Articles | Volume 21, issue 1
https://doi.org/10.5194/nhess-21-115-2021
https://doi.org/10.5194/nhess-21-115-2021
Research article
 | 
14 Jan 2021
Research article |  | 14 Jan 2021

Beachgoers' ability to identify rip currents at a beach in situ

Sebastian J. Pitman, Katie Thompson, Deirdre E. Hart, Kevin Moran, Shari L. Gallop, Robert W. Brander, and Adam Wooler

Related authors

Characteristics and beach safety knowledge of beachgoers on unpatrolled surf beaches in Australia
Lea Uebelhoer, William Koon, Mitchell D. Harley, Jasmin C. Lawes, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 22, 909–926, https://doi.org/10.5194/nhess-22-909-2022,https://doi.org/10.5194/nhess-22-909-2022, 2022
Short summary
Predicting tidal heights for extreme environments: from 25 h observations to accurate predictions at Jang Bogo Antarctic Research Station, Ross Sea, Antarctica
Do-Seong Byun and Deirdre E. Hart
Ocean Sci., 16, 1111–1124, https://doi.org/10.5194/os-16-1111-2020,https://doi.org/10.5194/os-16-1111-2020, 2020
Short summary
A monthly tidal envelope classification for semidiurnal regimes in terms of the relative proportions of the S2, N2, and M2 constituents
Do-Seong Byun and Deirdre E. Hart
Ocean Sci., 16, 965–977, https://doi.org/10.5194/os-16-965-2020,https://doi.org/10.5194/os-16-965-2020, 2020
Short summary
Environmental controls on surf zone injuries on high-energy beaches
Bruno Castelle, Tim Scott, Rob Brander, Jak McCarroll, Arthur Robinet, Eric Tellier, Elias de Korte, Bruno Simonnet, and Louis-Rachid Salmi
Nat. Hazards Earth Syst. Sci., 19, 2183–2205, https://doi.org/10.5194/nhess-19-2183-2019,https://doi.org/10.5194/nhess-19-2183-2019, 2019
Short summary
Estimations of rip current rescues and drowning in the United States
B. Chris Brewster, Richard E. Gould, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 19, 389–397, https://doi.org/10.5194/nhess-19-389-2019,https://doi.org/10.5194/nhess-19-389-2019, 2019
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
The effect of deep ocean currents on ocean- bottom seismometers records
Carlos Corela, Afonso Loureiro, José Luis Duarte, Luis Matias, Tiago Rebelo, and Tiago Bartolomeu
Nat. Hazards Earth Syst. Sci., 23, 1433–1451, https://doi.org/10.5194/nhess-23-1433-2023,https://doi.org/10.5194/nhess-23-1433-2023, 2023
Short summary
An interdisciplinary agent-based evacuation model: integrating the natural environment, built environment, and social system for community preparedness and resilience
Chen Chen, Charles Koll, Haizhong Wang, and Michael K. Lindell
Nat. Hazards Earth Syst. Sci., 23, 733–749, https://doi.org/10.5194/nhess-23-733-2023,https://doi.org/10.5194/nhess-23-733-2023, 2023
Short summary
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023,https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023,https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023,https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary

Cited articles

Attard, A., Brander, R. W., and Shaw, W. S.: Rescues conducted by surfers on Australian beaches, Accident Anal. Prev., 82, 70–78, https://doi.org/10.1016/j.aap.2015.05.017, 2015. a
Brander, R. and MacMahan, J.: Future challenges for rip current research and outreach, in: Rip Currents: Beach safety, physical oceanography, and wave modelling, edited by: Leatherman, S. and Fletemeyer, J., CRC Press, Florida, USA, 1–26, 2011. a
Brander, R. and Short, A.: Morphodynamics of a large-scale rip current system at Muriwai Beach, New Zealand, Mar. Geol., 165, 27–39, 2000. a
Brander, R. and Scott, T.: Science of the rip current hazard, in: The Science of Beach Lifeguarding, edited by: Tipton, M. J. and Wooler, A., CRC Press, Boca Raton, Florida, 67–84, 2016. a
Brander, R. W., Drozdzewski, D., and Dominey-Howes, D.: “Dye in the Water”: A Visual Approach to Communicating the Rip Current Hazard, Sci. Commun., 36, 802–810, https://doi.org/10.1177/1075547014543026, 2014. a
Download
Short summary
This study aimed to identify how well beach users could spot rip currents in real time at the beach. It was performed in response to the fact that rip currents are the leading cause of drownings on recreational beaches worldwide. We found that only one in five people were able to spot the rip current, meaning the vast majority would be unable to make good decisions about where it is safe to swim at the beach.
Altmetrics
Final-revised paper
Preprint