Articles | Volume 20, issue 12
https://doi.org/10.5194/nhess-20-3611-2020
https://doi.org/10.5194/nhess-20-3611-2020
Research article
 | 
23 Dec 2020
Research article |  | 23 Dec 2020

Fault network reconstruction using agglomerative clustering: applications to southern Californian seismicity

Yavor Kamer, Guy Ouillon, and Didier Sornette

Related subject area

Earthquake Hazards
Risk-informed representative earthquake scenarios for Valparaíso and Viña del Mar, Chile
Hugo Rosero-Velásquez, Mauricio Monsalve, Juan Camilo Gómez Zapata, Elisa Ferrario, Alan Poulos, Juan Carlos de la Llera, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 24, 2667–2687, https://doi.org/10.5194/nhess-24-2667-2024,https://doi.org/10.5194/nhess-24-2667-2024, 2024
Short summary
Harmonizing seismicity information in Central Asian countries: earthquake catalogue and active faults
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 24, 2597–2613, https://doi.org/10.5194/nhess-24-2597-2024,https://doi.org/10.5194/nhess-24-2597-2024, 2024
Short summary
Comparing components for seismic risk modelling using data from the 2019 Le Teil (France) earthquake
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024,https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Modelling seismic ground motion and its uncertainty in different tectonic contexts: challenges and application to the 2020 European Seismic Hazard Model (ESHM20)
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024,https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Scoring and ranking probabilistic seismic hazard models: an application based on macroseismic intensity data
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024,https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary

Cited articles

Bishop, C. M.: Pattern Recognition and Machine Learning, Springer, New York, USA, 2007. 
Boettcher, M. S., McGarr, A. and Johnston, M.: Extension of Gutenberg-Richter distribution to MW-1.3, no lower limit in sight, Geophys. Res. Lett., 36, L10307, https://doi.org/10.1029/2009GL038080, 2009. 
Böse, M., Smith, D. E., Felizardo, C., Meier, M.-A., Heaton, T. H., and Clinton, J. F.: FinDer v.2: Improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization, Geophys. J. Int., 212, 725–742, https://doi.org/10.1093/gji/ggx430, 2017. 
Edelsbrunner, H. and Mücke, E.: Three-dimensional alpha shapes, ACM Trans. Graph., 13, 43–72, 1994. 
Download
Short summary
Earthquakes cluster in space highlighting fault structures in the crust. We introduce a method to identify such patterns. The method follows a bottom-up approach that starts from many small clusters and, by repeated mergings, produces a larger, less complex structure. We test the resulting fault network model by investigating its ability to forecast the location of earthquakes that were not used in the study. We envision that our method can contribute to future studies relying on fault patterns.
Altmetrics
Final-revised paper
Preprint