Articles | Volume 20, issue 10
https://doi.org/10.5194/nhess-20-2753-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-2753-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing atmospheric moisture effects on heavy precipitation during HyMeX IOP16 using GPS nudging and dynamical downscaling
Alberto Caldas-Alvarez
CORRESPONDING AUTHOR
Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology, P.O. Box 3640,76021 Karlsruhe, Germany
Samiro Khodayar
Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology, P.O. Box 3640,76021 Karlsruhe, Germany
Mediterranean Centre for Environmental Studies (CEAM), Valencia, 46980, Spain
Related authors
Alberto Caldas-Alvarez, Hendrik Feldmann, Etor Lucio-Eceiza, and Joaquim G. Pinto
Weather Clim. Dynam., 4, 543–565, https://doi.org/10.5194/wcd-4-543-2023, https://doi.org/10.5194/wcd-4-543-2023, 2023
Short summary
Short summary
We evaluate convection-permitting modelling (CPM) simulations for the greater Alpine area to assess its added value compared to a 25 km resolution. A new method for severe precipitation detection is used, and the associated synoptic weather types are considered. Our results document the added value of CPM for precipitation representation with higher intensities, better rank correlation, better hit rates, and an improved amount and structure, but with an overestimation of the rates.
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
Alberto Caldas-Alvarez, Samiro Khodayar, and Peter Knippertz
Weather Clim. Dynam., 2, 561–580, https://doi.org/10.5194/wcd-2-561-2021, https://doi.org/10.5194/wcd-2-561-2021, 2021
Short summary
Short summary
The prediction capabilities of GPS, operational (low-resolution) and targeted (high-resolution) radiosondes for data assimilation in a Mediterranean heavy precipitation event at different model resolutions are investigated. The results show that even if GPS provides accurate observations, their lack of vertical information hampers the improvement, demonstrating the need for assimilating radiosondes, where the location and timing of release was more determinant than the vertical resolution.
Alberto Caldas-Álvarez, Samiro Khodayar, and Olivier Bock
Adv. Sci. Res., 14, 157–162, https://doi.org/10.5194/asr-14-157-2017, https://doi.org/10.5194/asr-14-157-2017, 2017
Short summary
Short summary
The representation of the atmospheric moisture distribution in weather and climate prediction models has been identified as a source of error in the representation of heavy precipitation events. This research work shows the relevance of overcoming deficiencies in the representation of the moisture content in the vertical direction, even after assimilating humidity data for a case study characteristic of the western Mediterranean by early autumn.
Alberto Caldas-Alvarez, Hendrik Feldmann, Etor Lucio-Eceiza, and Joaquim G. Pinto
Weather Clim. Dynam., 4, 543–565, https://doi.org/10.5194/wcd-4-543-2023, https://doi.org/10.5194/wcd-4-543-2023, 2023
Short summary
Short summary
We evaluate convection-permitting modelling (CPM) simulations for the greater Alpine area to assess its added value compared to a 25 km resolution. A new method for severe precipitation detection is used, and the associated synoptic weather types are considered. Our results document the added value of CPM for precipitation representation with higher intensities, better rank correlation, better hit rates, and an improved amount and structure, but with an overestimation of the rates.
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
Alberto Caldas-Alvarez, Samiro Khodayar, and Peter Knippertz
Weather Clim. Dynam., 2, 561–580, https://doi.org/10.5194/wcd-2-561-2021, https://doi.org/10.5194/wcd-2-561-2021, 2021
Short summary
Short summary
The prediction capabilities of GPS, operational (low-resolution) and targeted (high-resolution) radiosondes for data assimilation in a Mediterranean heavy precipitation event at different model resolutions are investigated. The results show that even if GPS provides accurate observations, their lack of vertical information hampers the improvement, demonstrating the need for assimilating radiosondes, where the location and timing of release was more determinant than the vertical resolution.
Samiro Khodayar, Amparo Coll, and Ernesto Lopez-Baeza
Hydrol. Earth Syst. Sci., 23, 255–275, https://doi.org/10.5194/hess-23-255-2019, https://doi.org/10.5194/hess-23-255-2019, 2019
Alberto Caldas-Álvarez, Samiro Khodayar, and Olivier Bock
Adv. Sci. Res., 14, 157–162, https://doi.org/10.5194/asr-14-157-2017, https://doi.org/10.5194/asr-14-157-2017, 2017
Short summary
Short summary
The representation of the atmospheric moisture distribution in weather and climate prediction models has been identified as a source of error in the representation of heavy precipitation events. This research work shows the relevance of overcoming deficiencies in the representation of the moisture content in the vertical direction, even after assimilating humidity data for a case study characteristic of the western Mediterranean by early autumn.
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Trends in heat and cold wave risks for the Italian Trentino-Alto Adige region from 1980 to 2018
Brief communication: Towards a universal formula for the probability of tornadoes
Propagation from meteorological to hydrological drought in the Horn of Africa using both standardized and threshold-based indices
Review article: A European perspective on wind and storm damage – from the meteorological background to index-based approaches to assess impacts
The 2018 west-central European drought projected in a warmer climate: how much drier can it get?
The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective
Characteristics of hail hazard in South Africa based on satellite detection of convective storms
A phytoplankton bloom caused by the super cyclonic storm Amphan in the central Bay of Bengal
Effect of extreme El Niño events on the precipitation of Ecuador
Rescuing historical weather observations improves quantification of severe windstorm risks
Development and evaluation of a method to identify potential release areas of snow avalanches based on watershed delineation
Heat wave monitoring over West African cities: uncertainties, characterization and recent trends
Variations of extreme precipitation events with sub-daily data: a case study in the Ganjiang River basin
Human influence on growing-period frosts like in early April 2021 in central France
Improving the predictability of the Qendresa Medicane by the assimilation of conventional and atmospheric motion vector observations. Storm-scale analysis and short-range forecast
Investigation of an extreme rainfall event during 8–12 December 2018 over central Vietnam – Part 1: Analysis and cloud-resolving simulation
Increased spatial extent and likelihood of compound long-duration dry and hot events in China, 1961–2014
Validating a tailored drought risk assessment methodology: drought risk assessment in local Papua New Guinea regions
A decrease in rockfall probability under climate change conditions in Germany
Seasonal fire danger forecasts for supporting fire prevention management in an eastern Mediterranean environment: the case of Attica, Greece
Uncovering the veil of night light changes in times of catastrophe
Time of emergence of compound events: contribution of univariate and dependence properties
Assessment of S2S ensemble extreme precipitation forecasts over Europe
Decadal variations of European windstorms: linking research to insurance applications
Future heat extremes and impacts in a convection permitting climate ensemble over Germany
Skillful decadal prediction of German Bight storm activity
Droughts in Germany: performance of regional climate models in reproducing observed characteristics
Analysis of the relationship between yield in cereals and remotely sensed fAPAR in the framework of monitoring drought impacts in Europe
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Using high-resolution global climate models from the PRIMAVERA project to create a European winter windstorm event set
Real-time urban rainstorm and waterlogging disaster detection by Weibo users
Sensitivity of simulating Typhoon Haiyan (2013) using WRF: the role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions
A satellite lightning observation operator for storm-scale numerical weather prediction
Assimilation of Meteosat Third Generation (MTG) Lightning Imager (LI) observations in AROME-France – Proof of Concept
Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management
Linking reported drought impacts with drought indices, water scarcity, and aridity: the case of Kenya
Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model
Contradictory signal in future surface water availability in Austria: increase on average vs. higher probability of droughts
Hotspots for warm and dry summers in Romania
Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation
Tropical cyclone storm surge probabilities for the east coast of the United States: a cyclone-based perspective
Hydrometeorological analysis of the 12 and 13 September 2019 widespread flash flooding in eastern Spain
Monitoring the daily evolution and extent of snow drought
Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling
Adaptation and application of the large LAERTES-EU regional climate model ensemble for modeling hydrological extremes: a pilot study for the Rhine basin
Invited perspectives: how does climate change affect the risk of natural hazards? Challenges and step changes from the reinsurance perspective
Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance
Spatio-temporal evolution of wet–dry event features and their transition across the Upper Jhelum Basin (UJB) in South Asia
Precipitation stable isotopic signatures of tropical cyclones in Metropolitan Manila, Philippines, show significant negative isotopic excursions
Evaluation of Mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012–2014
Martin Morlot, Simone Russo, Luc Feyen, and Giuseppe Formetta
Nat. Hazards Earth Syst. Sci., 23, 2593–2606, https://doi.org/10.5194/nhess-23-2593-2023, https://doi.org/10.5194/nhess-23-2593-2023, 2023
Short summary
Short summary
We analyzed recent trends in heat and cold wave (HW and CW) risk in a European alpine region, defined by a time and spatially explicit framework to quantify hazard, vulnerability, exposure, and risk. We find a statistically significant increase in HW hazard and exposure. A decrease in vulnerability is observed except in the larger cities. HW risk increased in 40 % of the region, especially in highly populated areas. Stagnant CW hazard and declining vulnerability result in reduced CW risk.
Roberto Ingrosso, Piero Lionello, Mario Marcello Miglietta, and Gianfausto Salvadori
Nat. Hazards Earth Syst. Sci., 23, 2443–2448, https://doi.org/10.5194/nhess-23-2443-2023, https://doi.org/10.5194/nhess-23-2443-2023, 2023
Short summary
Short summary
Tornadoes represent disruptive and dangerous weather events. The prediction of these small-scale phenomena depends on the resolution of present weather forecast and climatic projections. This work discusses the occurrence of tornadoes in terms of atmospheric variables and provides analytical expressions for their conditional probability. These formulas represent a tool for tornado alert systems and for estimating the future evolution of tornado frequency and intensity in climate projections.
Rhoda A. Odongo, Hans De Moel, and Anne F. Van Loon
Nat. Hazards Earth Syst. Sci., 23, 2365–2386, https://doi.org/10.5194/nhess-23-2365-2023, https://doi.org/10.5194/nhess-23-2365-2023, 2023
Short summary
Short summary
We characterize meteorological (P), soil moisture (SM) and hydrological (Q) droughts and the propagation from one to the other for 318 catchments in the Horn of Africa. We find that propagation from P to SM is influenced by soil properties and vegetation, while propagation from P to Q is from catchment-scale hydrogeological properties (i.e. geology, slope). We provide precipitation accumulation periods at the subbasin level that can be used as a proxy in drought forecasting in dryland regions.
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci., 23, 2171–2201, https://doi.org/10.5194/nhess-23-2171-2023, https://doi.org/10.5194/nhess-23-2171-2023, 2023
Short summary
Short summary
Wind and storms are a major natural hazard and can cause severe economic damage and cost human lives. Hence, it is important to gauge the potential impact of using indices, which potentially enable us to estimate likely impacts of storms or other wind events. Here, we review basic aspects of wind and storm generation and provide an extensive overview of wind impacts and available indices. This is also important to better prepare for future climate change and corresponding changes to winds.
Emma E. Aalbers, Erik van Meijgaard, Geert Lenderink, Hylke de Vries, and Bart J. J. M. van den Hurk
Nat. Hazards Earth Syst. Sci., 23, 1921–1946, https://doi.org/10.5194/nhess-23-1921-2023, https://doi.org/10.5194/nhess-23-1921-2023, 2023
Short summary
Short summary
To examine the impact of global warming on west-central European droughts, we have constructed future analogues of recent summers. Extreme droughts like 2018 further intensify, and the local temperature rise is much larger than in most summers. Years that went hardly noticed in the present-day climate may emerge as very dry and hot in a warmer world. The changes can be directly linked to real-world events, which makes the results very tangible and hence useful for climate change communication.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Heinz Jürgen Punge, Kristopher M. Bedka, Michael Kunz, Sarah D. Bang, and Kyle F. Itterly
Nat. Hazards Earth Syst. Sci., 23, 1549–1576, https://doi.org/10.5194/nhess-23-1549-2023, https://doi.org/10.5194/nhess-23-1549-2023, 2023
Short summary
Short summary
We have estimated the probability of hail events in South Africa using a combination of satellite observations, reanalysis, and insurance claims data. It is found that hail is mainly concentrated in the southeast. Multivariate stochastic modeling of event characteristics, such as multiple events per day or track dimensions, provides an event catalogue for 25 000 years. This can be used to estimate hail risk for return periods of 200 years, as required by insurance companies.
Haojie Huang, Linfei Bai, Hao Shen, Xiaoqi Ding, Rui Wang, and Haibin Lü
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-61, https://doi.org/10.5194/nhess-2023-61, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
The supercyclonic storm Amphan occurred in the central Bay of Bengal in May 2020, and a phytoplankton bloom occurred. It's dynamic mechanism was researched. An inertial oscillation with a two-day period appeared and lasted for approximately two weeks. With the weakened thermocline and thinner barrier layer thickness, nitrate and Chl-a were uplifted to the upper ocean by upwelling. With the high photosynthetically available radiation, a phytoplankton bloom occurred.
Dirk R. Thielen, Paolo Ramoni-Perazzi, Ezequiel Zamora-Ledezma, Mary L. Puche, Marco Marquez, José I. Quintero, Wilmer Rojas, Alberto Quintero, Guillermo Bianchi, Irma A. Soto-Werschitz, and Marco Aurelio Arizapana-Almonacid
Nat. Hazards Earth Syst. Sci., 23, 1507–1527, https://doi.org/10.5194/nhess-23-1507-2023, https://doi.org/10.5194/nhess-23-1507-2023, 2023
Short summary
Short summary
Extreme El Niño events are unique in their strong impacts and differ from other El Niños. In Ecuador, extreme eastern Pacific El Niño and coastal El Niño generate dangerous precipitation anomalies, particularly in areas with a high natural seasonality index, steep terrain, and a close proximity to the coast. These findings can help develop effective strategies to reduce vulnerability to potential increases in extreme El Niño frequency and intensity.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Cécile Duvillier, Nicolas Eckert, Guillaume Evin, and Michael Deschâtres
Nat. Hazards Earth Syst. Sci., 23, 1383–1408, https://doi.org/10.5194/nhess-23-1383-2023, https://doi.org/10.5194/nhess-23-1383-2023, 2023
Short summary
Short summary
This study develops a method that identifies individual potential release areas (PRAs) of snow avalanches based on terrain analysis and watershed delineation and demonstrates its efficiency in the French Alps context using an extensive cadastre of past avalanche limits. Results may contribute to better understanding local avalanche hazard. The work may also foster the development of more efficient PRA detection methods based on a rigorous evaluation scheme.
Cedric Gacial Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 23, 1313–1333, https://doi.org/10.5194/nhess-23-1313-2023, https://doi.org/10.5194/nhess-23-1313-2023, 2023
Short summary
Short summary
Heat waves (HWs) are climatic hazards that affect the planet. We assess here uncertainties encountered in the process of HW detection and analyse their recent trends in West Africa using reanalysis data. Three types of uncertainty have been investigated. We identified 6 years with higher frequency of HWs, possibly due to higher sea surface temperatures in the equatorial Atlantic. We noticed an increase in HW characteristics during the last decade, which could be a consequence of climate change.
Guangxu Liu, Aicun Xiang, Zhiwei Wan, Yang Zhou, Jie Wu, Yuandong Wang, and Sichen Lin
Nat. Hazards Earth Syst. Sci., 23, 1139–1155, https://doi.org/10.5194/nhess-23-1139-2023, https://doi.org/10.5194/nhess-23-1139-2023, 2023
Short summary
Short summary
This paper focuses on investigating the thresholds of extreme precipitation using sub-daily records in the Ganjiang River basin using gamma distribution, the L-moment method and the Mann–Kendall (M–K) test. The main findings are (1) run 3 (36 h) precipitation events would be key events for flood monitoring. (2)The intensity and the occasional probability of extreme precipitation will increase in spring in the future in stations like Yifeng, Zhangshu and Ningdu.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Diego S. Carrió
Nat. Hazards Earth Syst. Sci., 23, 847–869, https://doi.org/10.5194/nhess-23-847-2023, https://doi.org/10.5194/nhess-23-847-2023, 2023
Short summary
Short summary
The accurate prediction of medicanes still remains a key challenge in the scientific community because of their poor predictability. In this study we assimilate different observations to improve the trajectory and intensity forecasts of the Qendresa Medicane. Results show the importance of using data assimilation techniques to improve the estimate of the atmospheric flow in the upper-level atmosphere, which has been shown to be key to improve the prediction of Qendresa.
Chung-Chieh Wang and Duc Van Nguyen
Nat. Hazards Earth Syst. Sci., 23, 771–788, https://doi.org/10.5194/nhess-23-771-2023, https://doi.org/10.5194/nhess-23-771-2023, 2023
Short summary
Short summary
A record-breaking rainfall event over central Vietnam is investigated. Key factors include the combined effect of northeasterly wind, easterly wind blowing to central Vietnam from the western North Pacific (WNP), southeasterly wind, local topography, and high sea surface temperature (SST) over WNP and the South China Sea (SCS). The cloud-resolving storm simulator (CReSS) is applied to simulate this event. The results show that the model mostly captured the quantitative rainfall of this event.
Yi Yang, Douglas Maraun, Albert Ossó, and Jianping Tang
Nat. Hazards Earth Syst. Sci., 23, 693–709, https://doi.org/10.5194/nhess-23-693-2023, https://doi.org/10.5194/nhess-23-693-2023, 2023
Short summary
Short summary
This study quantifies the spatiotemporal variation and characteristics of compound long-duration dry and hot events in China over the 1961–2014 period. The results show that over the past few decades, there has been a substantial increase in the frequency of these compound events across most parts of China, which is dominated by rising temperatures. We detect a strong increase in the spatially contiguous areas experiencing concurrent dry and hot conditions.
Isabella Aitkenhead, Yuriy Kuleshov, Jessica Bhardwaj, Zhi-Weng Chua, Chayn Sun, and Suelynn Choy
Nat. Hazards Earth Syst. Sci., 23, 553–586, https://doi.org/10.5194/nhess-23-553-2023, https://doi.org/10.5194/nhess-23-553-2023, 2023
Short summary
Short summary
A case study assessing drought risk in Papua New Guinea (PNG) provinces for retrospective years (2014–2020) was conducted to demonstrate the development and validate the application of a tailored and semi-dynamic drought risk assessment methodology. Hazard, vulnerability, and exposure indicators appropriate for monitoring drought in PNG provinces were selected. The risk assessment accurately indicated a strong drought event in 2015–2016 and a moderate event in 2019.
Katrin M. Nissen, Martina Wilde, Thomas M. Kreuzer, Annika Wohlers, Bodo Damm, and Uwe Ulbrich
EGUsphere, https://doi.org/10.5194/egusphere-2023-94, https://doi.org/10.5194/egusphere-2023-94, 2023
Short summary
Short summary
The effect of climate change on rockfall probability in the German low mountain regions is investigated in observations and 23 different climate scenario simulation. Under a pessimistic greenhouse-gas scenario, the simulations suggest a decrease in rockfall probability. This reduction is mainly caused by a decrease in the number of freeze-thawing cycles due to higher atmospheric temperatures.
Anna Karali, Konstantinos V. Varotsos, Christos Giannakopoulos, Panagiotis P. Nastos, and Maria Hatzaki
Nat. Hazards Earth Syst. Sci., 23, 429–445, https://doi.org/10.5194/nhess-23-429-2023, https://doi.org/10.5194/nhess-23-429-2023, 2023
Short summary
Short summary
As climate change leads to more frequent and severe fires, forecasting fire danger before fire season begins can support fire management. This study aims to provide high-resolution probabilistic seasonal fire danger forecasts in a Mediterranean environment and assess their ability to capture years with increased fire activity. Results indicate that forecasts are skillful in predicting above-normal fire danger conditions and can be exploited by regional authorities in fire prevention management.
Vincent Schippers and Wouter Botzen
Nat. Hazards Earth Syst. Sci., 23, 179–204, https://doi.org/10.5194/nhess-23-179-2023, https://doi.org/10.5194/nhess-23-179-2023, 2023
Short summary
Short summary
Researchers studying economic impacts of natural disasters increasingly use night light as a proxy for local economic activity, when socioeconomic data are unavailable. But often it is unclear what changes in light intensity represent in the context of disasters. We study this in detail for Hurricane Katrina and find a strong correlation with building damage and changes in population and employment. We conclude that night light data are useful to study local impacts of natural disasters.
Bastien François and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 23, 21–44, https://doi.org/10.5194/nhess-23-21-2023, https://doi.org/10.5194/nhess-23-21-2023, 2023
Short summary
Short summary
Compound events (CEs) result from a combination of several climate phenomena. In this study, we propose a new methodology to assess the time of emergence of CE probabilities and to quantify the contribution of marginal and dependence properties of climate phenomena to the overall CE probability changes. By applying our methodology to two case studies, we show the importance of considering changes in both marginal and dependence properties for future risk assessments related to CEs.
Pauline Rivoire, Olivia Martius, Philippe Naveau, and Alexandre Tuel
EGUsphere, https://doi.org/10.5194/egusphere-2022-1401, https://doi.org/10.5194/egusphere-2022-1401, 2022
Short summary
Short summary
Heavy precipitation can lead to floods and landslides, resulting in widespread damage and significant casualties. Some of its impacts can be mitigated if reliable forecasts and warnings are available. In this article, we assess the capacity of the precipitation forecast provided by ECMWF to predict heavy precipitation events on a subseasonal to seasonal (S2S) timescale over Europe. We find that the forecast skill of such events is generally higher in winter than in summer.
Stephen Cusack
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-268, https://doi.org/10.5194/nhess-2022-268, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Decadal climate research circumvents the lack of a complete European windstorm loss history by using climate indices. In this study, a full loss timeseries from 1950 to 2022 was developed, and the key finding is that climate proxies diverge from losses in recent times. Including low-level baroclinicity in the climate indices, because damaging gusts derive their strength from winds in the lower troposphere, will narrow the gap between climate indices and losses.
Marie Hundhausen, Hendrik Feldmann, Natalie Laube, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-283, https://doi.org/10.5194/nhess-2022-283, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Using a convection permitting regional climate ensemble, the magnitude of heat waves (HW) over Germany is projected to increase by 26 % (100 %) in a 2 K (3 K) warmer world. The increase is especially strong in late summer, relatively homogeneous in space, and accompanied by increasing variance of HW length. Tailored parameters to climate adaptation to heat revealed dependency on the major landscapes and a non-linear, exponential increase for parameters characterizing strong heat stress is expected.
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022, https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 22, 3875–3895, https://doi.org/10.5194/nhess-22-3875-2022, https://doi.org/10.5194/nhess-22-3875-2022, 2022
Short summary
Short summary
The influence of model resolution and settings on drought reproduction in Germany between 1980–2009 is investigated here. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Gridded observational data sets serve as reference. Regarding the reproduction of drought characteristics, all models perform on a similar level, while for trends, only the modified model produces reliable outputs.
Carmelo Cammalleri, Niall McCormick, and Andrea Toreti
Nat. Hazards Earth Syst. Sci., 22, 3737–3750, https://doi.org/10.5194/nhess-22-3737-2022, https://doi.org/10.5194/nhess-22-3737-2022, 2022
Short summary
Short summary
We evaluated the ability of vegetation indices derived from satellite data to capture annual yield variations across Europe. The strength of the relationship varies throughout the year, with March–October representing the optimal period in most cases. Spatial differences were also observed, with the best results obtained in the Mediterranean regions.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Julia F. Lockwood, Galina S. Guentchev, Alexander Alabaster, Simon J. Brown, Erika J. Palin, Malcolm J. Roberts, and Hazel E. Thornton
Nat. Hazards Earth Syst. Sci., 22, 3585–3606, https://doi.org/10.5194/nhess-22-3585-2022, https://doi.org/10.5194/nhess-22-3585-2022, 2022
Short summary
Short summary
We describe how we developed a set of 1300 years' worth of European winter windstorm footprints, using a multi-model ensemble of high-resolution global climate models, for use by the insurance industry to analyse windstorm risk. The large amount of data greatly reduces uncertainty on risk estimates compared to using shorter observational data sets and also allows the relationship between windstorm risk and predictable large-scale climate indices to be quantified.
Haoran Zhu, Priscilla Obeng Oforiwaa, and Guofeng Su
Nat. Hazards Earth Syst. Sci., 22, 3349–3359, https://doi.org/10.5194/nhess-22-3349-2022, https://doi.org/10.5194/nhess-22-3349-2022, 2022
Short summary
Short summary
We promote a new method to detect waterlogging disasters. Residents are directly affected by waterlogging, and we can collect their comments on social networks. Compared to official-authentication and personal-certification users, the microblogs posted by general users can better show the intensity and timing of waterlogging. Through text and sentiment features, we can separate microblogs with waterlogging information from other ones and mark high-risk regions on maps.
Rafaela Jane Delfino, Gerry Bagtasa, Kevin Hodges, and Pier Luigi Vidale
Nat. Hazards Earth Syst. Sci., 22, 3285–3307, https://doi.org/10.5194/nhess-22-3285-2022, https://doi.org/10.5194/nhess-22-3285-2022, 2022
Short summary
Short summary
We showed the effects of altering the choice of cumulus schemes, surface flux options, and spectral nudging with a high level of sensitivity to cumulus schemes in simulating an intense typhoon. We highlight the advantage of using an ensemble of cumulus parameterizations to take into account the uncertainty in simulating typhoons such as Haiyan in 2013. This study is useful in addressing the growing need to plan and prepare for as well as reduce the impacts of intense typhoons in the Philippines.
Pauline Combarnous, Felix Erdmann, Olivier Caumont, Éric Defer, and Maud Martet
Nat. Hazards Earth Syst. Sci., 22, 2943–2962, https://doi.org/10.5194/nhess-22-2943-2022, https://doi.org/10.5194/nhess-22-2943-2022, 2022
Short summary
Short summary
The objective of this study is to prepare the assimilation of satellite lightning data in the French regional numerical weather prediction system. The assimilation of lightning data requires an observation operator, based on empirical relationships between the lightning observations and a set of proxies derived from the numerical weather prediction system variables. We fit machine learning regression models to our data to yield those relationships and to investigate the best proxy for lightning.
Felix Erdmann, Olivier Caumont, and Eric Defer
EGUsphere, https://doi.org/10.5194/egusphere-2022-637, https://doi.org/10.5194/egusphere-2022-637, 2022
Short summary
Short summary
This work develops a novel lightning data assimilation (LDA) technique to make use of Meteosat Third Generation (MTG) Lightning Imager (LI) data in a regional, convection-permitting numerical weather prediction model. The approach combines statistical Bayesian and 3-dimensional variational methods. Our LDA can promote missing convection and suppress spurious convection in the initial state of the model, and has similar skill to the operational radar data assimilation for rainfall forecasts.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
EGUsphere, https://doi.org/10.5194/egusphere-2022-458, https://doi.org/10.5194/egusphere-2022-458, 2022
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A Random Forest model reveals that each region, aggregated by aridity, has their own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci., 22, 1795–1817, https://doi.org/10.5194/nhess-22-1795-2022, https://doi.org/10.5194/nhess-22-1795-2022, 2022
Short summary
Short summary
In this study, cloud-resolving simulations are performed under idealized and uniform southwesterly flow direction and speed to investigate the rainfall regimes in the Mei-yu season and the role of complex mesoscale topography on rainfall without the influence of unwanted disturbances, including a low-Froude number regime where the thermodynamic effects and island circulation dominate, a high-Froude number regime where topographic rainfall in a flow-over scenario prevails, and a mixed regime.
Klaus Haslinger, Wolfgang Schöner, Jakob Abermann, Gregor Laaha, Konrad Andre, Marc Olefs, and Roland Koch
EGUsphere, https://doi.org/10.5194/egusphere-2022-191, https://doi.org/10.5194/egusphere-2022-191, 2022
Short summary
Short summary
Future changes of surface water availability in Austria are investigated. Alterations of the climatic water balance and its components (liquid precipitation, snow melt, potential evapotranspiration) are analysed along different levels of elevation. Results indicate in general wetter conditions with particular shifts in timing of the snow melt season. On the contrary, an increasing risk for summer droughts is apparent due to increasing year-to-year variability under future climate conditions.
Viorica Nagavciuc, Patrick Scholz, and Monica Ionita
Nat. Hazards Earth Syst. Sci., 22, 1347–1369, https://doi.org/10.5194/nhess-22-1347-2022, https://doi.org/10.5194/nhess-22-1347-2022, 2022
Short summary
Short summary
Here we have assessed the variability and trends of hot and dry summers in Romania. The length, spatial extent, and frequency of heat waves in Romania have increased significantly over the last 70 years, while no significant changes have been observed in the drought conditions. The increased frequency of heat waves, especially after the 1990s, could be partially explained by an increase in the geopotential height over the eastern part of Europe.
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022, https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 22, 1287–1300, https://doi.org/10.5194/nhess-22-1287-2022, https://doi.org/10.5194/nhess-22-1287-2022, 2022
Short summary
Short summary
Coastal flooding due to storm surge from tropical cyclones is a significant hazard. The influence of tropical cyclone characteristics, including its proximity, intensity, path angle, and speed, on the magnitude of storm surge is examined along the eastern United States. No individual characteristic was found to be strongly related to how much surge occurred at a site, though there is an increased likelihood of high surge occurring when tropical cyclones are both strong and close to a location.
Arnau Amengual
Nat. Hazards Earth Syst. Sci., 22, 1159–1179, https://doi.org/10.5194/nhess-22-1159-2022, https://doi.org/10.5194/nhess-22-1159-2022, 2022
Short summary
Short summary
On 12 and 13 September 2019, a long-lasting heavy precipitation episode resulted in widespread flash flooding over eastern Spain. Well-organized and quasi-stationary convective structures impacted a vast area with rainfall amounts over 200 mm. The very dry initial soil moisture conditions resulted in a dampened hydrological response: until runoff thresholds were exceeded, infiltration-excess generation did not start. This threshold-based behaviour is explored through simple scaling theory.
Benjamin J. Hatchett, Alan M. Rhoades, and Daniel J. McEvoy
Nat. Hazards Earth Syst. Sci., 22, 869–890, https://doi.org/10.5194/nhess-22-869-2022, https://doi.org/10.5194/nhess-22-869-2022, 2022
Short summary
Short summary
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall instead of snowfall. Monitoring snow drought through time and across space is important to evaluate when snow drought onset occurred, its duration, spatial extent, and severity as well as what conditions created it or led to its termination. We present visualization techniques, including a web-based snow-drought-tracking tool, to evaluate snow droughts and assess their impacts in the western US.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, Yi He, Martin Kadlec, Fanni D. Kelemen, Hilke S. Lentink, Patrick Ludwig, Desmond Manful, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 22, 677–692, https://doi.org/10.5194/nhess-22-677-2022, https://doi.org/10.5194/nhess-22-677-2022, 2022
Short summary
Short summary
For various applications, it is crucial to have profound knowledge of the frequency, severity, and risk of extreme flood events. Such events are characterized by very long return periods which observations can not cover. We use a large ensemble of regional climate model simulations as input for a hydrological model. Precipitation data were post-processed to reduce systematic errors. The representation of precipitation and discharge is improved, and estimates of long return periods become robust.
Anja T. Rädler
Nat. Hazards Earth Syst. Sci., 22, 659–664, https://doi.org/10.5194/nhess-22-659-2022, https://doi.org/10.5194/nhess-22-659-2022, 2022
Short summary
Short summary
Natural disasters are causing high losses worldwide. To adequately deal with this loss potential, a reinsurer has to quantitatively assess the individual risks of natural catastrophes and how these risks are changing over time with respect to climate change. From a reinsurance perspective, the most pressing scientific challenges related to natural hazards are addressed, and broad changes are suggested that should be achieved by the scientific community to address these hazards in the future.
Jussi Leinonen, Ulrich Hamann, Urs Germann, and John R. Mecikalski
Nat. Hazards Earth Syst. Sci., 22, 577–597, https://doi.org/10.5194/nhess-22-577-2022, https://doi.org/10.5194/nhess-22-577-2022, 2022
Short summary
Short summary
We evaluate the usefulness of different data sources and variables to the short-term prediction (
nowcasting) of severe thunderstorms using machine learning. Machine-learning models are trained with data from weather radars, satellite images, lightning detection and weather forecasts and with terrain elevation data. We analyze the benefits provided by each of the data sources to predicting hazards (heavy precipitation, lightning and hail) caused by the thunderstorms.
Rubina Ansari and Giovanna Grossi
Nat. Hazards Earth Syst. Sci., 22, 287–302, https://doi.org/10.5194/nhess-22-287-2022, https://doi.org/10.5194/nhess-22-287-2022, 2022
Short summary
Short summary
The current research investigated spatio-temporal evolution of wet–dry events collectively, their characteristics, and their transition (wet to dry and dry to wet) across the Upper Jhelum Basin using the standardized precipitation evapotranspiration (SPEI) at a monthly timescale. The results provide significant knowledge to identify and locate most vulnerable geographical hotspots of extreme events, providing the basis for more effective risk reduction and climate change adaptation plans.
Dominik Jackisch, Bi Xuan Yeo, Adam D. Switzer, Shaoneng He, Danica Linda M. Cantarero, Fernando P. Siringan, and Nathalie F. Goodkin
Nat. Hazards Earth Syst. Sci., 22, 213–226, https://doi.org/10.5194/nhess-22-213-2022, https://doi.org/10.5194/nhess-22-213-2022, 2022
Short summary
Short summary
The Philippines is a nation very vulnerable to devastating typhoons. We investigate if stable isotopes of precipitation can be used to detect typhoon activities in the Philippines based on daily isotope measurements from Metropolitan Manila. We find that strong typhoons such as Rammasun, which occurred in July 2014, leave detectable isotopic signals in precipitation. Besides other factors, the distance of the typhoon to the sampling site plays a key role in influencing the signal.
Chung-Chieh Wang, Pi-Yu Chuang, Chih-Sheng Chang, Kazuhisa Tsuboki, Shin-Yi Huang, and Guo-Chen Leu
Nat. Hazards Earth Syst. Sci., 22, 23–40, https://doi.org/10.5194/nhess-22-23-2022, https://doi.org/10.5194/nhess-22-23-2022, 2022
Short summary
Short summary
This study indicated that the Cloud-Resolving Storm Simulator (CReSS) model significantly improved heavy-rainfall quantitative precipitation forecasts in the Taiwan Mei-yu season. At high resolution, the model has higher threat scores and is more skillful in predicting larger rainfall events compared to smaller ones. And the strength of the model mainly lies in the topographic rainfall rather than less predictable and migratory events due to nonlinearity.
Cited articles
Ahrens, C. D. and Samson, P. J.:
Extreme Weather and Climate,
Cengage Learning, United States of America, ISBN 0495118575, 2010.
Andersson, T., Andersson, M., Jacobsson, C., and Nilsson, S.:
Thermodynamic indices for forecasting thunderstorms in southern Sweden,
Meteorol. Mag.,
116, 141–146, 1989.
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., and Ware, R. H.:
GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water,
J. Appl. Meteorol.,
33, 379–386, https://doi.org/10.1175/1520-0450(1994)033<0379:gmmzwd>2.0.co;2, 1994.
Bitew, M. M. and Gebremichael, M.:
Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model,
Water Resour. Res.,
47, W06526, https://doi.org/10.1029/2010WR009917, 2011.
Bock, O., Bosser, P., Pacione, R., Nuret, M., Fourrié, N., and Parracho, A.:
A high-quality reprocessed ground-based GPS dataset for atmospheric process studies, radiosonde and model evaluation, and reanalysis of HyMeX Special Observing Period,
Q. J. Roy. Meteor. Soc.,
142, 56–71, https://doi.org/10.1002/qj.2701, 2016.
Businger, S., Chiswell, S. R., Bevis, M., Duan, J., Anthes, R. A., Rocken, C., Ware, R. H., Exner, M., VanHove, T., and Solheim, F. S.:
The Promise of GPS in Atmospheric Monitoring,
B. Am. Meteorol. Soc.,
77, 5–18, https://doi.org/10.1175/1520-0477(1996)077<0005:tpogia>2.0.co;2, 1996.
Caldas-Alvarez, A.:
Atmospheric Moisture Effects on Deep Convection in the Western Mediterranean,
KIT Scientific Publishing, Karlsruhe, Germany, VI, 237, https://doi.org/10.5445/KSP/1000097100, 2019.
Caldas-Alvarez, A. and Khodayar, S.: Analysis data to Caldas-Alvarez and Khodayar (2020), KITOpen, https://doi.org/10.5445/IR/1000123256, 2020.
Chan, S. C., Kendon, E. J., Fowler, H. J., Blenkinsop, S., Ferro, C. A. T., and Stephenson, D. B.:
Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation?,
Clim. Dynam.,
41, 1475–1495, https://doi.org/10.1007/s00382-012-1568-9, 2012.
Chazette, P., Flamant, C., Shang, X., Totems, J., Raut, J.-C., Doerenbecher, A., Ducrocq, V., Fourrié, N., Bock, O., and Cloché, S.:
A multi-instrument and multi-model assessment of atmospheric moisture variability over the western Mediterranean during HyMeX,
Q. J. Roy. Meteor. Soc.,
142, 7–22, https://doi.org/10.1002/qj.2671, 2015a.
Chazette, P., Flamant, C., Raut, J.-C., Totems, J., and Shang, X.:
Tropical moisture enriched storm tracks over the Mediterranean and their link with intense rainfall in the Cevennes-Vivarais area during HyMeX,
Q. J. Roy. Meteor. Soc.,
142, 320–334, https://doi.org/10.1002/qj.2674, 2015b.
Cress, A., Anlauf, H., Bitzer, H. W., Rhodin, A., Schraff, C., Helmert, K., and Stephan, K. (Eds.):
Global and regional impact studies at the German Weather Service (DWD),
World Meteorological Organization (WMO), Sedona, USA, 2012.
Di Girolamo, P., Flamant, C., Cacciani, M., Richard, E., Ducrocq, V., Summa, D., Stelitano, D., Fourrié, N., and Saïd, F.:
Observation of low-level wind reversals in the Gulf of Lion area and their impact on the water vapour variability,
Q. J. Roy. Meteor. Soc.,
142, 153–172, https://doi.org/10.1002/qj.2767, 2016.
Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P., and Vogel, G.:
A Description of the Nonhydrostatic Regional COSMO Model Part II: Physical Parameterization, German Weather Service, P.O. Box 100465, 63004 Offenbach, Germany, 2011.
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., van Hove, T., Ware, R., McClusky, S., Herring, T. A., and King, R. W.:
GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water,
J. Appl. Meteorol.,
35, 830–838, https://doi.org/10.1175/1520-0450(1996)035<0830:gmdeot>2.0.co;2, 1996.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P.-A., Belamari, S., Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J.-L., Bouin, M.-N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U., Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P., Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J. J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F. S., Molinié, G., Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said, F., Schwarzenboeck, A., Testor, P., van Baelen, J., Vincendon, B., Aran, M., and Tamayo, J.: HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in the Northwestern Mediterranean,
B. Am. Meteorol. Soc.,
95, 1083–1100, https://doi.org/10.1175/bams-d-12-00244.1, 2014.
Ducrocq, V., Davolio, S., Ferretti, R., Flamant, C., Santaner, V. H., Kalthoff, N., Richard, E., and Wernli, H.:
Introduction to the HyMeX Special Issue on “Advances in understanding and forecasting of heavy precipitation in the Mediterranean through the HyMeX SOP1 field campaign”,
Q. J. Roy. Meteor. Soc.,
142, 1–6, https://doi.org/10.1002/qj.2856, 2016.
Duffourg, F. and Ducrocq, V.: Origin of the moisture feeding the Heavy Precipitating Systems over Southeastern France, Nat. Hazards Earth Syst. Sci., 11, 1163–1178, https://doi.org/10.5194/nhess-11-1163-2011, 2011.
Duffourg, F., Nuissier, O., Ducrocq, V., Flamant, C., Chazette, P., Delanoë, J., Doerenbecher, A., Fourrié, N., Di Girolamo, P., Lac, C., Legain, D., Martinet, M., Saïd, F., and Bock, O.:
Offshore deep convection initiation and maintenance during the HyMeX IOP 16a heavy precipitation event,
Q. J. Roy. Meteor. Soc.,
142, 259–274, https://doi.org/10.1002/qj.2725, 2016.
Fosser, G., Khodayar, S., and Berg, P.:
Climate change in the next 30 years: What can a convection-permitting model tell us that we did not already know?,
Clim. Dynam.,
48, 1987–2003, https://doi.org/10.1007/s00382-016-3186-4, 2016.
Funatsu, B. M., Rysman, J.-F., Claud, C., and Chaboureau, J.-P.:
Deep convective clouds distribution over the Mediterranean region from AMSU-B/MHS observations,
Atmos. Res.,
207, 122–135, https://doi.org/10.1016/j.atmosres.2018.03.003, 2018.
Gilabert, J. and Llasat, M. C.:
Circulation weather types associated with extreme flood events in Northwestern Mediterranean,
Int. J. Climatol.,
38, 1864–1876, https://doi.org/10.1002/joc.5301, 2017.
González-Zamora, Á., Sánchez, N., Martínez-Fernández, J., Gumuzzio, Á., Piles, M., and Olmedo, E.:
Long-term SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin (Spain),
Phys. Chem. Earth, Pt A/B/C,
83–84, 123–136, https://doi.org/10.1016/j.pce.2015.05.009, 2015.
Guerova, G., Jones, J., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., Pacione, R., Elgered, G., Vedel, H., and Bender, M.: Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe, Atmos. Meas. Tech., 9, 5385–5406, https://doi.org/10.5194/amt-9-5385-2016, 2016.
Habib, E., Haile, A. T., Tian, Y., and Joyce, R. J.:
Evaluation of the High-Resolution CMORPH Satellite Rainfall Product Using Dense Rain Gauge Observations and Radar-Based Estimates,
J. Hydrometeorol.,
13, 1784–1798, https://doi.org/10.1175/JHM-D-12-017.1, 2012.
Honda, T. and Kawano, T.:
How does mid-tropospheric dry air affect the evolution of supercellular convection?,
Atmos. Res.,
157, 1–16, https://doi.org/10.1016/j.atmosres.2015.01.015, 2015.
Jansa, A., Genoves, A., Picornell, M. A., Campins, J., Riosalido, R., and Carretero, O.:
Western Mediterranean cyclones and heavy rain. Part 2: Statistical approach,
Meteorol. Appl.,
8, 43–56, https://doi.org/10.1017/s1350482701001049, 2001.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.:
CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution,
J. Hydrometeorol.,
5, 487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:camtpg>2.0.co;2, 2004.
Keil, C., Röpnack, A., Craig, G. C., and Schumann, U.:
Sensitivity of quantitative precipitation forecast to height dependent changes in humidity,
Geophys. Res. Lett.,
35, L09812, https://doi.org/10.1029/2008gl033657, 2008.
Khodayar, S., Fosser, G., Berthou, S., Davolio, S., Drobinski, P., Ducrocq, V., Ferretti, R., Nuret, M., Pichelli, E., Richard, E., and Bock, O.:
A seamless weather-climate multi-model intercomparison on the representation of a high impact weather event in the western Mediterranean: HyMeX IOP12,
Q. J. Roy. Meteor. Soc.,
142, 433–452, https://doi.org/10.1002/qj.2700, 2016a.
Khodayar, S., Kalthoff, N., and Kottmeier, C.:
Atmospheric conditions associated with heavy precipitation events in comparison to seasonal means in the western mediterranean region,
Clim. Dynam.,
51, 951–967, https://doi.org/10.1007/s00382-016-3058-y, 2016b.
Krichak, S. O., Barkan, J., Breitgand, J. S., Gualdi, S., and Feldstein, S. B.:
The role of the export of tropical moisture into midlatitudes for extreme precipitation events in the Mediterranean region,
Theor. Appl. Climatol.,
121, 499–515, https://doi.org/10.1007/s00704-014-1244-6, 2014.
Lamb, P. J. and Ports, D. H.:
Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U. S. Southern Great Plains including for CLASIC (June 2007),
J. Hydrometeorol., 13, 1719–1738, https://doi.org/10.1175/JHM-D-12-01.1, 2012.
Lee, K.-O., Flamant, C., Duffourg, F., Ducrocq, V., and Chaboureau, J.-P.: Impact of upstream moisture structure on a back-building convective precipitation system in south-eastern France during HyMeX IOP13, Atmos. Chem. Phys., 18, 16845–16862, https://doi.org/10.5194/acp-18-16845-2018, 2018.
Leuenberger, D., Stoll, M., and Roches, A.:
Description of some convective indices implemented in the COSMO model,
Deutscher Wetterdienst (DWD),
available at: http://www.cosmo-model.org/content/model/documentation/techReports/docs/techReport17.pdf (last access: 22 July 2019), 2010.
Llasat, M. C., Llasat-Botija, M., Prat, M. A., Porcú, F., Price, C., Mugnai, A., Lagouvardos, K., Kotroni, V., Katsanos, D., Michaelides, S., Yair, Y., Savvidou, K., and Nicolaides, K.: High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database, Adv. Geosci., 23, 47–55, https://doi.org/10.5194/adgeo-23-47-2010, 2010.
Maranan, M., Fink, A. H., Knippertz, P., Francis, S. D., Akpo, A. B., Jegede, G., and Yorke, C.:
Interactions between Convection and a Moist Vortex Associated with an Extreme Rainfall Event over Southern West Africa,
Mon. Weather Rev.,
147, 2309–2328, https://doi.org/10.1175/MWR-D-18-0396.1, 2019.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Martinet, M., Nuissier, O., Duffourg, F., Ducrocq, V., and Ricard, D.:
Fine-scale numerical analysis of the sensitivity of the HyMeX IOP16a heavy precipitating event to the turbulent mixing-length parametrization,
Q. J. Roy. Meteor. Soc.,
143, 3122–3135, https://doi.org/10.1002/qj.3167, 2017.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Nuret, M.:
HyMeX domain precipitation amount, SEDOO OMP,
MISTRALS, Toulouse, France
https://doi.org/10.6096/mistrals-hymex.904, 2013.
Pantillon, F., Chaboureau, J. P., and Richard, E.:
Remote impact of North Atlantic hurricanes on the Mediterranean during episodes of intense rainfall in autumn 2012,
Q. J. Roy. Meteor. Soc.,
141, 967–978, https://doi.org/10.1002/qj.2419, 2015.
Peixoto, J. P. and Oort, A. H.:
Physics of Climate,
American Inst. of Physics, New York, USA, 1992.
Pinto, J. G., Ulbrich, S., Parodi, A., Rudari, R., Boni, G., and Ulbrich, U.:
Identification and ranking of extraordinary rainfall events over Northwest Italy: The role of Atlantic moisture,
J. Geophys. Res.-Atmos.,
118, 2085–2097, https://doi.org/10.1002/jgrd.50179, 2013.
Ricard, D., Ducrocq, V., and Auger, L.:
A Climatology of the Mesoscale Environment Associated with Heavily Precipitating Events over a Northwestern Mediterranean Area,
J. Appl. Meteorol. Clim.,
51, 468–488, https://doi.org/10.1175/jamc-d-11-017.1, 2012.
Ritter, B. and Geleyn, J.-F.:
A Comprehensive Radiation Scheme for Numerical Weather Prediction Models with Potential Applications in Climate Simulations,
Mon. Weather Rev.,
120, 303–325, https://doi.org/10.1175/1520-0493(1992)120<0303:acrsfn>2.0.co;2, 1992.
Rockel, B., Will, A., and Hense, A.: The Regional Climate Model COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008.
Röhner, L, Nerding, K. U., and Corsmeier, U.:
Diagnostic Study of a Heavy Precipitation Event over Spain by investigation of moisture trajectories,
Q. J. Roy. Meteor. Soc.,
142, 287–297, https://doi.org/10.1002/qj.2825, 2016.
Rolph, G., Stein, A., and Stunder, B.:
Real-time Environmental Applications and Display sYstem: READY,
Environ. Modell. Softw.,
95, 210–228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Sapiano, M. R. P. and Arkin, P. A.:
An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data,
J. Hydrometeorol.,
10, 149–166, https://doi.org/10.1175/2008JHM1052.1, 2009.
Schättler, U., Doms, G., and Schraff, C.:
A Description of the Nonhydrostatic Regional COSMO-Model Part VII: User's Guide,
DeutscherWetterdienst, P.O. Box 100465, 63004 Offenbach, Germany, 2016.
Schiro, K. A. and Neelin, J. D.:
Deep Convective Organization, Moisture Vertical Structure, and Convective Transition Using Deep-Inflow Mixing,
J. Atmos. Sci.,
76, 965–987, https://doi.org/10.1175/jas-d-18-0122.1, 2019.
Schneider, M., Romero, P. M., Hase, F., Blumenstock, T., Cuevas, E., and Ramos, R.: Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92, Atmos. Meas. Tech., 3, 323–338, https://doi.org/10.5194/amt-3-323-2010, 2010.
Schraff, C. and Hess, R.:
A Description of the Nonhydrostatic Regional COSMO-Model Part III: Data Assimilation,
DeutscherWetterdienst, P.O. Box 100465, 63004 Offenbach, Germany, 2012.
Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Periáñez, A., and Potthast, R.:
Kilometre-scale ensemble data assimilation for the COSMO model (KENDA),
Q. J. Roy. Meteor. Soc.,
142, 1453–1472, https://doi.org/10.1002/qj.2748, 2016.
Sherwood, S. C., Roca, R., Weckwerth, T. M., and Andronova, N. G.:
Tropospheric water vapor, convection, and climate,
Rev. Geophys.,
48, RG2001 , https://doi.org/10.1029/2009rg000301, 2010.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.:
NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System,
B. Am. Meteorol. Soc.,
96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Steinke, S., Eikenberg, S., Löhnert, U., Dick, G., Klocke, D., Di Girolamo, P., and Crewell, S.: Assessment of small-scale integrated water vapour variability during HOPE, Atmos. Chem. Phys., 15, 2675–2692, https://doi.org/10.5194/acp-15-2675-2015, 2015.
Stevens, B.:
Atmospheric Moist Convection,
Annu. Rev. Earth Pl. Sc.,
33, 605–643, https://doi.org/10.1146/annurev.earth.33.092203.122658, 2005.
Thévenot, O., Bouin, M. -N., Ducrocq, V., Brossier, C. L., Nuissier, O., Pianezze, J., and Duffourg, F.:
Influence of the sea state on Mediterranean heavy precipitation: A case-study from HyMeX SOP1,
Q. J. Roy. Meteor. Soc.,
142, 377–389, https://doi.org/10.1002/qj.2660, 2015.
Tiedtke, M.:
A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models,
Mon. Weather Rev.,
117, 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2, 1989.
Virman, M., Bister, M., Sinclair, V. A., Järvinen, H., and Räisänen, J.:
A New Mechanism for the Dependence of Tropical Convection on Free-Tropospheric Humidity,
Geophys. Res. Lett.,
45, 2516–2523, https://doi.org/10.1002/2018gl077032, 2018.
Wicker, L. J. and Skamarock, W. C.:
Time-Splitting Methods for Elastic Models Using Forward Time Schemes,
Mon. Weather Rev.,
130, 2088–2097, https://doi.org/10.1175/1520-0493(2002)130<2088:tsmfem>2.0.co;2, 2002.
Winschall, A., Sodemann, H., Pfahl, S., and Wernli, H.:
How important is intensified evaporation for Mediterranean precipitation extremes?,
J. Geophys. Res.-Atmos.,
119, 5240–5256, https://doi.org/10.1002/2013jd021175, 2014.
Wulfmeyer, V., Hardesty, R. M., Turner, D. D., Behrendt, A., Cadeddu, M. P., Di Girolamo, P., Schlüssel, P., van Baelen, J., and Zus, F.:
A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,
Rev. Geophys.,
53, 819–895, https://doi.org/10.1002/2014rg000476, 2015.
Xoplaki, E., Trigo, R. M., Garcández, R., Kuglitsch, F. G., Mariotti, A., Nieto, R., Pinto, J. G., Pozo-Vázquez, D., Saaroni, H., Toreti, A., Trigo, I. F., Vicente-Serrano, S. M., Yiou, P., and Ziv, B.:
Large-Scale Atmospheric Circulation Driving Extreme Climate Events in the Mediterranean and its Related Impacts,
in: The Climate of the Mediterranean Region,
Elsevier, the Netherlands, 347–417, https://doi.org/10.1016/b978-0-12-416042-2.00006-9, 2012.
Short summary
Heavy precipitation causes serious losses and several casualties in the western Mediterranean every year. To predict this phenomenon better, we aim at understanding how the models represent the interaction between atmospheric moisture and precipitation by nudging a 10 min, state-of-the-art GPS data set. We found, for the selected case in autumn 2012, that the improvement in the modelling of precipitation stems from relevant variations of atmospheric instability and humidity above 1.5 km.
Heavy precipitation causes serious losses and several casualties in the western Mediterranean...
Altmetrics
Final-revised paper
Preprint