Articles | Volume 21, issue 11
https://doi.org/10.5194/nhess-21-3353-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3353-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tidal flood area mapping in the face of climate change scenarios: case study in a tropical estuary in the Brazilian semi-arid region
Paulo Victor N. Araújo
CORRESPONDING AUTHOR
Postgraduate Program in Geodynamics and Geophysics (PPGG), Federal
University of Rio Grande do Norte, P.O. Box 1524, Natal, Rio Grande do Norte, 59078-970,
Brazil
Research Group on Environmental Analysis, Modelling and Geoinformation
(PAMGEIA), Federal Institute of Education, Science and Technology of Rio
Grande do Norte, Macau, Rio Grande do Norte, 59500-000, Brazil
Laboratory of Geotechnologies, Coastal and Ocean Modelling (GNOMO),
Department of Civil Engineering, Federal University of Rio Grande do Norte,
Natal, Rio Grande do Norte, 59078-970, Brazil
Venerando E. Amaro
Postgraduate Program in Geodynamics and Geophysics (PPGG), Federal
University of Rio Grande do Norte, P.O. Box 1524, Natal, Rio Grande do Norte, 59078-970,
Brazil
Laboratory of Geotechnologies, Coastal and Ocean Modelling (GNOMO),
Department of Civil Engineering, Federal University of Rio Grande do Norte,
Natal, Rio Grande do Norte, 59078-970, Brazil
Leonlene S. Aguiar
Laboratory of Geotechnologies, Coastal and Ocean Modelling (GNOMO),
Department of Civil Engineering, Federal University of Rio Grande do Norte,
Natal, Rio Grande do Norte, 59078-970, Brazil
Caio C. Lima
Laboratory of Geotechnologies, Coastal and Ocean Modelling (GNOMO),
Department of Civil Engineering, Federal University of Rio Grande do Norte,
Natal, Rio Grande do Norte, 59078-970, Brazil
Federal Institute of Education, Science and Technology of Rio Grande
do Norte, Natal, Rio Grande do Norte, 59015-000, Brazil
Alexandre B. Lopes
Center for Marine Studies (CEM), Federal University of Paraná, P.O. Box 61,
Curitiba, Paraná, 83225-976, Brazil
Related authors
Thiago Cavalcante Lins Silva, Marco Túlio Mendonça Diniz, Paulo Victor do Nascimento Araújo, José Yure Gomes Dos Santos, Bruno Ferreira, and Jucielho Pedro Da Silva
EGUsphere, https://doi.org/10.5194/egusphere-2025-4929, https://doi.org/10.5194/egusphere-2025-4929, 2026
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study examines the risks of sea level rise on Brazil's semi-arid coast, a vulnerable, low-lying region. Using open data, we modelled tidal flooding and assessed the social and economic impacts on towns and salt pan areas. The results revealed significant exposure even in conservative scenarios, emphasising the urgent need for adaptation in coastal areas of the Global South.
Thiago Cavalcante Lins Silva, Marco Túlio Mendonça Diniz, Paulo Victor do Nascimento Araújo, José Yure Gomes Dos Santos, Bruno Ferreira, and Jucielho Pedro Da Silva
EGUsphere, https://doi.org/10.5194/egusphere-2025-4929, https://doi.org/10.5194/egusphere-2025-4929, 2026
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study examines the risks of sea level rise on Brazil's semi-arid coast, a vulnerable, low-lying region. Using open data, we modelled tidal flooding and assessed the social and economic impacts on towns and salt pan areas. The results revealed significant exposure even in conservative scenarios, emphasising the urgent need for adaptation in coastal areas of the Global South.
Cited articles
Aguiar, L. S., Amaro, V. E., Araújo, P. V. N., and Santos, A. L. S.:
Geotecnologias de Baixo Custo Aplicadas à Avaliação de Risco por
Inundação em Áreas Urbanas Costeiras em Cenários de
Mudanças Climáticas, Anuário do Instituto de Geociências –
UFRJ, 42, 267–290, https://doi.org/10.11137/2019_1_267_290, 2019.
Amaro, V. E., Santos, M. S. T., and Souto, M. V. S.: Geotecnologias Aplicadas ao
Monitoramento Costeiro: Sensoriamento Remoto e Geodésia de Precisão,
1st Ed., Edição dos Autores, Natal, RN, 118 pp., 2012.
ANA – Agência Nacional das Águas: Plano de recursos hídricos da
bacia hidrográfica do rio Piancó-Piranhas-Açu, Brasília-DF,
167 pp., available at: http://piranhasacu.ana.gov.br/produtos/PRH_PiancoPiranhasAcu_ResumoExecutivo_30062016.pdf
(last access: 25 June 2019), 2016.
Araújo, P. V. N., Amaro, V. E.; Alcoforado, A. V. C., and Santos, A. L.
S.: Acurácia Vertical e Calibração de Modelos Digitais de
Elevação (MDEs) para a Bacia Hidrográfica Piranhas-Açú,
Rio Grande do Norte, Brasil, Anuário do Instituto de Geociências –
UFRJ, 41, 351–364, https://doi.org/10.11137/2018_1_351_364, 2018.
Araújo, P. V. N., Amaro, V. E., Silva, R. M., and Lopes, A. B.: Delimitation of flood areas based on a calibrated a DEM and geoprocessing: case study on the Uruguay River, Itaqui, southern Brazil, Nat. Hazards Earth Syst. Sci., 19, 237–250, https://doi.org/10.5194/nhess-19-237-2019, 2019.
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cookeh, R.
M.: Ice sheet contributions to future sea-level rise from structured expert
judgment, P. Natl. Acad. Sci. USA, 116, 11195–11200,
https://doi.org/10.1073/pnas.1817205116, 2019.
Barbosa, M. E. F., Boski, T., Bezerra, F. H. R., Gomes, M. P., Lima-Filho,
F. P., Pereira, L. C., and Maia, R. P.: Late Quaternary infilling of the
Assu River embayment and related sea level changes in NE Brazil, Mar.
Geol., 405, 23–37, https://doi.org/10.1016/j.margeo.2018.07.014, 2018a.
Barbosa, M. E. F., Bezerra, F. H. R., Boski, T., Lima-Filho, F. P., and
Valdevino, D. S.: Padrões geomorfológicos na região estuarina do
Rio Assu, NE – Brasil, Revista Brasileira de Geomorfologia, 19, 525–545,
https://doi.org/10.20502/rbg.v19i3.1208, 2018b.
Boori, M. S., Amaro, V. E., and Targino, A.: Coastal risk assessment and
adaptation of the impact of sea-level rise, climate change and hazards: A RS
and GIS based approach in Apodi-Mossoró estuary, Northeast Brazil,
International Journal of Geomatics and Geosciences, 2, 815–832, 2012.
Brasil: Plano Nacional de Adaptação à Mudança do Clima,
estratégias setoriais e temáticas, Ministério do Meio Ambiente,
Brasília-DF, v.2, 295 pp., available at:
https://www.mma.gov.br/images/arquivo/80182/LIVRO_PNA_ Plano Nacional_V2_copy_copy.pdf (last access: 12 April 2019), 2016.
Busman, D. V., Amaro, V. E., and Souza-Filho, P. W. M.: Análise
Estatística Multivariada de Métodos de Vulnerabilidade Física
em Zonas Costeiras Tropicais, Revista Brasileira de Geomorfologia, 17,
499–516, https://doi.org/10.20502/rbg.v17i3.912, 2016.
Castro, B. M., Brandini, F. P., Wainer, I. E. K. C., and Dottori, M.: O mar
de amanhã, com as mudanças climáticas de hoje, Ciência e
Cultura, 62, 40–42, available at:
http://cienciaecultura.bvs.br/pdf/cic/v62n3/a16v62n3.pdf (last access: 11 November 2019), 2010.
CHM – Centro de Hidrografia da Marinha, Marinha do Brasil: Sondagem
batimétrica, available at:
https://www.marinha.mil.br/chm/dados-do-segnav-lev-hidro/sondagem-batimetrica,
last access: 20 April 2019a.
CHM – Centro de Hidrografia da Marinha. Marinha do Brasil. Maregrafia e
fluviometria. available at:
https://www.marinha.mil.br/chm/dados-do-segnav-lev-hidro/maregrafia-e-fluviometria,
last access: 20 April 2019b.
Costa, L. R. F., Maia, R. P., Barreto, L. L., and Sales, V. C. C.:
Geomorfologia do nordeste setentrional brasileiro: uma proposta de
classificação, Revista Brasileira de Geomorfologia, 21, 185–208,
https://doi.org/10.20502/rbg.v21i1.1447, 2020.
Dahl, K. A., Fitzpatrick, M. F., and Spanger-Siegfried, E.: Sea level rise
drives increased tidal flooding frequency at tide gauges along the U.S. East
and Gulf Coasts: Projections for 2030 and 2045, PLoS ONE, 12, e0170949,
https://doi.org/10.1371/journal.pone.0170949, 2017.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea level change, in: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group 1 to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by:
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge, England and New York,
NY: Cambridge University Press, 1137–1216, 2013.
Dangendorf, S., Hay, C., Calafat, F. M., Marcos, M., Piecuch, C. G., Berk,
K., and Jensen, J.: Persistent acceleration in global sea-level rise since
the 1960s, Nat. Clim. Change, 9, 705–710,
https://doi.org/10.1038/s41558-019-0531-8, 2019.
DHN – Diretoria de Hidrografia e Navegação: Tábuas de marés,
available at: https://www.marinha.mil.br/chm/tabuas-de-mare, last access: 3 January 2018.
Diniz, C. H. G., Amaro, V. E., Prudêncio, M. C., and Felipe R. F.:
Representação Tridimensional de Processos de Erosão Costeira em
Ilhas Barreiras Utilizando Tecnologia de Jogos, Anuário do Instituto de
Geociências – UFRJ, 40, 147–158,
https://doi.org/10.11137/2017_3_147_158, 2017.
Diniz, M. T. M. and Pereira, V. H. C.: Climatologia do Estado do Rio Grande
do Norte, Brasil: sistemas atmosféricos atuantes e mapeamento de tipos
de clima, Boletim Goiano de Geografia, 35, 488–506,
https://doi.org/10.5216/bgg.v35i3.38839, 2015.
Dwarakisha, G. S., Vinaya, S. A., Natesanb, U., Asanoc, T., Kakinumac, T.,
Venkataramanad, K., Paia, B. J., and Babitaa, M. K.: Coastal vulnerability
assessment of the future sea level rise in Udupi coastal zone of Karnataka
state, west coast of India, Ocean Coast. Manage., 52, 467–478,
https://doi.org/10.1016/j.ocecoaman.2009.07.007, 2009.
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R.,
and Mearns, L. O.: Climate Extremes: Observations, Modeling, and Impacts,
Science, 289, 2068–2074, https://doi.org/10.1126/science.289.5487.2068,
2000.
Frota, F. F., Truccolo, E. C., and Schettini, C. A. F.: Tidal and sub-tidal
sea level variability at the northern shelf of the Brazilian Northeast
Region, Anais da Academia Brasileira de Ciências, 88, 1371–1386,
https://doi.org/10.1590/0001-3765201620150162, 2016.
Gilleland, E. and Katz, R. W.: extRemes 2.0: An Extreme Value Analysis
Package in R, J. Stat. Softw., 72, 1–39,
https://doi.org/10.18637/jss.v072.i08, 2016.
Grigio, A. M., Castro, A. F., Souto, M. V. S., Amaro, V. E., Vital, H., and
Diodato, M. A.: Use of remoting sensing and geographical information system
in the determination of the natural and environmental vulnerability of the
Municipal District of Guamaré – Rio Grande do Norte – Northeast of
Brazil, J. Coastal. Res., Special Issue, 1427–1431,
https://www.jstor.org/stable/25742990 (last access: 22 December 2019), 2006.
Gumbel, E. J.: Statistics of extremes, Columbia University Press, New York,
375 pp., 1958.
Herdman, L., Erikson, L., and Barnard, P.: Storm Surge Propagation and
Flooding in Small Tidal Rivers during Events of Mixed Coastal and Fluvial
Influence, Journal of Marine Science and Engineering, 6, 158,
https://doi.org/10.3390/jmse6040158, 2018.
IBGE – Instituto Brasileiro de Geografia e Estatística: Análise do
Nível Médio do Mar nas Estações da Rede Maregráfica
Permanente para Geodésia – RMPG 2001/2015, Diretoria de
Geociências, Coordenação de Geodésia, Rio de Janeiro, 65 pp., available at: ftp://geoftp.ibge.gov.br/informacoes_sobre_posicionamento_geodesico/rmpg/relatorio/relatorio_RMPG_2001_2015_GRRV.pdf (last access: 25 June 2019), 2016.
IDEMA – Instituto de Desenvolvimento Sustentável e Meio Ambiente:
Informações dos municipios de Mossoró, Grossos e Tibau, v. 24,
1–24, 1999.
IDEMA – Instituto de Desenvolvimento Sustentável e Meio Ambiente:
Projeto de Zoneamento Ecológico-Econômico dos Estuários do Rio
Grande do Norte – ZEE/RN, Natal-RN, 35 pp., 2005.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC), Geneva, Switzerland, 151 pp., 2014.
IPCC: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal
Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., in press, available at: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf (last access: 26 January 2020), 2019.
Jensen, J. R.: Sensoriamento Remoto do Ambiente: Uma Perspectiva em
Recursos Terrestres, Tradução da Segunda Edição,
Parêntese Editora, São José dos Campos, 598 pp., 2009.
Kendall, M. G.: Rank Correlation Methods, Charles Griffin, London, 1975.
Kulp, S. and Strauss, B. H.: New elevation data triple estimates of global
vulnerability to sea-level rise and coastal flooding, Nat. Commun.,
10, 4844, https://doi.org/10.1038/s41467-019-12808-z, 2019.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259,
https://doi.org/10.2307/1907187, 1945.
Matos, A. C. O. C.: Implementação de Modelos Digitais de Terreno
para Aplicações na Área de Geodésia e Geofísica na
América do Sul, PhD theses, Postgraduate Program in Transport
Engineering, Federal University of Sao Paulo, 335 pp.,
https://doi.org/10.11606/T.3.2005.tde-10102005-104155, 2005.
Matos, M. F. A., Amaro, V. E., Scudelari, A. C., and Bezerra, A. C. N.:
Análises estatísticas de alturas significativas de ondas de
série temporal de curto prazo na costa do Rio Grande do Norte, Pesquisas
em Geociências, 46, e0731, https://doi.org/10.22456/1807-9806.93246,
2019.
McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the
risks of climate change and human settlements in low elevation coastal
zones, Environ. Urban., 19, 17–37,
https://doi.org/10.1177/0956247807076960, 2007.
Medeiros, M. D.: Eventos hidroclimáticos extremos e vulnerabilidade
socioambiental a inundações no Baixo-Açu – RN, PhD thesis,
Postgraduate Program in Geography, Federal University of Ceara, Brazil, 209 pp., available at: http://www.repositorio.ufc.br/handle/riufc/35674 (last
access: 22 December 2019), 2018.
Medeiros, M. D. and Zanella, M. E.: Estudo das vazões e estimativas de
inundações no Baixo-Açu-RN, Geo UERJ, 40946, 1–30,
https://doi.org/10.12957/geouerj.2019.40946, 2019.
Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons,
M, B., Clinton, N., Thau, D., and Fuller, R. A.: The global distribution and
trajectory of tidal flats, Nature, 565, 222–225,
https://doi.org/10.1038/s41586-018-0805-8, 2019.
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D.,
and Mitchum, G. T.: Climate-change-driven accelerated sea-level rise
detected in the altimeter era, P. Natl. Acad. Sci. USA, 115,
2022–2025, https://doi.org/10.1073/pnas.1717312115, 2018.
Neumann, B., Vafeidis, A. T., Zimmermann, J., And Nicholls, R. J.: Future
coastal population growth and exposure to sea-level rise and coastal
flooding – a global assessment, PLOS ONE, 10, e0131375,
https://doi.org/10.1371/journal.pone.0131375, 2015.
Nicholls, R. J. and Cazenave, A.: Sea-level rise and its impact on coastal
zones, Science, 328, 1517–1520, https://doi.org/10.1126/science.1185782,
2010.
Nicholls, R. J., Wong, P. P., Burkett, V., Codignotto, J., Hay, J., McLean,
R., Ragoonaden, S., Woodroffe, C. D., Abuodha, P. A. O., Arblaster, J.,
Brown, B., Forbes, D., Hall, J., Kovats, S., Lowe, J., McInnes, K., Moser,
S., Rupp-Armstrong, S., and Saito, Y.: Coastal systems and low-lying areas,
in: Climate change 2007: impacts, adaptation and vulnerability. Contribution
of Working Group II to the fourth assessment report of the Intergovernmental
Panel on Climate Change, edited by: Parry, M. L., Canziani, O. F.,
Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Cambridge, UK,
Cambridge University Press, 315–356, available at:
http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1192&context=scipapers
(last access: 22 December 2019), 2007.
Nicholls, R. J., Hanson, S. E., Lowe, J. A., Warrick, R. A., Lu, X., Long,
A. J., and Carter, T. R.: Constructing Sea-Level Scenarios for Impact and
Adaptation Assessment of Coastal Areas: A Guidance Document. Technical
Guidelines of the Task Group on Data and Scenario Support for Impact and
Climate Analysis (TGICA) of the Intergovernmental Panel on Climate Change
(IPCC), 64 pp., available at:
https://www.ipcc-data.org/docs/Sea_Level_Scenario_Guidance_Oct2011.pdf (last access: 5 December 2019), 2011.
NOAA – National Oceanic and Atmospheric Administration: 2018 State of U.S.
High Tide Flooding with a 2019 Outlook, NOAA Technical Report NOS CO-OPS
090, Silver Spring, Maryland, 31 pp., available at:
https://repository.library.noaa.gov/view/noaa/20691 (last access: 9 November 2019), 2019.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climateedited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., in press, available at: https://www.ipcc.ch/srocc/chapter/chapter-4-sea-level-rise-and-implications-for-low-lying-islands-coasts-and-communities/ (last access: 26 January 2020), 2019.
PBMC – Painel Brasileiro de Mudanças Climáticas: Impactos,
vulnerabilidades e adaptação às mudanças climáticas,
Contribuição do Grupo de Trabalho 2 do Painel Brasileiro de
Mudanças Climáticas ao Primeiro Relatório da Avaliação
Nacional sobre Mudanças Climáticas, edited by: Assad, E. D. and
Magalhães, A. R., COPPE, Federal University of Rio de Janeiro, Rio de
Janeiro, RJ, Brazil, 414 pp., available at:
http://www.pbmc.coppe.ufrj.br/documentos/RAN1_completo_vol2.pdf (last access: 10 October 2019), 2014.
Pugh, D. T.: Tides, surges and mean sea level: a handbook for Engineers and
Scientists, John Wiley & Sons Ltd., New York, available at:
https://eprints.soton.ac.uk/19157/1/sea-level.pdf (last access: 22 December 2019), 1987.
R Development Core Team: R: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, Austria,
available at: http://www.R-project.org/, last access: 28 February 2020.
Ramos, A. M. and Krueger, C. P.: Aplicação de reduções
batimétricas GPS em levantamentos hidrográficos, Boletim de Ciencias
Geodesicas, 15, 615–635, available at:
https://revistas.ufpr.br/bcg/article/view/16284/10775 (last access: 22 December 2019), 2009.
Schröter, K., Lüdtke, S., Redweik, R., Meier, J., Bochow, M., Ross,
L., Nage, C., and Kreibich, H.: Flood loss estimation using 3D city models
and remote sensing data, Environ. Modell. Softw., 105, 118-131,
https://doi.org/10.1016/j.envsoft.2018.03.032, 2018.
Santos, M. S. T. and Amaro, V. E.: Dinâmica sazonal de processos
costeiros e estuarinos em sistema de praias arenosas e ilhas barreira no
nordeste do Brasil, Revista Brasileira de Geomorfologia, 14, 151–162,
https://doi.org/10.20502/rbg.v14i2.298, 2013.
SMC-Brasil: Níveis e cota de inundação, Documento temático,
Ministério do Meio Ambiente, Brasília-DF, 130 pp.,
available at: https://www.mma.gov.br/images/arquivo/80342/Livro_SMC_4___Niveis_e_Cota_de_inundacao.pdf (last access: 16 November 2019), 2018.
Taherkhani, M., Vitousek, S., Barnard P. L., Frazer, N., Anderson, T. R., and
Fletcher, C. H.: Sea-level rise exponentially increases coastal flood
frequency, Sci. Rep.-UK, 10, 6466,
https://doi.org/10.1038/s41598-020-62188-4, 2020.
UNDP – United Nations Development Programme: Reducing Disaster Risk: A
Challenge for development, A global report, 169 pp., available at:
http://www.planat.ch/fileadmin/PLANAT/planat_pdf/alle_2012/2001-2005/Pelling__Maskrey_et_al_2004_-_Reducing_Disaster_Risk.pdf (last access: 4 December 2019), 2004.
Vital, H., Silveira, I. M., Tabosa, W. F., Lima, Z. M. C., Lima-Filho, F. P., Souza, F. E. S., Chaves, M. S., and Pimenta, F. M.: Beaches of Rio Grande do Norte, in: Brazilian Beach Systems, Coastal Research Library, edited by: Short A. and Klein A., vol. 17. Springer, Cham, https://doi.org/10.1007/978-3-319-30394-9_8, 2016.
Wisner, B., Gaillard, J. C., and Kelman, I.: Framing disaster: theories and
stories seeking to understand hazards, vulnerabilty and risk, in: The
Routledge Handbook of Hazards and Disaster Risk Reduction, edited by:
Wisner, B., Gaillard, J. C., and Kelman I., London, Routledge, 18–33,
available at:
https://www.routledgehandbooks.com/pdf/doi/10.4324/9780203844236.ch3 (last
access: 7 November 2019), 2011.
Yue, S. and Wang, C.: The Mann–Kendall Test Modified by Effective Sample
Size to Detect Trend in Serially Correlated Hydrological Series, Water
Resour. Manage., 18, 201–218,
https://doi.org/10.1023/B:WARM.0000043140.61082.60, 2004.
Zhang, W., Yan, Y., Zheng, J., Li, L., Dong, X., and Cai, H.: Temporal and
spatial variability of annual extreme water level in the Pearl River Delta
region, China, Global Planet. Change, 69, 35–47,
https://doi.org/10.1016/j.gloplacha.2009.07.003, 2009.
Short summary
The approach of this work is a tidal flood risk mapping methodology for climate change scenarios in a semi-arid region with a strong environmental and social appeal. The study area has been suffering severe consequences from flooding by tides in recent years. High-geodetic-precision data, together with tidal return period statistics and data from current sea level rise scenarios, were used. This case study can serve as a basis for future management actions and as a model to be copied.
The approach of this work is a tidal flood risk mapping methodology for climate change scenarios...
Altmetrics
Final-revised paper
Preprint