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Abstract. In this paper we introduce a method for fault net-
work reconstruction based on the 3D spatial distribution of
seismicity. One of the major drawbacks of statistical earth-
quake models is their inability to account for the highly
anisotropic distribution of seismicity. Fault reconstruction
has been proposed as a pattern recognition method aiming
to extract this structural information from seismicity cata-
logs. Current methods start from simple large-scale models
and gradually increase the complexity trying to explain the
small-scale features. In contrast the method introduced here
uses a bottom-up approach that relies on initial sampling of
the small-scale features and reduction of this complexity by
optimal local merging of substructures.

First, we describe the implementation of the method
through illustrative synthetic examples. We then apply the
method to the probabilistic absolute hypocenter catalog
KaKiOS-16, which contains three decades of southern Cal-
ifornian seismicity. To reduce data size and increase com-
putation efficiency, the new approach builds upon the previ-
ously introduced catalog condensation method that exploits
the heterogeneity of the hypocenter uncertainties. We vali-
date the obtained fault network through a pseudo prospec-
tive spatial forecast test and discuss possible improvements
for future studies. The performance of the presented method-
ology attests to the importance of the non-linear techniques
used to quantify location uncertainty information, which is
a crucial input for the large-scale application of the method.
We envision that the results of this study can be used to con-
struct improved models for the spatiotemporal evolution of
seismicity.

1 Introduction

Owing to the continuing advances in instrumentation and im-
provement of seismic networks coverage, earthquake detec-
tion magnitude thresholds have been decreasing while the
number of recorded events is increasing. As governed by the
Gutenberg—Richter law, the number of earthquakes above a
given magnitude increases exponentially as the magnitude is
decreased (Gutenberg and Richter, 1954; Ishimoto and Iida,
1939). Recent studies suggest that the Gutenberg—Richter
law might hold down to very small magnitudes correspond-
ing to interatomic-scale dislocations (Boettcher et al., 2009;
Kwiatek et al., 2010). This implies that there is practically
no upper limit on the amount of seismicity we can expect
to record as our instrumentation capabilities continue to im-
prove. Although considerable funding and research efforts
are being channeled into recording seismicity, when we look
at the uses of the end product (i.e., seismic catalogs) we often
see that the vast majority of the data (i.e., events with small
magnitudes) are not used in the analyses. For instance, prob-
abilistic seismic hazard studies rely on catalogs containing
events detected over long terms, which increases the min-
imum magnitude that can be considered due to the higher
completeness magnitude levels in the past. Similarly, earth-
quake forecasting models are commonly based on the com-
plete part of the catalogs. For instance, in their forecast-
ing model, Helmstetter et al. (2007) use only M > 2 events,
which corresponds to only ~ 30 % of the recorded seismic-
ity. The forecasting skills of the current state-of-the-art mod-
els can well be hindered not only due to our limited physical
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understanding of earthquakes, but also due to this data cen-
soring.

In this conjecture, fault network reconstruction can be re-
garded as an effort to tap into this seemingly neglected but
vast data source and extract information in the form of para-
metric spatial seismicity patterns. We are motivated by the
ubiquitous observations that large earthquakes are followed
by aftershocks that sample the main rupturing faults, and
conversely that these faults become the focal structures of
following large earthquakes. In other words, there is a re-
lentless cycle as earthquakes occur on faults that themselves
grow by accumulating earthquakes. By using each earth-
quake, no matter how big or small, as a spark in the dark, we
aim to illuminate and reconstruct the underlying fault net-
work. If the emerging structure is coherent, it should allow
us to better forecast the spatial distribution of future seismic-
ity and also to investigate possible interactions between its
constituent segments.

The paper is structured as follows. First, we give an
overview of recent developments in the field of fault network
reconstruction and spatial modeling of seismicity. In Sect. 2,
we describe our new clustering method and demonstrate its
performance using a synthetic example. In Sect. 3, we apply
the method to the recently relocated southern California cata-
log KaKiOS-16 (Kamer et al., 2017) and discuss the obtained
fault network. In Sect. 4, we perform a pseudo-prospective
forecasting test using 4 years of seismicity that was recorded
during 2011-2015 and was not included in the KaKiOS-16
catalog. In the final section, we conclude with an outlook on
future developments.

2 Recent developments in fault reconstruction

In the context of the work presented here, we use the term
“fault” as a three-dimensional geometric shape or kernel op-
timized to fit observed earthquake hypocenters. Fault net-
work reconstruction based on seismicity catalogs was intro-
duced by Ouillon et al. (2008). The authors presented a dy-
namical clustering method based on fitting the hypocenter
distribution with a plane, which is then iteratively split into
an increasing number of subplanes to provide better fits by
accounting for smaller-scale structural details. The method
uses the overall location uncertainty as a lower bound of the
fit residuals to avoid over-fitting. Wang et al. (2013) made
further improvements by accounting for the individual lo-
cation uncertainties of the events and introducing motivated
quality evaluation criteria (based, for instance, on the agree-
ment of the planes orientations with the event’s focal mecha-
nisms). Ouillon and Sornette (2011) proposed an alternative
method based on probabilistic mixture modeling (Bishop,
2007) using 3D Gaussian kernels. This method introduced
notable improvements, such as the use of an independent val-
idation set to constrain the optimal number of kernels to ex-
plain the data (i.e., model complexity) and diagnostics based
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on nearest-neighbor tetrahedra volumes to eliminate singular
clusters that cause the mixture likelihood to diverge. While
our method is inspired by these studies and in several aspects
builds upon their findings, we also note an inherent drawback
of the iterative splitting approach that is common to all the
previously mentioned methods. This can be observed when
an additional plane (or kernel), introduced by splitting, fails
to converge to the local clusters and is instead attracted to the
regions of high horizontal variance (see Fig. 1 for an illustra-
tion in the case of Landers’ seismicity).

This deficiency has motivated us to pursue a different con-
cept. Instead of starting with the simplest model (i.e., a single
plane or kernel) and increasing the complexity progressively
by iterative splits, we propose just the opposite: start at the
highest possible complexity level (as many kernels as possi-
ble) and gradually converge to a simpler structure by itera-
tive merging of the individual substructures. In this respect,
the new approach can be regarded as a “bottom-up” while the
previous ones are “top-down” approaches.

3 The agglomerative clustering method
3.1 Method description

The method shares the basic principles of agglomerative
clustering (Rokach and Maimon, 2005) with additional im-
provements to suit the specifics of seismic data, such as the
strong anisotropy of the underlying fault segments. We illus-
trate the method by applying it to a synthetic dataset obtained
by sampling hypocenters on a set of five plane segments, and
potentially adding uncorrelated background points which are
uniformly distributed in the volume (see Fig. 2). The imple-
mentation follows the successive steps described below:

i. For a given dataset featuring N hypocenters, we first
construct an agglomerative hierarchical cluster (AHC)
tree based on Ward’s minimum variance linkage method
(Ward, 1963). Such a tree starts out with a cluster for
each data point (i.e., with zero variance) and then pro-
gressively branches into an incrementally decreasing
number of clusters (see Fig. 2c, d). At any step, the
merging of two clusters is based on a criterion involving
the minimum distance D, criterion given by

Dw (Ci,Cj) = Z ()C—I‘,'j)z— Z(x—r,')z

xeC;_/ )CEC,'

- > w-n)’ (1)

XGCI'

In this equation, C;; is the cluster formed by merging
clusters C; and C;, x represents the set of hypocenters,
and r (with proper subscript) is the centroid of each
cluster. Hence, clusters i and j are merged if the sum
of squares in Eq. (1) is minimized after they are merged
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(a)

Figure 1. Iterative splits on the 1992 Landers aftershock data. Points with different colors represent seismicity associated with each plane.
Black dots show the center points of the planes resulting from the next split. Notice how in steps (b) to (c¢) the planes fail to converge to the
local branches (shown with arrows), and the method prefers to introduce a horizontal plane to fit a more complex local pattern.
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Figure 2. (a) Synthetic fault network with 640 points created by uniform sampling of five faults, each shown with a different shade according
to its total number of points. Empty circles represent the 20 % uniformly random background points. (b) Determination of the holding
capacity (see main text) for the case with and without background points. (c—d) Dendrograms showing the agglomerative hierarchical cluster
tree for the data with no noise (c¢) and with noise (d). The horizontal length of each branch is the minimum distance Dy, (see Eq. 1) joining

two clusters.

into a single cluster ij. The number of branches in the ting” the AHC tree at the D, level corresponding to the
tree is thus reduced by one, and the remaining clusters desired number of branches allows one to choose the
are used to decide which ones will be merged at the next number of clusters (from 1 to N) used to represent the
iteration. This merging of clusters (i.e., branches) con- original dataset. While there are many different linkage
tinues until there remains only a single cluster. “Cut- methods and distance metrics, here we have chosen to
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use Ward’s criterion because it produces clusters with
regular sizes. This is important for the atomization pro-
cedure as we want clusters to have similar potentials to
merge and grow into bigger structures.

ii. Since our goal is to obtain a fault network where seg-
ments are modeled by Gaussian kernels, we begin by
estimating how many such kernels can be constructed
with the clusters featured in the AHC tree. At its most
detailed level (N clusters) no such kernel exists as they
would collapse on each data point, becoming singu-
lar. At the next level (N — 1 clusters), we have the
same problem. We thus incrementally reduce the level,
traversing AHC tree, until we get a first cluster featuring
four hypocenters, which defines the first non-singular
cluster. We then continue our traverse along the tree
down replacing each cluster that has more than four
points by a Gaussian kernel. At each level on the tree,
we count the number of these non-singular Gaussian
kernels. The results are illustrated in Fig. 2b where we
consider two cases: the first considering only the five
planes, the second one including a set of uniformly dis-
tributed background points. In the first case, we see that
the maximum number of Gaussian kernels (76) is ob-
tained when we cut the tree so that the total number of
clusters is 117. In the second case, in the presence of
background points, the maximum number of Gaussian
kernels (77) is obtained when we cut the tree at a level of
214 clusters. We refer to this maximum number is as the
“holding capacity” of the dataset, and the corresponding
configuration defines the starting point of the following
iterative and likelihood-based clustering algorithm. The
process of finding this optimum set of initial Gaussian
proto-clusters (all containing more than four points) is
coined as “atomization”.

iii. Once we determine the holding capacity, all points that
are not associated with any Gaussian kernel are assigned
to a uniform background kernel that encloses the whole
dataset. The boundaries of this kernel are defined as the
minimum bounding box of its points. The uniform spa-
tial density of this background kernel is defined as the
number of points divided by the volume (see Fig. 3).
The Gaussian kernels together with the uniform back-
ground kernel represent a mixture model where each
kernel has a contributing weight proportional to the
number of points that are associated with it (Bishop,
2007). This representation facilitates the calculation of
an overall likelihood and allows us to compare models
with different complexities using the Bayesian informa-
tion criteria (BIC) (Schwarz, 1978) given by

N
BIC = — Zlog(L) + glog(N), )
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where L is the likelihood of each data point, k is the
number of free parameters of the mixture model and N
is the total number of data points. The value of k is cal-
culated as k = 10N¢-1 (where N¢ is the number of ker-
nels in the mixture) since each kernel requires 3 (mean
vector) +6 (covariance matrix) +1 (weight) = 10 free
parameters. The same parameterization is also used to
describe the background kernel, which is a uniformly
dense cuboid with a size and orientation prescribed by
its covariance matrix. The number of free parameters
(k) is reduced by 1 because the weights have to sum to
unity and hence knowing N¢ — 1 of them is sufficient.

iv At the holding capacity, the representation with the large
number of kernels is likely to constitute an overfitting
model for the dataset. Therefore, we iteratively merge
pairs of the Gaussian kernels until an optimal balance
between fitness and model complexity is reached. We
use the measure of information gain in terms of BIC
to select which pair of kernels to merge. For any given
pair of Gaussian kernels, the BIC gain resulting from
their merger is calculated using Eq. (3), where Ly is the
likelihood of each data point for the initial (unmerged)
model and Ly is the likelihood in the case where the
two candidate clusters are merged:

BICGain = BICjnt — BICmrg,

BICin = —Y_;" log(Lin) + 5 log(N),

BICmrg = —> N log(Lmrg) + ¥50 log (M),

BICGain = Y./ 10g(Lmrg) — >V 1og(Liny) + 510g(N).

3)

Notice that each merging of a pair of kernels decreases k
by 10, and thus a given merger can be considered only if the
reduction of the penalty term is greater than the decrease in
likelihood (i.e., BICGain > 0).

Using this formulation, we calculate a matrix where the
value at the intersection of the ith row and jth column cor-
responds to the BIC gain for merging clusters i and j. We
merge the pair with the maximum BIC gain and then re-
estimate the matrix since we need to know the BIC gains
of the newly formed cluster. At each step, the complexity of
the model is reduced by one cluster, and the procedure con-
tinues until there is no merging yielding a positive BIC gain.
Figure 3b shows such a BIC gain matrix calculated for the
initial model with 77 clusters. Notice that a Gaussian clus-
ter is not allowed to merge with the background kernel. The
BICgGain > O criteria, which essentially drives and terminates
the merging process, is similar to a likelihood ratio test (Ney-
man and Pearson, 1933; Wilks, 1938) with the advantage that
the models tested do not need be nested.

The computational demand of the BIC gain matrix in-
creases quadratically with the number of data points. To
make our approach feasible for large seismic datasets, we
introduce a preliminary check that considers clusters as can-
didates for merging only if they are overlapping within a con-
fidence interval of o4/12 in any of their principal component
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Figure 3. (a) The initial proto-clusters for the synthetic dataset given in Fig. 2a. Notice that the number of clusters (78) includes the uniform
background kernel as well. (b) The BIC gain matrix calculated for all possible merging of pairs of kernels.

directions. The factor /12 is derived from the variance of an
hypothetical uniform distribution over a planar surface (for
details see QOuillon et al., 2008).

During all steps of the merging procedure, the data points
are in the state of soft clustering, meaning that they have a
finite probability to belong to any given kernel. A determin-
istic assignment can be achieved by assigning each point to
the kernel that provides the highest responsibility (as per the
definition of a mixture model), which is referred to as hard
clustering. This dichotomy between stochastic and determin-
istic inference gives rise to two different implementations for
the merging criteria: (1) local criterion, considering only the
two candidate clusters and the data points assigned to them
through hard clustering, and (2) global criterion, considering
the likelihood of all data points for all clusters. In essence,
the local criterion tests the information gain for the case of
two kernels versus one kernel on a subset, whereas the global
criterion considers N, versus N¢-1 kernels on the whole mix-
ture and dataset. Figure 4 shows the resulting final recon-
structions for the two criteria.

For this synthetic dataset, we observe that both the local
and global criteria converge to a similar final structure. The
global criterion yields a model with the same number of clus-
ters as the input synthetic, while the local criterion introduces
four additional clusters in the under-sampled part of one of
the faults. For most pattern recognition applications that deal
with a robust definition of noise and signal, the global crite-
rion may be the preferred choice since it is able to recover
the true complexity level. However, since this method is in-
tended for natural seismicity, we also see a potential in the lo-
cal criterion. For instance, consider the case where two fault
segments close to each other are weakly active and thus have
a low spatial density of hypocenters compared to other dis-
tant faults that are much more active. In that case, the global

https://doi.org/10.5194/nhess-20-3611-2020

criterion may choose to merge the low-activity faults, while
the local criterion may preserve them as separate.

3.2 Sensitivity analysis

In order to gain insight into the sensitivity and the robustness
of the proposed method, we conduct a more elaborate syn-
thetic test. We generate a set of 20 randomly oriented planes
with their attributes varying in the following ranges: strike
angle —90 to 90°, dip angle 45 to 90°, length 20 to 40 km,
width 5 to 15km. The fault planes span a region with the
dimensions of 220 x 150 x 30 km. Each fault plane is sam-
pled randomly with an increasing number of points; start-
ing from 0.1 points per square kilometer going up to 2 points
per square kilometer in 15 steps, producing sets with a total
number of points in the range of 609 to 14 475. We also con-
sider three different uniform background noise levels at 5 %,
10 % and 20 % yielding a total of 45 synthetic sets. We apply
our clustering method to each of these sets and report the re-
sulting performance using the Rand index. The Rand index
measures the similarity between different clusterings and is
expressed by the following equation:

_2(a+b)

T an—1) @)

where a is the number of pairs that are in the same cluster
in the two clusterings, b is the number of pairs that are in
different clusters in the two clusterings and n is the number
of points in the dataset. A Rand index of 1 indicates total
match between the two groupings while a value of 0 indi-
cates that all pairs are in disagreement. In our case, we are
comparing the ground truth clustering, which is given by the
20 fault planes and the uniform background, and the cluster-
ing obtained by our method. Figure 5a shows the Rand index

Nat. Hazards Earth Syst. Sci., 20, 3611-3625, 2020
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Figure 4. The final models obtained using the local (a) and global (b) merging criteria for the dataset presented in Fig. 2. The number of
clusters, including the uniform background kernel, is 11 and 6 for the local and global criteria respectively.

obtained using the local and the global criteria as a function
of increasing sampling density for the three levels of back-
ground noise. As mentioned earlier, the performance of the
global criterion is better than the local one, which degrades
with increasing density as the method start introducing ad-
ditional clusters. The Rand index of the global criterion sat-
urates around 0.95 and starts decreasing as the density in-
creases above ~ 1.25 points per square kilometer. This satu-
ration can be explained by the fact that additional Gaussian
kernels are needed to fit the sharp corners of the rectangu-
lar planes as they become more pronounced with increased
sampling. We can make an analogy with the Fourier series
expansion of a square wave, where more terms are needed
to fit the sharp edges. In our case, these additional terms
(i.e., Gaussian kernels) increase the complexity and cause the
Rand index to drop. To confirm this we repeat the synthetics
by sampling Gaussian kernels with the eigenvectors corre-
sponding to the rake and dip, and eigenvalues corresponding
to the length, width and thickness of the rectangular planes.
The results are shown in Fig. 5b, where we see no drop off in
the Rand index.

These synthetics indicate that the method is robust in the
presence of uniform background noise and that it is able to
recover structures that are sufficiently sampled. In the pre-
sented case, the performance saturates around 0.5 points per
square kilometer; however, this value can change based on
the particular setting. For instance, if faults are very closely
spaced and intersecting, higher sampling may be needed. On
the other hand, if the structures are isolated, similar perfor-
mance can be achieved at lower sampling. The MATLAB
code used for generating the synthetics and evaluating the
reconstruction’s Rand index is provided. Users may prefer
to create synthetic cases that are informed by the properties
of the actual data they are working on (such as numbers of
points, spatial extent, etc.).

Nat. Hazards Earth Syst. Sci., 20, 3611-3625, 2020

4 Application to seismicity

In this section, we apply our method to observed seismic-
ity data. For this purpose, we use the KaKiOS-16 catalog
(Kamer et al., 2017) that was obtained by the probabilis-
tic absolute location of nearly 479 000 southern Californian
events spanning the time period 1981-2011. We consider all
events, regardless of magnitude, as each event samples some
part of the fault network. Before tackling this vast dataset,
however, we first consider the 1992 Landers sequence as a
smaller dataset to assess the overall performance and com-
putational demands.

4.1 Small-scale application to the Landers aftershocks
sequence

We use the same dataset as Wang et al. (2013) that consists of
3360 aftershocks of the 1992 Landers earthquake. The initial
atomization step produces a total of 394 proto-clusters that
are iteratively merged using the two different criteria (local
and global). The resulting fault networks are given in Fig. 6
together with the fault traces available in the community fault
model of southern California (Plesch et al., 2007). Compar-
ing the two fault networks, we observe that the local criterion
provides a much detailed structure that is consistent with the
large-scale features in the global one. We also observe that,
in the southern end, the global criterion produces thick clus-
ters by lumping together small features with seemingly dif-
ferent orientations. These small-scale features have relatively
few points and thus low contribution to the overall likelihood.
The global criterion favors these mergers to reduce the com-
plexity penalty in Eq. (2), which scales with the total number
of points. In the local case, however, because each merger is
evaluated considering only the points assigned to the merging
clusters, the likelihood gain of these small-scale features can
overcome the penalty reduction and they remain unmerged. It
is also possible to employ metrics based on the consistency
of focal mechanism solutions to evaluate the reconstructed
faults. For a detailed application of such metrics the reader
is referred to the detailed work by Wang et al. (2013). In this

https://doi.org/10.5194/nhess-20-3611-2020
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Figure 5. Clustering similarities between ground truth synthetic dataset and method results quantified by the Rand index. Global and local
merging criteria are shown as solid and dashed lines respectively. Background noise amplitude is shown as shades of gray. Results for ground
truth sampled from (a) rectangular fault planes and (b) elliptic Gaussian kernels with similar dimensions.

study, since we do not have focal mechanism solutions for
our target catalog, we focus on information criteria metrics
and out-of-sample forecast tests.

Our second observation is that the background kernel at-
tains a higher weight of 11 % using the local criterion com-
pared to the global one yielding only 5 %. Keeping in mind
that both criteria are applied on the same initial set of proto-
clusters, and that there are no mergers with the background
kernel, we argue that the difference between the background
weights is due to density differences in the tails of the ker-
nels. We investigate this in Fig. 7 for the simple 1D case
considering mergers between two boxcar functions (analo-
gous for planes in 3D) approximated with Gaussian func-
tions. We observe that the merged Gaussian has higher den-
sities in its tails compared to its constituents. The effect is
amplified when the distance between the merging clusters is
increased (Fig. 7b). Hence, in the local case, the peripheral
points are more likely to be associated with the background
kernel due to the lower densities at the tails of the small, un-
merged clusters.

Another important insight from this sample case was
regarding the feasibility of a large-scale application. As
pointed out here and in previous studies (Ouillon and Sor-
nette, 2011; Wang et al., 2013), the computational demand
for such pattern recognition methods increases rapidly with
the number of data points. The Landers case with 3360 points
took ~ 5min on a four-core, 2.2 GHz machine with 16 GB
memory. Considering that our target catalog is nearly ~ 145
times larger, a quadratic increase would mean an expected
computation time of more than 2 months. Even with a high-
performance computing cluster, we would have to tackle
memory management and associated overhead issues. Al-
though technically feasible, pursuing this path would limit
the use of our method to only the privileged few with access
to such computing facilities. In a previous work we proposed

https://doi.org/10.5194/nhess-20-3611-2020

a new solution called “catalog condensation”, that uses the
location uncertainty estimates to reduce the length of a cata-
log while preserving its spatial information content (Kamer
et al., 2015). In the following section, we will detail how we
applied this method to the KaKiOS-16 catalog in order to
make the clustering computations feasible.

4.2 Condensation of the KaKiOS-16 catalog

The condensation method reduces the effective catalog
length by first ranking the events according to their loca-
tion uncertainty and then successively condensing poorly lo-
cated events onto better-located ones (for detailed explana-
tion see Kamer et al., 2015). The initial formulation of the
method was developed considering the state-of-the-art cata-
logs of the time. Location uncertainties in these catalogs are
assumed to be normally distributed and hence expressed ei-
ther in terms of a horizontal and vertical standard deviation,
or with a diagonal 3 x 3 covariance matrix. With the develop-
ment of the KaKiOS-16 catalog, we extended this simplistic
representation to allow arbitrarily complex location proba-
bility density functions (PDFs) to be modeled with mixtures
of Gaussians. Such mixture models, consisting of multiple
Gaussian kernels, were found to be the optimal representa-
tion for 81 % percent of the events, which required an av-
erage of 3.24 Gaussian components (the rest was optimally
modeled using a single Gaussian kernel). Therefore we first
needed to generalize the condensation methodology, which
was initially developed for single kernels, to accommodate
the multiple kernel representation. In the original version, all
events are initiated with equal unit weights. They are then
ranked according to their isotropic variances, and weights
are progressively transferred from the high variance to the
low variance events according to their overlap. In the gen-
eralized version, each event is represented by a number of

Nat. Hazards Earth Syst. Sci., 20, 3611-3625, 2020
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Figure 6. (a) Top view of the 1992 Landers aftershocks. Fault networks obtained from these events using the local (b) and global (¢) merging
criterion, each resulting in 70 and 22 clusters respectively. (d) Fault traces obtained from the Community Fault Model of southern California.
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their merger (solid black line). Notice that the joint Gaussian has higher densities at the tails compared to its constituents.

Gaussian kernels that are initiated with their respective mix-
ture weight (0—1). All kernels are then ranked according to
their isotropic variance and the weights are transferred as in
the original method with the additional constraint that weight
transfers between kernels of the same event are not allowed
(see Fig. 8a, b). This constraint is motivated by the fact that
the kernels representing each event’s location PDF are al-
ready optimized. Thus a weight transfer between those can
lead only to a sub-optimal location representation.

The KaKiOS-16 catalog contains 479 056 events whose
location PDFs are represented by a total of 1346010 Gaus-
sian components (i.e., kernels). Condensation reduces this
number to 600463 as weights from events with high vari-
ance are transferred to better-located ones. Nevertheless, in
Fig. 9 we see that nearly half of these components amount
to only 10 % of the total event weight. The computation time
scales with the number of components, while the informa-
tion content is proportional to number of events. Hence the
large number of components amounting to a relatively low
number of events would make the computation inefficient.
A quick solution could be to take the components with the
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largest weights constituting 90 % or 95 % of the total mass,
mimicking a confidence interval. Such a “solution” would
depend on the arbitrary cut-off choice and would have the
potential to discard data that may be of value for our applica-
tion.

We can avoid such an arbitrary cut-off by employing the
fact that the condensed catalog is essentially a Gaussian mix-
ture model (GMM) representing the spatial PDF of earth-
quake occurrence in southern California. We can then, in the
same vein as the hard clustering described previously, assign
each event to its most likely GMM component (i.e., kernel).
If we consider each event individually, the most likely kernel
would be the one with the highest responsibility. However,
for a globally optimal representation we need to find the best
representative kernel for each event among all other kernels.
To do this, we sample the original (uncondensed) PDF of
each event with 1000 points and then calculate the likelihood
of each sample point with respect to all the condensed ker-
nels. The event is assigned to the kernel that provides the
maximum likelihood for the highest number of sample points
(see Fig. 8c, d). As a result of this procedure, the 479 056
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(b)

(d)

Figure 8. Idealized schematic representations of three events with one, two and three Gaussian kernels each. (a) Condensation: each event is
represented by a different shade, weight transfer is represented by the arrows; notice that there are no intra-event weight transfers. (b) Final
condensed catalog: the total weight sum is preserved, one component is discarded. (¢) Sampling of the event PDFs: this step is done on the
original catalog. (d) Each event is assigned to the condensed kernel that provides the maximum likelihood for most of its sampled points;

three events are assigned to two condensed kernels.
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Figure 9. Cumulative weights of the 600463 condensed KaKiOS-
16 components representing a total of 479 056 events. The compo-
nents are ranked according to increasing weights.

events are assigned to 93 149 distinct kernels. The spatial
distribution of all the initial condensed kernels is given in
Fig. 10a, while the kernels assigned with at least one event
after the hard clustering are shown in Fig. 10b. Essentially,
this procedure can be viewed as using the condensed catalog
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as a prior for the individual event locations. The use of ac-
cumulated seismicity as a prior for focusing and relocation
has been proposed by Jones and Stewart (1997) and investi-
gated in detail by Li et al. (2016). We can see the effect of
this strategy more clearly in Fig. 8, where starting from three
different events in the catalog (Fig. 8a), we finally converge
to only two different final locations (Fig. 8d).

4.3 Large-scale application to southern California

In previous works, we concluded that the spatial distribu-
tion of southern California seismicity is multifractal, i.e., it is
an inhomogeneous collection of singularities (Kamer et al.,
2015, 2017). The spatial features in Fig. 10 can be seen as
expressions of these singularities. Since we are interested in
the general form of the fault network rather than the second-
order features (e.g., inhomogeneous seismicity rates along
the same fault) we consider all the centers of all 93 149
kernels as individual points, effectively disregarding their
weights. Considering the weight of each kernel would result
in more complex structure with singularities that can be as-
sociated with the fractal slip distribution of large events (Mai
and Beroza, 2002) modulated through the non-uniform net-
work detection capabilities. Thus, by disregarding the kernel
weights we are considering only the potential loci of earth-
quakes, not their activity rates.

Another important aspect, in the case of such a large-scale
application, is the uniform background kernel. The assump-
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Figure 10. (a) Mean locations of condensed 600463 Gaussian components shaded according to their weights. (b) The same components
shaded according to the total number of events assigned to them after the maximum likelihood assignment.

tion of a single background kernel defined as the minimum
bounding box of the entire dataset seems to be suitable for
the case of Landers aftershocks; however, it becomes evident
that for whole of southern California such a minimum bound-
ing box would overestimate the data extent (covering aseis-
mic offshore areas) and would thus lead to an underestimated
density. In addition, one can also expect the background den-
sity to vary regionally in such large domains. We thus extend
our approach by allowing for multiple uniform background
kernels. For this purpose, we make use of the AHC tree that is
already calculated for the atomization of the whole dataset.
We then cut the tree at a level corresponding to only a few
clusters (5 or 30 in the following application), which allows
the original catalog to be divided into smaller subcatalogs
represented by each cluster. Each of these subsets is then
atomized individually yielding its own background kernel.
The atomized subsets are then brought together, to be pro-
gressively merged. Naturally, we have no objective way of
knowing how many background kernels a dataset may fea-
ture. However, in various synthetic tests, involving cuboid
backgrounds with known densities, we observe that inflating
this number has no effect on the recovered densities, whereas
a value that is too low causes underestimation. Apart from
this justification, we are motivated to divide this large dataset
into subsets for purely computational reasons as this allows
for improved parallelization and computational efficiency.
Figure 11 shows the two fault networks obtained for two
different initial settings: using 5 and 30 subsets. For each
choice, we show the results of the local and global criterion;
the background cuboids are not plotted to avoid clutter. Our
immediate observation is related to the events associated with
the 1986 Oceanside sequence (Wesson and Nicholson, 1988)
located at coordinates (—75, —125). The kernel associated
with these events is virtually absent in the fault networks re-
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constructed from five initial subsets (Fig. 11a, b). This can
be explained in terms of the atomization procedure. In the
case of five initial subsets, the offshore Oceanside seismic-
ity falls in a subset containing onshore faults such as the
Elsinore fault at coordinates (0, —75). Because these faults
have a more coherent spatial structure compared to the dif-
fused Oceanside seismicity, their proto-cluster holding ca-
pacity is higher. Hence the atomization procedure continues
to increase the number of clusters while the Oceanside seis-
micity has actually reached its own holding capacity. This
causes nearly all of the proto-clusters within the Oceanside
region to become singular and be discarded into the back-
ground. In the case of 30 subsets, the Oceanside seismicity is
in a separate region and thus is able to retain a more reliable
holding capacity estimation, yielding to the detection of the
underlying structures.

At this point, it is natural to ask which of these fault net-
works is a better model? The answer to this question would
depend on the application. If one is interested in the corre-
spondence between the reconstructed faults and focal mech-
anisms, or high-resolution fault traces, which are expressions
of local stress and strain conditions, then the ideal choice
would be the local criterion. However, if the application of
interest is an earthquake forecast covering the whole cata-
log domain, then one should consider the global criterion
because it yields a lower BIC value, since it is formulated
with respect to the overall likelihood. We leave the statisti-
cal investigation of the fault network parameters (e.g., fault
length, dip, thickness distributions) as a subject for a separate
study and instead focus on an immediate application of the
obtained fault networks.
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Figure 11. Fault network reconstructions for the KaKiOS-16 catalog. Panels (a, b) show results for the case of five initial subsets with
(a) local and (b) global merging criterion. Bottom row shows the (¢) local and (d) global merging criterion for 30 initial subsets. The number
of clusters, background weight and BIC per data point is given in the insets. Clusters are colored according their density (data point per cubic
kilometer), where the volume is estimated as the product of standard deviations along the principal component axes.

5 Validation through a spatial forecast test

Several methods can be proposed for the validation of a re-
constructed fault network. One way could be to project the
faults on the surface and check their correspondence with the
mapped fault traces. This would be a tedious task since it
would involve a case-by-case qualitative analysis. Further-
more, many of the faults illuminated by recent seismicity
might not have been mapped or they may simply have no
surface expressions. In the case of the 2014 Napa earth-
quake, there was also a significant disparity between the spa-
tial distribution of aftershocks and the observed surface trace
(Brocher et al., 2015). Another option would be to compare
the agreement between the reconstructed faults and the fo-
cal mechanisms of the events associated with them. With
many of the metrics already developed (Wang et al., 2013),
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this would allow for a systematic evaluation. However, the
current focal mechanisms catalog for southern California is
based on the HYS-12 catalog (Hauksson et al., 2012; Yang et
al., 2012) obtained by relative double-difference techniques.
As previously discussed in our studies (Kamer et al., 2015,
2017), we have demonstrated that this catalog exhibits arti-
ficial clustering effects at different scales. Hence, any focal
mechanism based on hypocenters from this relative location
catalog would be inconsistent with the absolute locations of
the KaKiOS-16 catalog.

Therefore we are left with the eventual option of valida-
tion by spatial forecasting. For this purpose, we will use the
global criterion model obtained from 30 subsets because it
has the lowest BIC value of the four reconstructions pre-
sented above. Our fault reconstruction uses all events in the
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KaKiOS-16 catalog, regardless of their magnitude. The last
event in this catalog occurred on 30 June 2011. For target
events, we consider all routinely located events by the south-
ern California Earthquake Data Center between 1 July 2011
and 1 July 2015 with magnitudes larger than M2.5. We limit
our volume of interest arbitrarily to the region limited by lat-
itudes [32.5, 36.0], longitudes [—121, —115] and depths in
the range 0—20 km. The likelihood scores of the target events
are calculated directly from the fault network, which is es-
sentially a weighted mixture of Gaussian PDFs and uniform
background kernels. The only modification done to accom-
modate the forecast is aggregating all background kernels
into a single cuboid covering the volume of interest. The
weight of this cuboid is equal to the sum of all aggregated
background kernel weights. To compare the spatial forecast-
ing performance of our fault network we consider the sim-
ple smoothed seismicity model (TripleS) (Zechar and Jordan,
2010) that was proposed as a forecasting benchmark. This
model is obtained by replacing each event with an isotropic,
constant bandwidth Gaussian kernel. The bandwidth is then
optimized by dividing the dataset into training and validation
sets. As already pointed out by Zechar and Jordan (2010)
the construction of the model involves several choices (e.g.,
choice of optimization function, choice of candidate band-
widths). To sidestep these choices we construct the TripleS
model by optimizing the bandwidth parameter directly on
the target set. Allowing this privilege of foresight, which
would not be possible in a prospective setting, makes sure
that the TripleS method is at its maximum attainable forecast
skill. Figure 12 shows the forecast performances of our fault
network, the TripleS model and a single uniformly dense
cuboid. The performance is quantified in terms of negative
log likelihood per target event for varying magnitude cut-
offs of the target dataset. The reconstructed fault network
performs better for all magnitude cut-off levels. We also ob-
serve a consistent relative performance increase with increas-
ing magnitude cut-off, suggesting that the larger events tend
to occur closer to the principal planes defined by the two
largest eigenvalues of the fitting kernels.

The superiority of our model with respect to TripleS can
be understood in terms of model parameterization, i.e., model
complexity. There is a general misconception regarding the
meaning of “model complexity” in the earthquake forecast-
ing community. The term is often used to express the de-
gree of conceptual convolution employed while deriving the
model. For instance, in their 2010 paper, Zechar and Jor-
dan refer to the TripleS model as “a simple model” com-
pared to models employing anisotropic or adaptive kernels
(Helmstetter et al., 2007; Kagan and Jackson, 1994). As a
result, one might be inclined to believe that the model ob-
tained by fault reconstruction presented in this study is far
more complex than TripleS. However, it is important to note
that the complexity of a model is independent of the al-
gorithmic procedures undertaken to obtain it. What matters
is the number of parameters that are needed to communi-
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Figure 12. Average negative log likelihood for the target dataset
limited to events above M2.5 (light gray), M3.0 (dark gray) and
M3.5 (black). Performance of the TripleS models is evaluated as a
function of the isotropic kernel bandwidth (dotted lines). The fault
network performance is plotted with constant level solid lines. The
performance of a single uniformly dense cuboid is plotted with a
dashed line.

cate it, or in other words its minimum description length
(Rissanen, 1978; Schwarz, 1978). TripleS is essentially a
GMM model expressed by the 3D locations of its compo-
nents and a constant kernel bandwidth. Hence it has a total
of (3-479056) + 1 =1437 168 free parameters compared to
the (10 -385) —1 = 3849 of our fault network. Thus, the dif-
ference in spatial forecasting performance can be understood
in terms of the TripleS’ overparametrization compared to the
optimal complexity criteria employed in reconstructing the
fault network. It is true that, compared to our fault recon-
struction method, the TripleS model is easier to formulate
and obtain. However, the fact that the isotropic TripleS ker-
nels are co-located with hypocenters of previous earthquakes
does not reduce the complexity of the model. As an every-
day analogy, consider for instance an image saved as bitmap,
where each pixel is encoded with an integer representing its
color: such a representation of an image, although much sim-
pler to encode, would require larger storage space compared
to one obtained by JPEG compression. Although the JPEG
compression is an elaborated algorithm, it produces a rep-
resentation that is much simpler. In the same vein, the fault
reconstruction method uses regularities in the data to obtain
a simpler, more optimal representation.

Another contributing factor to the performance of the fault
network can be regarded as the utilization of location un-
certainty information that facilitates condensation. This has
two consequences: (1) decreasing the overall spatial entropy
and thus providing a clearer picture of the fault network, and
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(2) reducing the effect of repeated events occurring on each
segment, thus providing a more even prior on all segments.

6 Conclusion

We presented an agglomerative clustering method for
seismicity-based fault network reconstruction. The method
provides the following advantages: (1) a bottom-up approach
that explores all possible merger options at each step and
moves coherently towards a global optimum; (2) an opti-
mized atomization scheme to isolate the background (i.e.,
uncorrelated) points; (3) improved computation performance
due to geometrical merging constraints. We were able to an-
alyze a very large dataset consisting of 30 years of south-
ern Californian seismicity by utilizing the non-linear loca-
tion uncertainties of the events and condensing the catalog
to ~20% of its initial size. We validated the information
gain of the reconstructed fault network through a pseudo-
prospective 3D spatial forecast test, targeting 4 years of seis-
micity.

Notwithstanding these encouraging results, there are sev-
eral aspects in which the proposed methodology can be fur-
ther improved and extended. In the current formulation, the
distinct background kernels are represented by the minimum
bounding box of each subset, so that they tend to overlap and
bias the overall background density. This can be improved
by employing convex hulls, alpha shapes (Edelsbrunner and
Miicke, 1994) or a Voronoi tessellation (Voronoi, 1908) op-
timized to match the subset borders. The shape of the back-
ground kernel could also be adapted to the specific applica-
tion; for induced seismicity catalogs, it can be a minimum
bounding sphere or an isotropic Gaussian since the pressure
field diffuses more or less radially from the injection point
(Kirély-Proag et al., 2016). Different types of proto-clusters
such as Student ¢ kernels or copulas can be used in the atom-
ization step or they can be introduced at various steps of the
merger by allowing for data-driven kernel choices.

The reconstructed faults can facilitate other fault-related
research by providing a systematic way to obtain planar
structures from observed seismicity. For instance, analysis
of static stress transfer can be aided by employing the recon-
structed fault network to resolve the focal plane ambiguity
(Nandan et al., 2016; Navas-Portella et al., 2020). Similarly,
the orientation of each individual kernel can be used as a lo-
cal prior to improve the performance of real-time rupture de-
tectors (Bose et al., 2017). Studies relying on mapped fault
traces to model rupture dynamics can be also extended using
reconstructed fault networks that represent observed seismic-
ity including its uncertainty (Wollherr et al., 2019).

An important implication of the reconstructed fault net-
work is its potential in modeling the temporal evolution of
seismicity. The epidemic-type aftershock sequence (ETAS)
model can be simplified significantly in the presence of opti-
mally defined Gaussian fault kernels. Rather than expressing
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the whole catalog sequence as the weighted combination of
all previous events, we can instead coarsely grain the prob-
lem at the fault segment scale and have multiple sequences
corresponding to each fault kernel, each of them being a
combination of the activity on the other fault kernels. Such
a formulation would eliminate the need for the commonly
used isotropic distance in the ETAS kernels, as this single-
degree kernel induces essentially the same deficiencies dis-
cussed in the case of the TripleS model. Thus, we can ex-
pect such an ETAS model, based on a fault network, to have
significantly better forecasting performances compared to its
isotropic variants.

Code and data availability. The MATLAB implementation of the
agglomerative fault reconstruction method and the synthetic tests
can be downloaded from https://doi.org/10.5281/zenodo.4274628
(Kamer, 2020). The KaKiOS-16 catalog can be downloaded from
https://doi.org/10.5281/zenodo.4355424 (Kamer et al., 2017). The
MATLAB implementation of the condensation method can be
downloaded from https://doi.org/10.5281/zenodo.4356218 (Kamer,
2014).
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