fluid Mech., 536, 107–144, https://doi.org/10.1017/S0022112005004799, 2005. a, b, c
Liu, P. L.-F., Yeh, H., and Synolakis, C.: Advanced Numerical Models for
Simulating Tsunami Waves and Runup, World Scientific, 10, 344 pp., https://doi.org/10.1142/6226,
2008. a
Lynett, P. and Liu, P. L.-F.: A numerical study of
submarine–landslide–generated waves and
run–up, P. Roy. Soc. Lond. A Mat., 458, 2885–2910,
https://doi.org/10.1098/rspa.2002.0973, 2002. a
Lynett, P., Gately, K., Wilson, R., Montoya, L., Arcas, D., Aytore, B., Bai,
Y., Bricker, J., Castro, M., Cheung, K., David, C., Dogan, G., Escalante, C.,
González-Vida, J., Grilli, S., Heitmann, T., Horrillo, J., Kanouglu, U.,
Kian, R., Kirby, J., Li, W., Macías, J., Nicolsky, D., Ortega, S.,
Pampell-Manis, A., Park, Y., Roeber, V., Sharghivand, N., Shelby, M., Shi,
F., Tehranirad, B., Tolkova, E., Thio, H., Velioglu, D., Yalciner, A.,
Yamazaki, Y., Zaytsev, A., and Zhang, Y.: Inter-model analysis of
tsunami-induced coastal currents, Ocean Model., 114, 14–32,
https://doi.org/10.1016/j.ocemod.2017.04.003, 2017. a
Ma, G., Shi, F., and Kirby, J.: Shock-capturing non-hydrostatic model for fully dispersive surface wave processes, Ocean Model., 43–44, 22–35, 2012. a
Macías, J.: HySEA codes, available at: https://edanya.uma.es/hysea/index.php/download, last access: 20 February 2021. a
Macías, J., Vázquez, J., Fernández-Salas, L., González-Vida, J.,
Bárcenas, P., Castro, M., del Río, V. D., and Alonso, B.: The Al-Borani
submarine landslide and associated tsunami, A modelling approach,
Mar. Geol., 361, 79–95, https://doi.org/10.1016/j.margeo.2014.12.006, 2015. a
Macías, J., Castro, M., Ortega, S., Escalante, C., and González-Vida,
J.: Performance Benchmarking of Tsunami-HySEA Model for NTHMP's
Inundation Mapping Activities, Pure Appl. Geophys., 174, 3147–3183, https://doi.org/10.1007/s00024-017-1583-1, 2017. a
Macías, J., Escalante, C., Castro, M., González-Vida, J., and Ortega, S.:
HySEA model, Landslide Benchmarking Results, Tech. Rep., NTHMP report,
Universidad de Málaga, Málaga, 28 pp., https://doi.org/10.13140/RG.2.2.27081.60002, 2017. a, b
Macías, J., Escalante, C., and Castro, M.: Performance assessment of
Tsunami-HySEA model for NTHMP tsunami currents benchmarking, Laboratory
data, Coast. Eng., 158, 103667, https://doi.org/10.1016/j.coastaleng.2020.103667, 2020a. a
Macías, J., Escalante, C., and Castro, M.: Numerical results in
Multilayer-HySEA model validation for landslide generated tsunamis, Part I: Rigid slides, Dataset, Mendeley Data, https://doi.org/10.17632/xtfzrbvcb2.3, 2020b. a
Macías, J., Ortega, S., González-Vida, J., and Castro, M.: Performance
assessment of Tsunami-HySEA model for NTHMP tsunami currents
benchmarking, Field cases, Ocean Model., 152, 101645,
https://doi.org/10.1016/j.ocemod.2020.101645, 2020c. a, b
Macías, J., Escalante, C., and Castro, M. J.: Multilayer-HySEA model validation for landslide-generated tsunamis – Part 2: Granular slides, Nat. Hazards Earth Syst. Sci., 21, 791–805, https://doi.org/10.5194/nhess-21-791-2021, 2021. a
Madsen, P. and Sorensen, O.: A new form of the Boussinesq equations with
improved linear dispersion characteristics, Part II: A slowing varying
bathymetry, Coast. Eng., 18, 183–204, 1992. a
Ricchiuto, M. and Filippini, A. G.: Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries, J. Comput. Phys., 271, 306–341, https://doi.org/10.1016/j.jcp.2013.12.048,
2014. a
Roeber, V., Cheung, K. F., and Kobayashi, M. H.: Shock-capturing
Boussinesq-type model for nearshore wave processes, Coast. Eng., 57,
407–423, https://doi.org/10.1016/j.coastaleng.2009.11.007, 2010. a, b, c, d
Sánchez-Linares, C.: Simulación numérica de tsunamis generados por
avalanchas submarinas: aplicación al caso de Lituya Bay, Master's thesis,
University of Málaga, Spain, 2011. a
Schäffer, H. A. and Madsen, P. A.: Further enhancements of
Boussinesq-type equations, Coast. Eng., 26, 1–14,
https://doi.org/10.1016/0378-3839(95)00017-2, 1995. a, b, c
ten Brink, U., Chaytor, J., Geist, E., Brothers, D., and Andrews, B.:
Assessment of tsunami hazard to the US Atlantic margin, Mar. Geol.,
353, 31–54, https://doi.org/10.1016/j.margeo.2014.02.011, 2014. a
Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., and Tappin, D. R.: Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model, Nat. Hazards Earth Syst. Sci., 3, 391–402, https://doi.org/10.5194/nhess-3-391-2003, 2003. a
Watts, P., Grilli, S. T., Tappin, D. R., and Fryer, G. J.: Tsunami Generation
by Submarine Mass Failure, II: Predictive Equations and Case Studies,
J. Waterw. Port. Coast., 131, 298–310,
https://doi.org/10.1061/(ASCE)0733-950X(2005)131:6(298), 2005. a
Short summary
The validation of numerical models is a first unavoidable step before their use as predictive tools. This requirement is even more necessary when the developed models are going to be used for risk assessment in natural events where human lives are involved. The present work is the first step in this task for the Multilayer-HySEA model, a novel dispersive multilayer model of the HySEA suite developed at the University of Malaga, following the standards proposed by the NTHMP of the US.
The validation of numerical models is a first unavoidable step before their use as predictive...
Altmetrics
Final-revised paper
Preprint